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DISCLAIMER - Dilletennte - a person who cultivates an area of interest, such as Mathematical Foundations

the arts, without real commitment or knowledge

High Throuput Experimentation (HTE) is transforming chemistry, drug discovery,
and biology

Machine Learning has displayed equally disruptive effects in biology and
medicine but progress in chemistry has not been commensurate with these
respective advances

Probability

"Field of study that gives computers the ability to learn without being explicitly
programmed"” - Arthur Samuel 1959

Linear
Algebra
Data is critically needed to enable machine learning, thus empowered by HTE

Included Topics
Heirachy of Learning Science, 2015, 349, 255

History of development

Common types of learning methods
Organic methodology

Chemical synthesis

Drug design

Future outlooks from the literature

Artifical
Intelligence

Topics Not Included

Machine
Learning

HTE besides selected miniaturization
Heterogenous catalysis

Materials or property prediction
Binary Classification ML

SpengheSulis o Statstic

For popular science introductions see:

Second Machine Age - Brynjolfsson and McAfee
Life 3.0 - Max Tegmark
Superintelligence - Bostrom

Data Mining, Inference, and Prediction

Reinforcement
Learning

Unsupervised
Learning

Supervised

Useful Technical References
Learning

Artificial Intelligence - Norwig and Russell
Elements of Statistical Learning - Friedman, Tibshirani, Hastie

In my view, those efforts are certainly worthwhile as long as they don’t come at the expense of the very field they wish to simplify. In other words, such
efforts do not intimidate, threaten, or provoke fear in the hearts of any practitioner of synthesis. Promises of computational chemistry and combinatorial
chemistry displacing the field were made over the years, yet we are still here. - Baran 2018
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PRINCIPIA

MATH

1642 - Pascal invents

first mechanical &

calculator

1828 - Wohler
synthesis of urea

1913 - Principia
Mathematica by Russell,
is published, exploring
Formal Logic

ATICA

total synthesis

1931 - Godel's
incompleteness
theroems

1944 - Woodward and
Doering complete the
total synthesis of quinine -
representing first 'modern’

1986 - Hinton reports
backpropagation method
enabling practical ANN

1997 - Google Deepblue
beats world chess master

Kasparov 3.5-2.5 2010 - Nobel Prize

in chemistry for palladium-
catalyzed cross couplings

*Not to scale

2015 - AlphaGo becomes
first computer to beat a
human player without
handicaps in Go

-

J
Y

1666-1674 - Newton
and Leibniz begin
laying foundation for
modern calculus

1845 - Boole sets
out to explore symbolic
representations of reasoning,
inventing Boolean Algebra

O—O—00

1932 - Sherrington shares
Nobel Prize for contributions
in neuroscience - discovers
role of 'synapse’

1950 - Alan Turning
proposes 'Turing Test'
for machine intelligence]

1944 - McCulloch and Pitts
develop algorith for

formalization of

Name | Graphic Symbol | Boolean Algebra Truth Table
s F=a ABQE Artifical Neural Networks (ANN) retrosynthesis
AND “:D_r f—’\B 1 ole
an EE |l
or (A D—* F=A+B ThE
Bl F - -
NOT |3 —>o— S = *= 1965 - Djerassi and Stanford
T v 1 colleagues begin DENDRAL -
NanD | 3= Do+ F=noR
e o ' focused research on Al to
AEyT transform organic synthesis
i — ‘
NOR BD—; F=A-B 1

1996 - EJ Corey wins
the Nobel Prize for his

()
\/ \|/ /
2011 - IBM Watson

beats Jeopardy
champions

2003 - Human genome project
is declared complete, largest
collaborative biology project in
world history
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Algorithm - Process or set of rules to be followed in calculations or other
problem solving operations, especially by a computer

Artifical Intelilgence - Intelligence demonstrated by machines

Artificial Neural Networks - Inspired by biological neural networks - large
number of inputs into a targeted output

Backpropagation - Error attribution of coefficient weights from output
layer, back to input layer

Classification - Qualitative data output - cat vs. dog image recongition

Deep Learning - Machine learning alogrithm based on multilayer neural networks
Uses a series of non-linear functions combintatorially, creating multiple levels
of representations for different levels of abstraction

Go - One of the world's most complex games, 10'7? possible positions

Hueritics - An approach to problem solving, learning, or discovery that employs
a practical method not guaranteed to be optimal or perfect, but likely sufficient

High-Throughput-Experimentation - Experimentation that provides large
amounts of data that far exceeds traditional lab-scale preparations; examples
include DEL (DNA-Encoded-Libraries), miaturization, and on-chip

Least-squares linear regression - Simplest machine learning algorithm
(Hammett Plot)

Machine Learning - Study and construction of computer algorithms that
can learn from data

Molecular descriptors - Describes properties of any compound by utilizing
domain expertise

Helpful Definitions

Monte Carlo Tree Search - Heuristic search algorithm for some kinds of decision
processes, most notably those employed in game play

Neuron - Biological cell-type that transmits information in the nervous system

Processing Unit - Maps features into an output using a function - simplest
unit of deep learning algorithms; artifiicial neuron

QSAR - Quantitative Structure Activity Relationship - goal to predict the biological
activity of a certain compound

Random Forest Model - Machine learning algorithm that takes random samples of
various decision trees, and combines their inputs to select an output

Regression - Quantitative data output - reaction yield

Reinforcement Learning - Machine learning paradigm between supervised and
unsupervised; data is not labelled, but correct/incorrect response is made

RMSE - Root Mean Squared Error - Difference between values predicted and
values observed; R2 - relative error

Shallow ML - Input features provided by domain expert; template matching
(does not learn representation of problem)

Support Vector Machine - Machine learning algorithm best for classification
processes; utilizes 'kernels’ to find boundaries between different classes

Supervised Learning - Paradigm in which input has a labelled output for training
set; reaction parameters as input, reported yields as output

Test Set - Set of data that is utilized to generate a predictive algorithm, usually
exploring many types of methods, i.e. linear regression, ANN, Bayes classifier,
or Random Forests; train algorithm on 70% of experiments, test on the other
30%

Training Set - Set of data that is reserved to test the predictive ability of the
algorithm; train algorithm on 70% of experiments, test on the other 30%

Unsupervised Learning - Paradigm where the inputs are completely unlabelled,
algorithm itself comes up with classifications to attach to the data and arrives
independently at outputs
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Techniques for analyzing data set - choose based on specific problem

Similar to computational chemistry - need to choose the correct level of
theory based on the problem at hand

Decision Trees
is sex male?
CART - Classification and Regression Trees

Node - test of an attribute ) ”

Branch - outcome of test 's age > 9.2 0.73 36%

Leaf - class label \

Low data curation (Gied) g gibep > 2.67

Overfitting is primary problem 0.47 B1%

Grow tree - Choose features 4 i
Identifity splitting conditions (died)
Learn when to stop 0.08 2% 089 2%
Prune tree

Applications - Titanic survival statistics, male or female based on height and

weight, price of home

Random Forest

Grow multiple trees
More robust and accurate with multiple models
For a new object, each tree gives a vote

Output with the most 'votes' gets chosen
Avoids overfitting problem of single decision tree
Large data sets with high dimensionality
Disadvantage - black box

Applications - banking, epidemiology, stock behavior, reaction yield, voice

classification
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Artifical Neural Networks (ANN) Dendrite Axon
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Sehwann cedl

Biological inspiration
Artifical neuron - perceptron
Multiple inputs to generate one output
Each neuron is weighted
Distinct activation functions to decide output
Unit step, sign, linear, logistic, etc...
Multiple types of outputs
Train either forwards or backwards
Applications - self-driving cars, image recognition

myelin

neuron structure

Deep Learning

ANN with multiple hidden layers

Computationally intractable until recently

Made feasible with rectified linear unit activation - transformative impact
Gradient descent for error correction

Applications - AlphaGo, retrosynthesis

a) Input Layer Hidden Layer Output Layer b)

Input Layer Multiple (n>3) Hidden layers Output Layer

Input 1

Input 2

Input 3

Inputn

Support Vector Machines

Very good for extreme cases e

Support vectors brush up against / o
the separating margin

Considers only support vectors important

Hyperplane - separates the classes in
n-dimenstional space

Non linear data transformed to higher dimension

Kernel - turns vectors to dot product in feature space
Non-trivial to choose kernel

Applications - medical imaging, air quality, medical classification, financial
analysis, page ranking

Input Space Feature Space
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Process chemistry requires extremely exacting conditions in scale up

Medicinal Chemsitry Process Chemistry

Best Molecule Best Synthesis

Optimal Conditions Many Reaction

Need quick access to a large quantity of multiple parameter permutations

Cl
), e,
O cl | P
OBz
F3;C

1.8 mol% (MeCN),PdCl,

P'Bu,
P'Bu,

> F3C
1.5 equiv. K3PO, 95% assay, 90% isolated
4:1 MeCN:H,0 55 °C >200:1 selectivity
WO 2008/082567 A1
OH
Br o MeM
e
OTBS \|/ OH
" MesHN” "B Ho 0 1M H,SO e
! KF,;B 294 u,,
N . > s ] > 82% total
F o 0.05 mol% [(allyl)PdCl], 0.4 mol% (dtbfp)PdCl, iPrOH °
0.3 mol% PPh;, K,CO3 K,CO3;, PhMe:H,0 F O
I PhMe:THF:H,0, 50 °C 70°C NHMs
W02009/054887 A1
Medicinal Chemistry limited primarily by time and availability of materials DNPN O " Nu A 1536 4-Component Reactions:
” et % ) N/ 6 bases x 16 catalysts x 16 nucleophiles 40 : N/ 6,144 Doses In:26. min
Began in house 'kits’ with predispensed catalyst and base to allow rapid e (/WW @
H TH X NH, SANH I NH; .
evaluation of conditions (J/MV 2 | .Y Q j (\l/j ) iBUM O gg«:{;ﬂgez
N NTN o Vil Thad XantPhos Pd
These kits enabled broader patterns to emerge from higher levels of data, U C(\,r““ wel® § |@‘N " e Ve Mo ® 5 PPAPY G
leading to the Merck 'Catalyst Selection Guide' W 0 Wy 2 - Wish BTMG s Q§E§§5§ §§
H u RuPhos Pd G2
ANNOH OH SH P. - :Bu % Pr DTBPF Pd G3
Developed 'parallel-in-parallel' HTE - running various reaction conditions ©“ q g q @ NB,, /~Me C“‘E'NG i le/ ﬁ%&;}dp&m
simultaneously with distinct nucleophile electrophile combinations Bn Nosiie N NP=N-p-N s " tBuXPhos Pd G3
N Bu A Nom NN tBuXPhos Pd G3 15 BrettPhos Pd G3
o o LW Wloe cal o+ Y| IR Mo
Bottleneck lead to development of miniaturization platform - inspired by 535‘(\\ &0 OFt © . N

adjacent fields, unifying robotics in biotechnology with mass spec
techniques

Achieved 1500 rxns in a day, with 0.02 mg per
reaction driven by TPP Mosquito robot
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Acc. Chem. Res. 2017, 50, 2976
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HTE enables rapid evalution of potential compound leads
Greatest advances have come from a confluence of emerging technologies
to enable rapid evaluation and data collection on diverse compound sets

Merck developed NanoSAR for synthesis and affinity ranking using
UPLC-MS (Ultra-high-Performance Liquid Chromatograph/Mass Spec) and
ASMS affinity ranking (technique to detect compound bound to protein)

Simultaneous optimization of 2
“Hk & g | T W
e N -_““'“_*W:_,);N N
[ j reaction building protein [ j
Br conditions| | blocks affinity Nu
N
H
b 7
N it L]
/ \
\ £ oy
E «
Traditional Nanoscale ASMS Affinity
synthesis synthesis Separates ranking
1 condition Many conditions compounds Decreasing the
~20 mg ~0.05 mg on the basis protein concentration
per reaction per reaction of affinity induces competition

Workflow

1) Nanoliter robot dosing and reaction proceeds 20 hours

2) a. Confirm product via UPLC-MS b. info for up to 1536 rxns per run

3) Incubate protein with pool of molecules

4) a. Size exclusion column separates out unbound molecules b. HPLC-MS
identifies complexes

5) Repeat ASMS assay at lower protein concentration

6) Scale up compounds and determine IC5, by functional assay

(8)

N—

\_/

Essential Controls

H
N

(o]
|/
HN @

HN

Cl

Amide - ERK2
0.035 mg / rxn
14-29 mg / rxn

NH
N%
Suzuki + C-N - CHK1

0.044 mg / rxn
18-22 mg / rxn

Suzuki - MK2
0.035 mg / rxn
10-35 mg / rxn

9 & ol o
o MMl
& N reaction || building protein e N’
H blocks affinity H
T
17 888

345 products

384 BBs x
4RCs

Convorsion (56)

®

3,114 reactions
+ affinity ranking
123 mg consumed

P,Et
8TMG

11 'BuXPhos
12 DTBPF a%"n
13 XantPhos
14 Bup BEMP
15 APhos oBY
16 XPhos Cs,CO,
17 RuPhos K4PO,
18 CPhos
19 JackiePhos
20 DTBPF
21 BrettPhos
22 BINAP
23 'BuBrettPhos
24 RockPhos
25 AdBrettPhos
26 SPhos
No catalyst, No catalyst, RuPhos, RuPhos, 'BuXPhos, 'BuBrettPhos, 'BuXPhos,
P,Et, DMF P,Et, DMF BTTR NMP K,PO, (aq.), NMP MTBD, DMF P,Et, DMF P,Et, NMP
98% yield 77% yield 20% yield 98% yield 52% yield 62% yield 24% yield
Me Ne_ 8- N " HN ” 2 H N AN,
eI oy O MO
Me' NH S N-Z H A
0" Me
35 Thiol 36 Alcohol 37 Alkyne 38 Boronate 39 Amide 40 Sulfonamide MeS' 41 Aryl amine
1y > 10,000 nM 1Cep > 10,000 nM 1y = 6,570 1M IC., =51 1M 1Cep=5nM ICey > 10,000 "M IC.o=6nM

123 mg to run 3114 reactions,
evaluate 384 nucleophiles,

and assay material Nature, 2018, in press
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History of CASP - Computer-Assisted-Synthetic-Planning

History of early efforts

1963 - Vleduts proposes using computers to synthesize compounds backwards

1965 - Carl Djerassi and Stanford computer scientists begin Dendral Project
2 goals - use Atrtifical Intelligence to predict structure from spectra

use Artifical Intelligence to plan synthetic routes

1967 - Seminal Corey paper disclosing retrosynthesis

1969 - Corey and Wipke formalize OCSS to utilize computers for plans
1972 - Corey and Pensak formalize LHASA - first graphical platform

1980's - Ugi begins IGOR - represent bond electrons as matrices and reactivity
as matrix transform - conceptual breakthrough from previous attempts

1990 - Hanessian applies his CHIRON system to synthetic organic planning

2012 - Chematica by Gryzbowski - uses 86,000 chemical rules

ACIE, 2016, 55, 5904

Recent Example of CHIRON Approach

Me
~aOH
Me
H (<
1 Me
H
Me
cedrol majucin

JACS, 2017, 139, 17783

Why so difficult (taken from Grzybowski)
1. Excpetions to the norm abound - 'Black Swans'
2. Automation was not easy

3. Molecular context is everything!
o o

Me\/\)LN,OMe Me -
H
(0] R,MgBr o
o\/\)l\ oM HH o\/\)]\
N u/ e NS R

4. Stereochemistry was hard to define (shown below in SMARTS)

[c.CX4IHO40 7 7
A o 10 e}
[CH]3 o
50, 3
+ 0O —* (A2N—@)l+ m + A 6 ¢ A
o (H2,A);10 4 A
H 40
99 H
A d H EALY
[CH2,CH3,0):50
rxn_id: 8382,

name: "Proline-catalyzed Mannich Reaction",

reaction SMARTS:[c:1][NH:2][C@H:4]([¢.CX4!HO0:40][C@:5]([#1:99])}[CH2,CH3,0:50])[C:6]
(=[0:7][CX4:8]([#1:9])([#1:21])[#6.#1:3].[OH2:10]>>[c:1][N:2].[*:40][C:4]=[0:10].[*:50][C:5]([
#1:99])[C:6](=[O:7D[C:8]([#1:9D([#1:21][*:3]"
products:[[¢][NH][C@H]([¢.CX4!HOD[C@)([#11)([CH2,CH3,0D[CI(=[OD[CX4I(#1NHLIDI
6.#1]", "[OH2]"]

groups to protect: ["[#6][CH]=0", "[CX4.c][NH2]", "[CX4.c][NH][CX4.c]", "[#6]C([#6])=0"]
protection_conditions_code: ["NNB1", "EA12"]

incompatible_groups: ["[#6]O[OH]". "c[N+]J#[N]". "[NX2]=[NX2]", "[#6]OO[#6]".
"[#6]C(=[ODOC(=[OD[#6]". "[#6IN=C=[O.S]". "[#6][N+}#[C-]".  "[#6]C(=O)[CLBr.I]",
"[CX3]=[NX2][*!10]", "[#6]C(=[SXID[#6]", "[#6][CHI=[SX1]", "[#6][SX3](=O)[OH]",
"[CX4]1[ON][CX4]1", "[#6]=[N+]=[N-]","[CX3]=[NX2][O]"]

typical reaction conditions: "(S)-proline. Solvent, e.g., DMSO",

general references: "DOI: 10.1021/ja001923x or DOI: 10.1021/cr0684016 or DOI:
10.1021/ja0174231 or DOI: 10.1016/S0040-4020(02)00516-1"

5. Hard to define positions - cost associated with every possible move

6. Size of search and lack of intelligent algorithms

Paraphrasing Churchill's famous words after the Allies’ first major victory over the Axis forces in Africa, it is not the end, it is not even
the beginning of the end, but it is the end of the beginning for the computer-assisted synthesis planning. The machine is here to stay. - Gryzbowski 2016
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"These DNN were trained on essentailly all reactions ever published in organic chemistry."”

fo) _ CO,Me
BocN~ / Boc_ _OTBS .
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Nature, 2018, 555, 604
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Asian J Chem, 2015, 27, 2117 fo)
A bigger part is the supposition by organic synthetic chemists that they are the ones best qualified to design programs for organic synthesis. Not so! - Whitesides
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Abby Doyle created first general machine learning algorithm for homogenous . ' Create descriptors without invoking a mechanistic hypothesis, only look at structure

catalysis

Machine learning is exceptioanlly hard to amend to available data

Logistical constraints have largely precluded genuine multiparamter
optimization in academia

Catalyst/
Ligand

Base Additional
—> Paramters

Invokes the 'curse of dimensionality' - each additional parameter n adds
another dimension to the reactivity space

In typical methodology development, only a small fraction of this chemical
space is thoroughly explored

Alternative - Use HTE to explore large amounts of chemical space
Can these larger data sets be used to teach algorithms how to predict yields
when using unseen reagents?

Buchwald-Hartwig Amination

2
X Pd catalyst (10 mol%)
additive (1 equlv)
+ —R _R
base (1.5 eqiv)
Me
X\©\

\ |/

DMSO (0.1 M), 60 C, 16 h Me

c
Ny *C5.  “N*N1 NH
N O@ .
bN R/ Pd~orf
o Con med ®

e L

Aryl Halides (15)  Additives (23) Bases (3) Pd Catalysts (4)

1536 well plates with Mosquite robot - UPLC to determine yield - 4608 rxns

Based on Glorius ‘'robustness screening’
Using additive approach to model embedded isooxazole to simplify process

Nat Chem, 2014, 6, 859

Internal consistency achieved using calculated DFT properties (B3LYP/6-31G*)
Workflow for Data Input

1) Submit molecular structure to Spartan GUI and specify reaction component
2) Calculation of molecular, vibrational, and atomic properties

3) Extraction of these features from the resulting text files

4) Generation of data table for fit - 120 total descriptors

Supervised ML Tested

k-nearest neighbors, support vector machines, and Bayes generalized linear model
all no better than linear regression
Random forest model proved significantly better!
7.8% RMSE with R2=0.96 - large amount of error attributed to experimental and
analytical error
Better than any other method when trained on 5% of data vs. 70% of data for others
A

100- R2=0.67
~ RMSE=155

R2
RMSE

oy =

Bayes GLM Neural Network Random Forest o
. R2=087 | r2=0.92 gl
~ RMSE=97 # |RMSE=738

Observed Yield

. R2=0.67
RMSE = 15.5

Training Set Data Training Set Data

Predicted Yield

Examine Descriptors to Identify Most Important Qualities

Mechanistic insights from relative importance of descriptors
1) *3C NMR shift 2) LUMO energy 3) *O1 charge 4) *C5 charge

PPh3 PhsP_  Br
0 Br pa(pPh,), o, Pd,
PPh
©i//\N /©/ @(/Pd o /©/ 3
F4C CeDs =N FsC
~1:1

Science, 2018, 360, 186
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Deoxyfluorination - Second Generation work from Doyle

Fewer reactions - 640 with stock solutions and NMR quantification
No mosquito robot :(

Yields over 100% were kept to avoid bias - reveals experimental error as strong

influence on subsequent prediction performance
Reaction paramters not considered - time, temp, concentration, stoich.

Data input different - extract 7 features of molecules, and add categorical labels

for a total of 23 differenct descriptors

_H

-0

DY

Y

N

O

\N\“
H

22 nm IC5,

signaling

Automated Closed-Loop Optimization Platform R,

OH
H,N 19
5472 products

o

— ;’.

I Y=C5
NH, R NcI Y=SO3
+
RS/NHZ 8

Hepsin Inhibitor - clinical serine protease for carcinogenesis and metastasis via HGF

Closed loop only takes 1-2 h to complete - traditional methods would take weeks

Alcohol - *C1 charge, Base - N1 Sulf*onyl FIuorid*e -*81 charge, . CyclOps platform for rapid synthesis vs. batch methods
________ *C1A%EN _____________________ . Ficharge *O1charge . pgoys -Best Objective Under-Sampled - algorithm predicts ICs
Leccoccsccsnsscscscscscscscsnsnssnsnsnsssasnssscscsssssnsnsscscscccccssnsnsscsascacncccconnsnsonsnssasnsnnss
Py o 1 s s "»s;f’ﬁ i Yields for all 640 rxns determined :  Templates&monomers

THF (0.4 M)
reatm fempdrature, 48 h

,\A@A

aleohols

ic

9uﬂcnyl flusrides

S0 r SO.F S0.F SO.F
oM

JOH
o"'D ﬁ
Boc

OH

COsMe
1d

cl PyFiuor 3CF, PBSF
Kl 1 1.7 4.9 15 44,000
N we bases 1B N s
L}C} Oy ey Ot
N f:‘E |C1e
DBU MTBD BTMG BTPP
B Increasing roactivity
v o
s 2558 .25 E3
6§ 35¢ 5855 ¢4
peu |40 |57 52|54 39| [11 12|17 |21 |23
24 E\menamus&m 36|26 36 o |37 |
3 [sme |41 a8 |57 |5 61| [83] 57 6363 |4
§~E1PP4zssees1as 92 | 77|99 |91 |68
:a‘:_ pBu| 1|1 a]1n]ea] [2s]as]41]as]0e
%MTBD 1124|127 30 | 40 | 47 | 48 | T4
2 Flgmc| 1| 1 12 89| (2930|3940 |6a| 2d
gTPr | 3 | 1 [12| 22|82 (3033 ]33 32|58

by '°F NMR

Categorical Descriptors

- Alcohol - primary

- Alcohol - secondary

- Alcohol - tertiary

- Alcohol - cyclic

- Alcohol - 4-membered ring
- Alcohol - 5-membered ring
- Alcohol - 6-membered ring
- Alcohol - 7-membered ring
- Alcohol - benzylic

- Alcohol - allylic

- Alcohol - homobenzylic

- Alcohol - homoallylic

- Alcohol - alpha-carbonyl

- Alcohol - beta-carbonyl

- Alcohol - hemiacetal

- Alcohol - amino alcohol

]

]

]

]

]

]

)

)

)

]

)

)

)

)

L}

L}

L}

' et
' Artificial
: Intelligence
' driven compound
L}

' selection
L}

L}

L}

L}

L}

L}

L}

L}

L}

L}

L}

L}

]

]

]

]

]

]

]

* Merck QSAR challenge in 2012

Automated synthesis

activity (ICsq)

CHIlog D ELSD

Reformat

For assay
Hepsin & %
UPAassays  Concentration data for assay

J. Med. Chem. 2018, 61, 4335

' Precomputed molecular descriptors for compounds and provided experimental
' biological activity for 15 targets; DNN model won the competition, without a single

JACS. 2018. 140. 5004 » chemist on the team

Journal of Computational Chemistry, 2017, 38, 1291

My own feelings are that any machine that takes away from me the necessity to crank out 142 amide reactions by hand is welcome to it - Derek Lowe
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NMR and X-Ray largely replaced degradation studies as preferred method for
structure elucidation - is this bad? Led directly to the 'Golden Age of Natural
Product Total Synthesis' - this beautiful field would have been precluded by
technological constraints were it not for the advent of NMR and other
enabling analytical techniques

(¥
t
i

"The “age of automation” thus appears to hold the potential to advance
organic synthesis in a revolutionary way" - Nuno Maulide

What will this revolution look like?

Inspiration for this talk

"This evolution — guided by experts in artificial intelligence more than by
experts in synthesis — raises a very important point for students: viz., for the
future, will it be more important to understand Al than to be able to recall all
the methods for introducing chiral centers (or other transformationof choice)
from human memory? How should one balancecomputer skills and empirical
synthetic skills?" - Whitesides /sr. J. Chem. 2018, 58, 142.

Coming Full Circle
What defines a practioner of synthesis?
"l did not become a “synthetic organic chemist,” but almost all the research

that my colleagues and | have done (and do) involves organic synthesis."” -
Whitesides

Satire Article about Martin Burke MD PhD Synthesis Machine - Science, 2015, 347, 1221

Urbana, IL

' Ugly scenes today marred the unveiling of what may become a landmark paper, as an
*angry mob of organic synthesis researchers invaded the chemistry department at the

» University of lllinois at Urbana—Champaign before seizing and ultimately destroying a

, so-called "synthesis machine."

.An article in the journal Science, describing the development of what is in effect a cyborg
. post-doc, prompted an initially peaceful protest outside the chemistry department under

- placards carrying the slogans KEEP NATURAL PRODUCT SYNTHESIS NATURAL,

- SUZUKI COUPLINGS ARE CHEATING and GIVE ME C-H ACTIVATION OR GIVE ME

' DEATH. However, witnesses described a marked increase in tension after the arrival of a
' counter-demonstration of inorganic chemists, who taunted their organic counterparts with
: highly charged epithets including "pot-boiler" and "column monkey".

» An anonymous demonstrator later told C&EN Onion: "It all kicked off when the fucking

: stamp collectors showed up. The was always an undercurrent of anger, but that was

1 when it boiled over and you became keenly aware just how many people had brought

+ BuLi with them.”

EAsked to explain the motives of the inorganic counter-demonstrators, a hooded

' organometallic researcher said, "We're just here looking for trouble. I've got no dog in this
' fight, unless you're gonna tell me that thing's got an onboard SQUID magnetometer."

» Anger having now reached fever pitch, a large group stormed the building, making directly
, for the lab housing the controversial machine. Minutes later, the helpless automaton was
:flung from a second floor window, landing amongst cheering protesters and breaking,

' |ron|caIIy enough, into a number of fragments. Amid frantic shouts that the machine may
' + have developed the capability to heal itself, clamp-stand-wielding synthetic chemists

- smashed what little remained. To their credit, many of them first donned appropriate

; ' personal protective equipment.

EJohn Wiseman, a technician present during the break-in, remained sanguine as he detailed
' the damage to the lab. "The automated synthesis platform was what they came for, of

1 course, but someone also found time to steal a bunch of NMR tubes and a fresh batch of
» DMP. You know what these people are like."

: Wiseman also claimed that clashes involving armed factions of researchers were not
Ewithout precedent: "You'd be surprised. There are a lot of radical chemists out there."

iTaken from http://cenonion.blogspot.com/2015/03/rampaging-synthetic-chemists-smash.htmi
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Closed Look Hepsin Inhibitors
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Predicting Reaction Performance in C-N couplings using ML
Examples of calculated descriptors

Additive Descriptors (n = 19)

EHOMO, ELUMO, Dipole Moment, Electronegativity, Hardness, Molecular Volume,
Molecular

Weight, Ovality, Surface Area, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift,
*C4

Electrostatic Charge, *C5 NMR Shift, *C5 Electrostatic Charge, *“N1 Electrostatic Charge,
*O1

Electrostatic Charge, V1 Frequency, V1 Intensity

Aryl Halide Descriptors (n = 27)

EHOMO, ELUMO, Dipole Moment, Electronegativity, Hardness, Molecular Volume,
Molecular

Weight, Ovality, Surface Area, *C1 NMR Shift, *C1 Electrostatic Charge, *C2 NMR Shift,
*C2

Electrostatic Charge, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4
Electrostatic Charge, *H2 NMR Shift, “H2 Electrostatic Charge, *H3 NMR Shift, *H3
Electrostatic Charge, V1 Frequency, V1 Intensity, V2 Frequency, V2 Intensity, V3
Frequency,

V3 Intensity

Base Descriptors (n = 10)

EHOMO, ELUMO, Dipole Moment, Electronegativity, Hardness, Molecular Volume,
Molecular

Weight, Ovality, Surface Area, *N1 Electrostatic Charge

Ligand Descriptors (n = 64)

Dipole Moment, *C1 NMR Shift, “*C1 Electrostatic Charge, *C2 NMR Shift, *C2 Electrostatic
Charge, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4 Electrostatic Charge,
*C5 NMR Shift, *C5 Electrostatic Charge, *C6 NMR Shift, *C6 Electrostatic Charge, *C7
NMR Shift, *C7 Electrostatic Charge, *C8 NMR Shift, *C8 Electrostatic Charge, *C9 NMR
Shift, *C9 Electrostatic Charge, *C10 NMR Shift, *C10 Electrostatic Charge, *C11 NMR
Shift,

*C11 Electrostatic Charge, *C12 NMR Shift, *C12 Electrostatic Charge, *C13 NMR Shift,
*C13 Electrostatic Charge, *C14 NMR Shift, *C14 Electrostatic Charge, *C15 NMR Shift,
*C15 Electrostatic Charge, *C16 NMR Shift, “*C16 Electrostatic Charge, *C17 NMR Shift,
*C17 Electrostatic Charge, *H11 NMR Shift, *H11 Electrostatic Charge, *H3 NMR Shift, *H3
Electrostatic Charge, *H4 NMR Shift, *“H4 Electrostatic Charge, *H9 NMR Shift, *“H9
Electrostatic Charge, *P1 Electrostatic Charge, V1 Frequency, V1 Intensity, V2 Frequency,
V2

Intensity, V3 Frequency, V3 Intensity, V4 Frequency, V4 Intensity, V5 Frequency, V5
Intensity,

V6 Frequency, V6 Intensity, V7 Frequency, V7 Intensity, V8 Frequency, V8 Intensity,

V9 Frequency, V9 Intensity, V10 Frequency, V10 Intensity



