Goossen, L. J.; Dezfuli, M. K. Practical protocol for the palladium-catalyzed synthesis of arylphosphonates from bromoarenes and diethyl phosphite. Synlett2005, Nr. 3, 445–448.
Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. Mechanistic pathways for oxidative addition of aryl halides to palladium(0) complexes: A DFT study. Organometallics2005, 24, 2398–2410.
Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. The palladium-catalyzed cross-coupling reaction of carboxylic anhydrides with arylboronic acids: A DFT study. Journal of the American Chemical Society2005, 127, 11102–11114.
Goossen, L. J.; Paetzold, J.; Briel, O.; Rivas-Nass, A.; Karch, R.; Kayser, B. Buchwald-Hartwig aminations of aryl chlorides: A practical protocol based on commercially available Pd(0)-NHC catalysts. Synlett2005, Nr. 2, 275–278.
Goossen, L. J.; Rauhaus, J. E.; Deng, E. Ru-catalyzed anti-Markovnikov addition of amides to alkynes: a regio- and stereoselective synthesis of enamides. Angewandte Chemie2005, 117, 4110–4113.
Goossen, L. J.; Rauhaus, J. E.; Deng, G. J. Ru-catalyzed anti-Markovnikov addition of amides to alkynes: A regio- and stereoselective synthesis of enamides. Angewandte Chemie-International Edition2005, 44, 4042–4045.
Gooßen, L. J. A simple and practical protocol for the palladium-catalyzed cross-coupling of boronic acids with methyl iodide. Applied Organometallic Chemistry2004, 18, 602–604.
Gooßen, L. J.; Döhring, A. A convenient protocol for the esterification of carboxylic acids with alcohols in the presence of di-t-butyl dicarbonate. Synlett2004, Nr. 2, 263–266.
Gooßen, L. J.; Koley, D.; Hermann, H.; Thiel, W. The mechanism of the oxidative addition of aryl halides to Pd-catalysts: a DFT investigation. Chemical Communications (Cambridge, U. K.)2004, Nr. 19, 2141–2143.
Gooßen, L. J.; Paetzold, J. Decarbonylative heck olefination of enol esters: Salt-free and environmentally friendly access to vinyl arenes. Angewandte Chemie-International Edition2004, 43, 1095–1098.
Gooßen, L. J.; Paetzold, J. New synthesis of biaryls via Rh-catalyzed decarbonylative Suzuki-coupling of carboxylic anhydrides with arylboroxines. Advanced Synthesis & Catalysis2004, 346, 1665–1668.
Gooßen, L. J.; Paetzold, J. Decarbonylierende Heck-Olefinierung von Enolestern: ein salzfreier und umweltfreundlicher Zugang zu Vinylarenen. Angewandte Chemie2004, 116, 1115–1118.
Gooßen, L. J.; Rodriguez, N. A mild and efficient protocol for the conversion of carboxylic acids to olefins by a catalytic decarbonylative elimination reaction. Chemical Communications (Cambridge, U. K.)2004, Nr. 6, 724–725.
Gooßen, L. J.; Döhring, A. Lewis acids as highly efficient catalysts for the decarboxylative esterification of carboxylic acids with dialkyl dicarbonates. Advanced Synthesis & Catalysis2003, 345, 943–947.
Gooßen, L. J.; Paetzold, J.; Koley, D. Regiocontrolled Ru-catalyzed addition of carboxylic acids to alkynes: practical protocols for the synthesis of vinyl esters. Chemical Communications (Cambridge, U. K.)2003, Nr. 6, 706–707.
Gooßen, L. J.; Ghosh, K. Palladium-catalyzed synthesis of aryl ketones from boronic acids and carboxylic acids activated in situ by pivalic anhydride. European Journal of Organic Chemistry2002, Nr. 19, 3254–3267.
Gooßen, L. J.; Paetzold, J.; Winkel, L. Pd-catalyzed decarbonylative Heck olefination of aromatic carboxylic acids activated in situ with di-tert-butyl dicarbonate. Synlett2002, Nr. 10, 1721–1723.
Gooßen, L. J.; Winkel, L.; Döhring, A.; Ghosh, K.; Paetzold, J. Pd-catalyzed synthesis of functionalized arylketones from boronic acids and carboxylic acids activated in situ with dimethyl dicarbonate. Synlett2002, Nr. 8, 1237–1240.
TU Dortmund und Pantazis-Gruppe weisen in Kollaborationsprojekt eine neue Klasse von organischer Verbindung mit neutralem, einfach gebundenen Kohlenstoffatom nach
Dr. Dimitrios Pantazis, Gruppenleiter am MPI für Kohlenforschung in der Abteilung für molekulare Theorie und Spektroskopie, ist zum Vizepräsidenten der QBIC Society gewählt worden.
Mit Hilfe von Multiskalen-Simulationsmethoden und modernsten quantenchemischen Berechnungen untersuchten Dr. Dimitrios Pantazis und seine Gruppe, wie die Energie des Sonnenlichts in den Elektronenfluss umgewandelt wird, der chemische Reaktionen antreibt.