Sen, A.; de Souza, B.; Huntington, L. M. J.; Krupička, M.; Neese, F.; Izsák, R. An efficient pair natural orbital based configuration interaction scheme for the calculation of open-shell ionization potentials. The Journal of Chemical Physics2018, 149, 114108.
Dutta, A. K.; Saitow, M.; Riplinger, C.; Neese, F.; Izsák, R. A near-linear scaling equation of motion coupled cluster method for ionized states. The Journal of Chemical Physics2018, 148, 244101.
Dutta, A. K.; Neese, F.; Izsák, R. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation. Molecular Physics2018, 116, 1428–1434.
Stoychev, G. L.; Auer, A. A.; Izsák, R.; Neese, F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. Journal of Chemical Theory and Computation2018, 14, 619–637.
de Souza, B.; Neese, F.; Izsák, R. On the theoretical prediction of fluorescence rates from first principles using the path integral approach. The Journal of Chemical Physics2018, 148, 034104.
Dutta, A. K.; Nooijen, M.; Neese, F.; Izsák, R. Exploring the Accuracy of a Low Scaling Similarity Transformed Equation of Motion Method for Vertical Excitation Energies. Journal of Chemical Theory and Computation2018, 14, 72–91.
Huntington, L. M. J.; Krupička, M.; Neese, F.; Izsák, R. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems. The Journal of Chemical Physics2017, 147, 174104.
Dutta, A. K.; Neese, F.; Izsák, R. A simple scheme for calculating approximate transition moments within the equation of motion expectation value formalism. The Journal of Chemical Physics2017, 146, 214111.
Dutta, A. K.; Nooijen, M.; Neese, F.; Izsák, R. Automatic active space selection for the similarity transformed equations of motion coupled cluster method. The Journal of Chemical Physics2017, 146, 074103.
Dutta, A. K.; Neese, F.; Izsák, R. Towards a pair natural orbital coupled cluster method for excited states. The Journal of Chemical Physics2016, 145, 034102.
Dutta, A. K.; Neese, F.; Izsák, R. Speeding up equation of motion coupled cluster theory with the chain of spheres approximation. The Journal of Chemical Physics2016, 144, 034102.
Bykov, D.; Petrenko, T.; Izsák, R.; Kossmann, S.; Becker, U.; Valeev, E.; Neese, F. Efficient implementation of the analytic second derivatives of Hartree–Fock and hybrid DFT energies: a detailed analysis of different approximations. Molecular Physics2015, 113, 1961–1977.
Izsák, R.; Neese, F.; Klopper, W. Robust fitting techniques in the chain of spheres approximation to the Fock exchange: The role of the complementary space. The Journal of Chemical Physics2013, 139, 094111.
Liakos, D. G.; Izsák, R.; Valeev, E. F.; Neese, F. What is the most efficient way to reach the canonical MP2 basis set limit? Molecular Physics2013, 111, 2653–2662.
Pandelia, M.-E.; Bykov, D.; Izsak, R.; Infossi, P.; Giudici-Orticoni, M.-T.; Bill, E.; Neese, F.; Lubitz, W. Reply to Mouesca et al.: Electronic structure of the proximal [4Fe-3S] cluster of O2-tolerant [NiFe] hydrogenases. Proceedings of the National Academy of Sciences of the United States of America2013, 110, E2539.
Izsák, R.; Neese, F. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method. Molecular Physics2013, 111, 1190–1195.
Pandelia, M.-E.; Bykov, D.; Izsak, R.; Infossi, P.; Giudici-Orticoni, M.-T.; Bill, E.; Neese, F.; Lubitz, W. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mössbauer and EPR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America2013, 110, 483–488.
Izsák, R.; Hansen, A.; Neese, F. The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term. Molecular Physics2012, 110, 2413–2417.
Den neuen Typ von OER-Elektrokatalysatoren entdeckten PD Dr. Harun Tüysüz (Max-Planck-Institut für Kohlenforschung) sowie Prof. Dr. Claudia Felser (Max-Planck-Institut für Chemische Physik fester Stoffe) und ihre Teams.
Gemeinsam mit seinem Projektpartner Prof. Dr. Joseph Moran von der Universität Straßburg erhielt er nun den Forcheurs Jean-Marie Lehn Preis 2020 für die gemeinsamen Arbeiten zur Katalyse in der präbiotischen Chemie.
Auszeichnung erfolgt für seine herausragenden Arbeiten zur Entwicklung von Katalysatoren, die sowohl für chemische Synthesen als auch zur Energieumwandlung genutzt werden können.