Knossalla, J.; Paciok, P.; Göhl, D.; Jalalpoor, D.; Pizzutilo, E.; Mingers, A. M.; Heggen, M.; Dunin-Borkowski, R. E.; Mayrhofer, K. J. J.; Schüth, F.; Ledendecker, M. Shape-Controlled Nanoparticles in Pore-Confined Space. Journal of the American Chemical Society2018, 140, 15684–15689.
Zimmermann, T.; Bilke, M.; Soorholtz, M.; Schüth, F. Influence of Catalyst Concentration on Activity and Selectivity in Selective Methane Oxidation with Platinum Compounds in Sulfuric Acid and Oleum. ACS Catalysis2018, 8, 9262–9268.
Xiong, Y.; Gu, D.; Deng, X.; Tüysüz, H.; van Gastel, M.; Schüth, F.; Marlow, F. High surface area black TiO2 templated from ordered mesoporous carbon for solar driven hydrogen evolution. Microporous and Mesoporous Materials2018, 268, 162–169.
Pichler, C.; Gu, D.; Joshi, H.; Schüth, F. Influence of preparation method and doping of zirconium oxide onto the material characteristics and catalytic activity for the HDO reaction in nickel on zirconium oxide catalysts. Journal of Catalysis2018, 365, 367–375.
Pichler, C.; Al-Shaal, M. G.; Gu, D.; Joshi, H.; Ciptonugroho, W.; Schüth, F. Ruthenium Supported on High-Surface-Area Zirconia as an Efficient Catalyst for the Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ChemSusChem2018, 11, 2083–2090.
Dierks, M.; Cao, Z.; Manayil, J. C.; Akilavasan, J.; Wilson, K.; Schüth, F.; Rinaldi, R. Impact of Hydrophobic Organohybrid Silicas on the Stability of Ni2P Catalyst Phase in the Hydrodeoxygenation of Biophenols. ChemCatChem2018, 10, 2219–2231.
Göhl, D.; Mingers, A. M.; Geiger, S.; Schalenbach, M.; Cherevko, S.; Knossalla, J.; Jalalpoor, D.; Schüth, F.; Mayrhofer, K. J. J.; Ledendecker, M. Electrochemical stability of hexagonal tungsten carbide in the potential window of fuel cells and water electrolyzers investigated in a half-cell configuration. Electrochimica Acta2018, 270, 70–76.
Ortatatlı, Ş.; Knossalla, J.; Schüth, F.; Weidenthaler, C. Monitoring the formation of PtNi nanoalloys supported on hollow graphitic spheres using in situ pair distribution function analysis. Physical Chemistry Chemical Physics2018, 20, 8466–8474.
Pizzutilo, E.; Knossalla, J.; Geiger, S.; Grote, J.-P.; Polymeros, G.; Baldizzone, C.; Mezzavilla, S.; Ledendecker, M.; Mingers, A.; Cherevko, S.; Schüth, F.; Mayrhofer, K. J. J. The Space Confinement Approach Using Hollow Graphitic Spheres to Unveil Activity and Stability of Pt-Co Nanocatalysts for PEMFC. Advanced Energy Materials2017, 7, 1700835.
Schreyer, H.; Immohr, S.; Schüth, F. Oscillatory combustion of propene during in situ mechanical activation of solid catalysts. Journal of Materials Science2017, 52, 12021–12030.
Wang, Y.; Widmann, D.; Wittmann, M.; Lehnert, F.; Gu, D.; Schüth, F.; Behm, R. J. High activity and negative apparent activation energy in low-temperature CO oxidation - present on Au/Mg(OH)2, absent on Au/TiO2. Catalysis Science & Technology2017, 7, 4145–4161.
Knossalla, J.; Jalalpoor, D.; Schüth, F. Hands-on Guide to the Synthesis of Mesoporous Hollow Graphitic Spheres and Core–Shell Materials. Chemistry of Materials2017, 29, 7062–7072.
Duyckaerts, N.; Bartsch, M.; Trotus, I.-T.; Pfänder, N.; Lorke, A.; Schüth, F.; Prieto, G. Intermediate product regulation in tandem solid catalysts with multimodal porosity for high-yield synthetic fuel production. Angewandte Chemie International Edition2017, 56, 11480–11484.
Heracleous, E.; Gu, D.; Schüth, F.; Bennett, J. A.; Isaacs, M. A.; Lee, A. F.; Wilson, K.; Lappas, A. A. Bio-oil upgrading via vapor-phase ketonization over nanostructured FeOx and MnOx: catalytic performance and mechanistic insight. Biomass and Bioenergy2017, 7, 319–329.
TU Dortmund und Pantazis-Gruppe weisen in Kollaborationsprojekt eine neue Klasse von organischer Verbindung mit neutralem, einfach gebundenen Kohlenstoffatom nach
Dr. Dimitrios Pantazis, Gruppenleiter am MPI für Kohlenforschung in der Abteilung für molekulare Theorie und Spektroskopie, ist zum Vizepräsidenten der QBIC Society gewählt worden.
Mit Hilfe von Multiskalen-Simulationsmethoden und modernsten quantenchemischen Berechnungen untersuchten Dr. Dimitrios Pantazis und seine Gruppe, wie die Energie des Sonnenlichts in den Elektronenfluss umgewandelt wird, der chemische Reaktionen antreibt.