Publications of Peter Pinski

Journal Article (7)

2019
Journal Article
Pinski, P.; Neese, F. Analytical Gradient for the Domain-Based Local Pair Natural Orbital Second Order Møller-Plesset Perturbation Theory Method (DLPNO-MP2). The Journal of Chemical Physics 2019, 150.
2018
Journal Article
Pinski, P.; Neese, F. Communication: Exact Analytical Derivatives for the Domain-Based Local Pair Natural Orbital MP2 Method (DLPNO-MP2). The Journal of Chemical Physics 2018, 148.
2017
Journal Article
Sparta, M.; Retegan, M.; Pinski, P.; Riplinger, C.; Becker, U.; Neese, F. Multilevel Approaches Within the Local Pair Natural Orbital Framework. Journal of Chemical Theory and Computation 2017, 13, 3198–3207.
Journal Article
Pavošević, F.; Peng, C.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. SparseMaps-A Systematic Infrastructure for Reduced Scaling Electronic Structure Methods. V. Linear Scaling Explicitly Correlated Coupled-Cluster Method with Pair Natural Orbitals. The Journal of Chemical Physics 2017, 146.
2016
Journal Article
Pavošević, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. SparseMaps—A Systematic Infrastructure for Reduced-Scaling Electronic Structure Methods. IV. Linear-Scaling Second-Order Explicitly Correlated Energy with Pair Natural Orbitals. The Journal of Chemical Physics 2016, 144.
Journal Article
Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse Maps—A Systematic Infrastructure for Reduced-Scaling Electronic Structure Methods. II. Linear Scaling Domain Based Pair Natural Orbital Coupled Cluster Theory. The Journal of Chemical Physics 2016, 144.
2015
Journal Article
Pinski, P.; Riplinger, C.; Vallev, E. F.; Neese, F. Sparse Maps—A Systematic Infrastructure for Reduced-Scaling Electronic Structure Methods. I. An Efficient and Simple Linear Scaling Local MP2 Method that Uses an Intermediate Basis of Pair Natural Orbitals. The Journal of Physical Chemistry 2015, 143.

Thesis - PhD (1)

2020
Thesis - PhD
Pinski, P. Domain-Based Local Pair Natural Orbital Second-Order Møller-Plesset Perturbation Theory, and the Development of its Analytical Gradient. PhD Thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, 2020.
Go to Editor View