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1 ORCA 4.2 Foreword

Dear ORCA Users or potential ORCA users,

We are all very proud that we can present ORCA Version 4.2. to you! We thoroughly hope that you enjoy

the program and that it will serve you well in all of your scientific endeavors. As with previous releases,

we have worked very hard on this release until the last minute and while we did our best to ensure that

everything is working and complete, we can of course not exclude the possibility that a few things might

have escaped our attention. Hence, please give us feedback over the next few months – we plan to follow up

with a minor release soon.

With this release, we have largely continued the path that we have been following for about the last decade –

namely to engage in wavefunction theory and make it applicable to larger and larger and larger systems with

higher and higher accuracy.

It has been increasingly evident that DLPNO methods are a staple of ORCA and with this release we have

significantly enhanced the DLPNO methodology by making sure that iterative (T) corrections are available

for closed- and open-shell systems. Also the long awaited DLPNO-STEOM for closed shells is an excellent

excited state method. Open shell DLPNO-CCSD(T)-F12 has been completed for this release as well.

The second staple of ORCA are multireference methods. In this release, we have added some significant

functionality, most importantly there is a full CASPT2 implementation now in ORCA and there are significant

improvements in our large-scale approximate full CI scheme (ICE). There also is a fully internally contracted

quadratic MRCI scheme implemented (essentially internally contracted multireference coupled cluster).

The third staple of ORCA are spectroscopic calculations. We have continued to enhance the NMR capabilities

of ORCA by adding the RI-MP2 chemical shift calculations. It also works for double hybrid functionals and

give pretty accurate results. In addition, there have been a number of enhancements in the ORCA ESD

module for the calculation of fluorescence, phosphorescence spectra as well as vibronic bandshapes and

resonance Raman spectra. One significant addition is spin-orbit coupling in TD-DFT. Additionally, ORCA

now has the capability to optimize to conical intersections.

The fourth staple of ORCA are analysis tools that allow you to go beyond the bare numbers. In this respect

the very successful local energy decomposition has been further extended to cover DLPNO-MP2. There

also is a low-cost, high accuracy method added: HF-LD that adds London dispersion to a Hartree-Fock

calculation.

A lot of work has gone into the improvement of the implicit solvation capabilities. We have added the Gaussian

charge scheme that is numerically much more stable than the usual point charge scheme used in CPCM or

COSMO. Great improvements have also been made to the nudge elastic band transition state optimizer. In

addition, we are now using the libxc library to give access to a wider variety of density functionals. The MD
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module has been significantly extended, now featuring a cartesian minimzer which can be used for tens of

thousands of atoms.

The current release now provides an ORCA-native QM/MM implementation, which renders setting up and

running QM/MM calculations way more efficient than with the previously available interfaces from external

programs. The QM/MM feature can be directly combined with all other ORCA methods, making it easy to

run all kinds of applications for large protein systems, ranging from simple optimizations to minimum energy

path explorations and spectroscopic calculations.

We are very excited to release this version of ORCA! The user community has now grown to significantly

over 20000 users world-wide. ORCA runs in most super-computer centers world-wide, on most synchrotron

computing facilities and it is increasingly used by industry. We are happy and proud that ORCA is now so

widely used in the scientific community and we will continue and intensify our efforts to give you the best

program possible.

As we pointed out previously, ORCA will remain free of charge for academic users in long term. The only

thing we ask you in return is to please cite our papers when you use ORCA and please do not just cite the

global ORCA reference, but make a slight effort to cite the relevant original method development literature –

this will allow us to document our standing in the scientific community and allow us to raise the funds to

continue with the development of ORCA to, hopefully, everybody’s benefit.

We have also pointed out since the release of ORCA 4.0, that ORCA is available for commercial users via the

company FAccTs (Fast and Accurate Computational Chemistry Tools; https://www.faccts.de). Please

contact info@faccts.de if you are interested in the opportunities offered by FAccTs. If you are unsure whether

you qualify for an academic license, please contact orca.license@kofo.mpg.de.

I want to express my heartfelt thanks to everybody who has contributed to this release! All our graduate

students, postdocs and collaborators have worked very hard to make this happen. Often this requires efforts

that are beyond the immediate scientific project and I am deeply grateful for their enthusiasm and dedication!

Very special thanks goes to the ORCA development team – Frank Wennmohs, Ute Becker, Kanthruban

Sivalingam, Dimitrios Liakos and Dagmar Lenk – who have taken the lead in putting everything together,

running countless checks, fixing many bugs and making sure that we deliver a package to you that is as good

as it can get. We warmly welcome Axel Koslowski to this team and his contributions will start to appear in

subsequent ORCA versions.

Please enjoy ORCA and do good science with it! This is the source of our inspiration and motivation to

continue.

Frank Neese on behalf of all ORCA developers!

August 9, 2019

https://www.faccts.de
mailto:info@faccts.de
mailto:orca.license@kofo.mpg.de
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2 ORCA 4.2 Changes

2.1 New Features

2.1.1 Local correlation

• Iterative (T) for open shells

• Multi-level scheme for open shell systems (all PNO accuracy levels)

• DLPNO-STEOM-CCSD for closed shells

• DLPNO-CCSD(T)-F12 for open shells

• Automatic fragmentation in LED analysis

• RIJCOSX-LED implementation

• HF-LD method for efficient dispersion energy calculations

2.1.2 Multi-Reference

• FIC-CASPT2 implementation including level shift and IP/EA shift.

• FIC-NEVPT2 unrelaxed densities and natural orbitals.

• CIPSI/ICE improvements. Can be run now with configurations, individual determinants or CSFs

(experimental)

• FIC-ACPF/AQCC: variants of the FIC-MRCI ansatz

• Efficient linear response CASSCF

• Reduced memory requirements in MRCI and CIPSI/ICE

2.1.3 Spectroscopy

• GIAO EPR calculations (one issue with the SOMF operator still remaining)

• Improvements to ESD module for fluorescence, phosphorescence, bandshape, lifetime and resonance

Raman calculations

• ESD now includes also the prediction of the Intersystem Crossing non-radiative rates

• Hyperfine couplings for CASSCF calculations (but not as response)
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2.1.4 Excited states

• Spin-orbit coupling in TD-DFT

• MECP optimization for TD-DFT

• Conical Intersection Optimization

• Range-separated double-hybrids (ωB2PLYP, ωB2GPPLYP) for TDDFT

• Numerical and Hellmann-Feynman NACMEs using TD-DFT/CIS

• DLPNO-STEOM-CCSD for closed shells (also see ‘Local correlation’)

2.1.5 Solvation

• CPCM Gaussian Charge Scheme with the scaled-vdW surface and the Solvent Excluded Surface (SES).

Available for single point energy calculations and geometry optimizations using the analytical gradient.

2.1.6 SCF/optimizer/semi-empirics/infrastructure etc.

• Nudge elastic band (NEB) transition states improvements (also works with xTB for initial path)

• Improved compound method scripting language for workflow improvements

• Improved ASCII property file

• Libxc interface allows a far wider range of density functionals to be used

• Interfaced with Grimme’s GFN-xTB and GFN2-xTB

• Improvement of IRC algorithm

• Cartesian minimization (L-OPT) for systems with 100.000s of atoms, Minimization of specific elements

(incl. H) only, fragment specific optimization treatment (relax all, relax hydrogens, rigid fragment,

fixed fragments)

2.1.7 QM/MM and MM

• First release with ORCA-native MM and QM/MM implementation

• Automated conversion from NAMD’s CHARMM format

• Automated generation of simple force-field for non-standard molecules

• Simple definition of active and QM regions

• Automated inclusion and placement of link-atoms

• Automated charge-shifts to prevent over-polarization

• MM and QM/MM work with all kinds of optimizations, NEB / NEB-TS methods, frequency analysis

• Option for rigid MM water (TIP3P) in MD simulation and optimization

2.1.8 Molecular Dynamics

• Added a Cartesian minimization command to the MD module, based on L-BFGS and simulated

annealing. Works for large systems (> 10’000 atoms) and also with constraints. Offers a flag to only

optimize hydrogen atom positions (for crystal structure refinement).
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• The MD module can now write trajectories in DCD file format (in addition to the already implemented

XYZ and PDB formats).

• The thermostat is now able to apply temperature ramps during simulation runs.

• Added more flexibility to region definition (can now add/remove atoms to/from existing regions).

• Added two new constraint types which keep centers of mass fixed or keep complete molecules rigid.

• Ability to store the GBW file every n-th step during MD runs (e.g. for plotting orbitals along the

trajectory).

• Can now set limit for maximum displacement of any atom in a MD step, which can stabilize dynamics

with poor initial structures. Runs can be cleanly aborted by “touch EXIT”.

• Better handling/reporting of non-converged SCF during MD runs.

• Fixed an issue which slowed down molecular dynamics after many steps.

• Stefan Grimme’s xTB method can now be used in the MD module, allowing fast simulations of large

systems.

2.1.9 Miscellaneous

• Compute thermochemical corrections at different temperatures without recomputing the Hessian

• Fragments can now be defined in the geom block as simple lists

• Simpler input format for definition of atom lists and fragments, in particular useful for large atom lists

• basename.trj files are now called basename trj.xyz
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3 FAQ – frequently asked questions

Noticeable changes between ORCA 2.x, 3.x and ORCA 4.x

ORCA 4.0 exhibits a new basis sets convention.

• From ORCA 4.0 onwards, the standard basis-sets contain ECPs

• ECPs are specified using simple names, e.g. ! DEF2-ECP, the old ECP{...} is deprecated.

• When using relativistic options, recontracted basis sets have to be given explicitly,

e.g. ! ZORA ZORA-DEF2-TZVP

• Basis set names in the basis and coordinates block have to be specified in quotation marks.

Especially the conversion of old input files to the new ORCA 4.0 format has to be mentioned. To get the

same results with ORCA 4.0 as with previous ORCA versions the following rules apply.

Old (pre 4.0) New (> ORCA 4.0)

--------------------------------------------------------------------------------------------

! RKS BP RI ZORA DEF2-SVP DEF2-SVP/J ! RKS BP RI ZORA ZORA-DEF2-SVP DEF2/J

%basis basis CC_PVDZ %basis basis "CC-PVDZ"

aux CC_PVDZ_C aux "CC-PVDZ/C"

end end

*xyz 0 1 *xyz 0 1

... ...

* *

ORCA 4.0 exhibits new frozencore definitions across the periodic table, see section 9.10.

The “standard” computational levels (section 9.3.2.10) are deprecated and may no longer work as expected

(in particular, they will not assign a basis set).

Why is ORCA called ORCA?

Frank Neese made the decision to write a quantum chemistry program in the summer of 1999 while finishing

a postdoc at Stanford University. While thinking about a name for the program he wanted to write he

decided against having yet another “whatever-Mol-something”. The name needed to be short and signify

something strong yet elegant.

During this time in the US Frank went on a whale watching cruise at the California coast—the name “ORCA”

stuck. It is often get asked whether ORCA is an acronym and over the years, various people made suggestions
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what acronym this could possibly be. At the end of the day it just isn’t an acronym which stands for anything.

It stands for itself and the association which comes with it.

How do I install ORCA on Linux / MacOS / Windows?

ORCA is available for Windows, Linux and Mac OS X platforms. A good place to start looking for detailed

installation instructions aside from the manual is the ORCA input library. Windows users furthermore have

the option of following this video description.

I’ve installed ORCA, how do I start it?

First and most importantly, ORCA is invoked from the command line on all platforms. A simple click on

a binary or an input file won’t start a calculation. Under Linux and MacOS you need to open a terminal

instance and navigate to the folder containing an example.inp file. You can run an ORCA calculation with

the command:

<full orca binary folder path>/orca example.inp > example.out

Similarly, under Windows you need to open a command prompt (Win7, Win8) or a power shell (Win10),

navigate to said directory and execute the following command:

<full orca binary folder path>/orca example.inp > example.out

How do I cite ORCA?

Please do NOT just cite the generic ORCA reference given below but also cite in addition our original

papers! We give this program away for free to the community and it is our pleasure and honour to do so. Our

payment are your citations! This will create the visibility and impact that we need to attract funding which

in turn allows us to continue the development. So, PLEASE, go the extra mile to look up and properly cite

the papers that report the development and ORCA implementation of the methods that you have used in

your studies!

The generic reference for ORCA is:

Neese, F. “The ORCA program system” Wiley Interdisciplinary Reviews: Computational Molecular Science,

2012, Vol. 2, Issue 1, Pages 73–78.

Please note that there has been an update for ORCA 4.0:

Neese, F. “Software update: the ORCA program system, version 4.0” Wiley Interdisciplinary Reviews:

Computational Molecular Science, 2017, Vol. 8, Issue 1, p. e1327.

https://sites.google.com/site/orcainputlibrary/setting-up-orca
https://www.youtube.com/watch?v=NTk62asaz8Y
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Are there recommended programmes to use alongside ORCA?

As a matter of fact there are: We make extensive use of Chemcraft. It is interesting to note that it works

well in MacOS or Linux (using Wine). Another popular visualization programme is Chimera.

OpenBabel is very useful for file conversion to various chemical formats.

Finally, Avogadro is an excellent tool to edit molecular geometries. It is also able to generate ORCA input

files. The Avogadro version with the latest ORCA modifications is available on the ORCA download site.

For other valuable suggestions please refer to the corresponding ORCA site.

My old inputs don’t work with the new ORCA version! Why?

Please be aware that ORCA has changed considerably from 3-0 to 4-0. The basis set naming convention has

changed as well as a couple of defaults (frozen core e.g.). (For detailed information please refer to the Release

Notes.) It therefore is not unexpected that the same inputs will now either give slightly different results, or

will totally crash, because the keywords have been changed or totally removed.

If you are unsure about an input, please consult the manual. It is provided by the ORCA developers and

should contain all information implemented in the published version of ORCA.

My SCF calculations suddenly die with ’Please increase MaxCore’ ! Why?

The SCF cannot restrict its memory to a given MaxCore, which, in the past, has led to crashes due to lack of

memory after many hours of calculation. To prevent this, the newer ORCA versions will try to estimate the

memory needed at an early stage of the calculation. If this estimation is smaller than MaxCore, you are fine.

If it is larger than MaxCore, but smaller than 2*MaxCore, ORCA will issue a warning and proceed. If the

estimation yields a value that’s larger than 2*MaxCore, ORCA will abort. You will then have to increase

MaxCore. Please note, that MaxCore is the amount of memory dedicated to each process!

When dealing with array structures, when does ORCA count starting from zero and

in which cases does counting start from one?

Since ORCA is a C++ based program its internal counting starts from zero. Therefore all electrons, atoms,

frequencies, orbitals, excitation energies etc. are counted from zero. User based counting such as the

numeration of fragments is counted from one.

How can I check that my SCF calculation converges to a correct electronic structure?

The expectation value
〈
S2
〉

is an estimation of the spin contamination in the system. It is highly recom-

mended for open-shell systems, especially with transition metal complexes, to check the UCO (unrestricted

corresponding orbitals) overlaps and visualise the corresponding orbitals. Additionally, spin-population on

atoms that contribute to the singly occupied orbitals is also an identifier of the electronic structure.

http://www.chemcraftprog.com
https://www.cgl.ucsf.edu/chimera/
http://openbabel.org/wiki/Main_Page
http://avogadro.cc/wiki/Main_Page
https://orcaforum.cec.mpg.de/downloads.php?cat=10
https://orcaforum.cec.mpg.de/viewtopic.php?f=8&t=134
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I can’t locate the transition state (TS) for a reaction expected to feature a low/very

low barrier, what should I do?

For such critical case of locating the TS, running a very fine (e.g. 0.01 Å increment of the bond length) relaxed

scan of the key reaction coordinate is recommended. In this way the highest energy point on a very shallow

surface can be identified and used for the final TS optimisation.

During the geometry optimisation some atoms merge into each other and the

optimisation fails. How can this problem be solved?

This usually occurs due to the wrong or poor construction of initial molecular orbital involving some atoms.

Check the basis set definition on problematic atoms and then the corresponding MOs!

While using MOREAD feature in ORCA, why am I getting an error saying, “no orbitals

found in the .gbw file”?

ORCA produces the .gbw file immediately after it reads the coordinates and basis set information. If you put

a .gbw file from a previous calculation with same base name as your current input into the working directory,

it will be overwritten and the previous orbital data will be lost. Therefore, it is recommended to change the

file name or .gbw extension to something else (.gbw.old, for example).

The localisation input file (.loc.fil) I used to use for older ORCA versions is not

working with orca loc of ORCA 4.0.

The content of the localization input file has been modified in the current ORCA version. Now some additional

input data is required for localisation. Type orca loc in a shell and you will get the list of required input

information.

With all the GRID and RI and associated basis set settings I’m getting slightly

confused. Can you provide a brief overview?

Hartree–Fock (HF) and DFT require the calculation of Coulomb and exchange integrals. While the Coulomb

integrals are usually done analytically, the exchange integrals can be evaluated semi-numerically on a grid.

Here, the pure DFT exchange is calculated on one type of grid (controlled through the GRID keyword)

while the HF exchange can be evaluated on an different, often smaller grid (GRIDX). For both parts, further

approximations can be made (RI-J and RI-K1 or COSX, respectively). When RI is used, axillary basis sets

are required (<basis>/ J for RI-J and <basis>/ JK for RI-JK). The following possible combinations arise:

• HF calculation

– Exact J + exact K: no auxiliary functions and no grids needed.

– RIJ + exact K (RIJONX, RIJDX): <basis>/ J auxiliaries, no grids.

– RIJ + RIK = RIJK: <basis>/JK auxiliaries, no grids.

1Note that ORCA can only use RI-K in conjunction with RI-J; hence the combination RI-JK.
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– RIJ + COSX: <basis>/ J auxiliaries, COSX grid controlled by the GRIDX keyword.

• GGA DFT functional

– Exact J + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

– RIJ + GGA-XC: <basis>/ J auxiliaries, DFT grid controlled by the GRID keyword.

• Hybrid DFT functional

– Exact J + exact K + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

– RIJ + exact K (RIJONX, RIJDX) + GGA-XC: <basis>/ J auxiliaries, DFT grid controlled by the GRID

keyword.

– RIJ + RIK (RIJK) + GGA-XC: <basis>/ JK auxiliaries, DFT grid controlled by the GRID keyword.

– RIJ + COSX + GGA-XC: <basis>/ J auxiliaries, COSX grid controlled by the GRIDX keyword, DFT

grid controlled by the GRID keyword.

There are a lot of basis sets! Which basis should I use when?

ORCA offers a variety of methods and a large choice of basis sets to go with them. Here is an incomplete

overview:

Method Approximation basis set (and auxiliaries)

CASSCF/NEVPT2 <basis>

CASSCF/NEVPT2 RI-JK <basis>+ <basis>/JK

CASSCF/NEVPT2 RIJCOSX <basis>+ <basis>/J + <basis>/C

CASSCF/NEVPT2 TrafoStep RI <basis>+ <basis>/JK or <basis>/C

NEVPT2-F12 TrafoStep RI <basis>-F12 + <basis>-F12/CABS + <basis>/JK or <basis>/C

TDDFT <basis>

TDDFT Mode RIInts <basis>+ <basis>/C

MP2 <basis>

F12-MP2 <basis>-F12 + <basis>-F12/CABS

RI-MP2 <basis>+ <basis>/C

HF+RI-MP2 RIJCOSX <basis>+ <basis>/C + <basis>/J

F12-RI-MP2 <basis>-F12 + <basis>-F12/CABS + <basis>/C

DLPNO-MP2 <basis>+ <basis>/C

HF+DLPNO-MP2 RI-JK <basis>+ <basis>/C + <basis>/JK

F12-DLPNO-MP2 <basis>-F12 + <basis>-F12/CABS + <basis>/C

CCSD <basis>

RI-CCSD <basis>+ <basis>/C

(D)LPNO-CCSD <basis>+ <basis>/C

HF+(D)LPNO-CCSD RIJCOSX <basis>+ <basis>/C + <basis>/J

F12-CCSD <basis>-F12 + <basis>-F12/CABS

F12-RI-CCSD <basis>-F12 + <basis>-F12/CABS + <basis>/C

HF+F12-RI-CCSD RI-JK <basis>-F12 + <basis>-F12/CABS + <basis>/C + <basis>/JK
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4 General Information

4.1 Program Components

The program system ORCA consists of several separate programs that call each other during a run. The

following basic modules are included in this release:

orca : Main input+driver program
orca anoint : Integral generation over ANOs
orca autoci : CI type program using the automated generation environment (ORCA-AGE)
orca ciprep : Preparation of data for MRCI calculations (frozen core matrices and the like)
orca cis : Excited states via CIS and TD-DFT
orca cipsi : Iterative Configuration Expansion Configuration Interaction (ICE-CI)
orca cpscf : Solution of the coupled-perturbed SCF equations
orca casscf : Main program for CASSCF driver
orca eprnmr : SCF approximation to EPR and NMR parameters
orca fci : Full-CI program
orca gtoint : Calculation of gaussian integrals
orca gstep : Relaxation of the geometry based on energies and gradients
orca loc : Calculation of localized molecular orbitals
orca md : Molecular dynamics program
orca mdci : Matrix driven correlation program: CI, CEPA, CPF, QCISD, CCSD(T)
orca mp2 : MP2 program (conventional, direct and RI)
orca mrci : MRCI and MRPT calculations (individually selecting)
orca ndoint : Calculates semiempirical integrals and gradients
orca numfreq : Numerical hessian computation
orca pc : Addition of point charge terms to the one-electron matrix
orca plot : Generation of orbital and density plots
orca pop : External program for population analysis on a given density
orca rel : (Quasi) Relativistic corrections
orca rocis : Excited states via the ROCIS method
orca scf : Self-consistent field program (conventional and direct)
orca scfgrad : Analytic derivatives of SCF energies (HF and DFT)
orca scfhess : Analytical hessian calculation for SCF
orca soc : Calculation of spin-orbit coupling matrices
orca vpot : Calculation of the electrostatic potential on a given molecular surface

Utility programs:
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orca 2aim : Produces WFN and WFX files suitable for AIM analysis
orca 2mkl : Produces an ASCII file to be read by molekel, molden or

other visualization programs
orca asa : Calculation of absorption, fluorescence and resonance Ra-

man spectra
orca chelpg : Electrostatic potential derived charges
orca euler : Calculate Euler angles from .prop file
orca fitpes : Simple program to fit potential energy curves of diatomics
orca mapspc : Produces files for transfer into plotting programs
orca pltvib : Produces files for the animation of vibrations
orca pnmr : Calculation of paramagnetic NMR shielding tensors
orca vib : Calculation of vibrational frequencies from a completed fre-

quency run (also used for isotope shift calculations)
otool gcp : Geometrical Counterpose Correction

Friends of ORCA:

gennbo : The NBO analysis package of Weinhold (must be purchased
separately from the university of Wisconsin; older versions
available for free on the internet may also work)

Molekel : Molecular visualization program (see 7.20.2.3)
gOpenMol : Molecular visualization program (see 7.20.2.2)

In principle every individual module can also be called “standalone”. However, it is most convenient to do

everything via the main module.

There is no real installation procedure. Just copy the executables wherever you want them to be and make

sure that your path variable contains a reference to the directory where you copied the files. This is important

to make sure that the programs can call each other (but you can also tell the main program the explicit

position of the other programs in the input file as described below).

4.2 Units and Conversion Factors

Internally the program uses atomic units. This means that the unit of energy is the Hartree (Eh) and the

unit of length is the Bohr radius (a0). The following conversion factors to other units are used:

1 Eh = 27.2113834 eV

1 eV = 8065.54477 cm−1 = 23.0605 kcal
mol

1 cm−1 = 29979.2458 MHz
1 a0 = 0.5291772083 Å
1 a.t.u. = 2.4188843 10−17 s
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5 Calling the Program (Serial and Parallel)

5.1 Calling the Programm

Under Windows the program is called from the command prompt! (Make sure that the PATH variable is set

such that the orca executables are visible)

orca MyMol.inp > MyMol.out

Under UNIX based operating systems the following call is convenient1 (here also: make sure that the PATH

variable is set to the directory where the orca executables reside):

nohup orca MyMol.inp >& MyMol.out &

The nohup command lets the program run even if the user is logged out. The program writes to stdout

and stderr. Therefore the output must be redirected to the file MyMol.out in this example. MyMol.inp is

a free format ASCII file that contains the input description. The program will produce a number of files

MyMol.x.tmp and the file MyMol.gbw. The “*.gbw” file contains a binary summary of the calculation. GBW

stands for “Geometry-Basis-Wavefunction”. Basically this together with the calculation flags is what is stored

in this file. You need this file for restarting SCF calculations or starting other calculations with the orbitals

from this calculation as input. The “*.tmp” files are temporary files that contain integrals, density matrices,

Fock matrices etc. that are used as intermediates in the calculation. If the program exits normally all of

these files are deleted. If it happens to crash you have to remove the files manually (rm MyMol*.tmp under

Unix or del MyMol*.tmp under Windows). In case you want to monitor the output file while it is written,

you can use the command (under Unix):

tail -f MyMol.out

to follow (option -f) the progress of the calculation. Under Windows you have to either open another command

shell and use:

type MyMol.out

type MyMol.out |more

1Many people (including myself) will prefer to write a small shellscript that, for example, creates a run directory,
copies the input there, runs the program, deletes possibly left over temporary files and then copies the output back
to the original directory.
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or you have to copy the output file to another file and then use any text editor to look at it.

copy MyMol.out temp.out

edit temp.out

you cannot use edit MyMol.out because this would result in a sharing violation.

There are parallel versions for Linux, MAC and Windows computers (thanks to the work of Ms Ute Becker)

which make use of OpenMPI (open-source MPI-2 implementation). Assuming that OpenMPI libraries are

installed properly on your computer, it is fairly easy to run the parallel version of ORCA. You simply have

to specify the number of parallel processes, like:

! PAL4

# everything from PAL2 to PAL8 is recognized

or

%pal nprocs 4 # any number (positive integer)

end

The following modules are presently parallelized:

• ANOINT

• CASSCF / NEVPT2

• CIPSI

• CIS/TDDFT

• CPSCF

• EPRNMR

• GTOINT

• MDCI (Canonical-, PNO-, DLPNO-Methods)

• MP2 and RI-MP2 (including Gradient and Hessian)

• MRCI

• PC

• ROCIS

• SCF

• SCFGRAD

• SCFHESS

• SOC
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• Numerical Gradients and Frequencies

Thus, all major modules are parallelized in the present version. The efficiency is such that for RI-DFT

perhaps up to 16 processors are a good idea while for hybrid DFT and Hartree-Fock a few more processors are

appropriate. Above this, the overhead becomes significant and the parallelization loses efficiency. Coupled-

cluster calculations usually scale well up to at least 8 processors but probably it is also worthwhile to try 16.

For Numerical Frequencies or Gradient runs it makes sense to use as many processors as 3*Number of Atoms.

If you run a queuing system you have to make sure that it works together with ORCA in a reasonable way.

NOTE:

• Parallelization is a difficult undertaking and there are many different protocols that work differently

for different machines. Please understand that we can not provide a 1:1 support for each platform.

We are trying our best to make the parallelization transparent and provide executables for various

platforms but we can not possibly guarantee that they always work on every system. Please see the

download information for details of the version.

5.2 Hints on the Use of Parallel ORCA

Many questions that are asked in the discussion forum deal with the parallel version of ORCA. Please

understand that we cannot possibly provide one-on-one support for every parallel computer in the world. So

please, make every effort to solve the problems locally together with your system administrator. Here are

some of the most common problems and how to deal with them.

1. Parallel ORCA can be used with OpenMPI only. Please see the download information for details of the

relevant OpenMPI-version for your platform.

2. The OpenMPI version is configurable in a large variety of ways, which cannot be covered here. For a more

detailed explanation of all available options, cf. http://www.open-mpi.org2

Otherwise, the usage of the OpenMPI version is like the older MPICH version, especially with regard to the

provision of a nodefile (<inputfile>.nodes). If you run the OpenMPI version on only one computer, you do

not need to provide a machinefile, and neither have to enable an rsh/ssh access, as in this case the processes

will simply be forked!

Please note that the OpenMPI version is dynamically linked, that is, it needs at runtime the OpenMPI

libraries (and several other standard libraries)!

(Remember to set the LD LIBRARY PATH)

3. Many problems arise, because parallel ORCA does not find its executables. To avoid this, it is crucial to

provide ORCA with its complete pathname. The easiest and safest way to do so is to include the directory

with the orca-executables in your $PATH. Then start the calculation:

- interactively: start orca with full path: /mypath orca executables/orca MyMol.inp

- batch : export your path: export PATH=$PATH:/mypath orca executables (for bash) then start orca with

full path: $PATH/orca $jobname.inp

2OpenMPI 3.1.x did contain a few errors causing calculations to hang randomly. Building OpenMPI with the switch
--disable-builtin-atomics circumvents this.

http://www.open-mpi.org
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This seems redundant, but it really is important if you want to start a parallel calculation to run ORCA
with full path! Otherwise it will not be able to find the parallel executables.

4. It is recommended to run orca in local (not nfs-mounted) scratch-directories, (for example /tmp1,

/usr/local, ...) and to renew these directories for each run to avoid confusion with left-overs of a previous

run.

5. It has proven convenient to use “wrapper” scripts. These scripts should

• set the path

• create local scratch directories

• copy input files to the scratch directory

• start orca

• save your results

• remove the scratch directory

A basic example of such a submission script for the parallel ORCA version is shown below (this is for the

Torque/PBS queuing system, running on Apple Mac OS X):

#!/bin/zsh

setopt EXTENDED_GLOB

setopt NULL_GLOB

#export MKL_NUM_THREADS=1

b=${1:r}

#get number of procs.... close your eyes... (it really works!)

if [[ ${$(grep -e ’ˆ!’ $1):u} == !*(#b)PAL(<0-9>##)* ]]; then

nprocs=$match

let "nodes=nprocs"

elif [[ ${(j: :)$(grep -v ’ˆ#’ $1):u} == *%(#b)PAL*NPROCS’ ’#(<0-9>##)* ]]; then

nprocs=$match

let "nodes=nprocs"

fi

cat > ${b}.job <<EOF

#!/bin/zsh

#PBS -l nodes=1:ppn=${nodes:=1}
#PBS -S /bin/zsh

#PBS -l walltime=8760:00:00

setopt EXTENDED_GLOB

setopt NULL_GLOB

export PATH=$PBS_O_PATH
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logfile=$PBS_O_WORKDIR/$b.log

tdir=$(mktemp -d /Volumes/scratch/$USER/$b__XXXXXX)

trap ’

echo "Job terminated from outer space!" >> $logfile

rm -rf $tdir

exit

’ TERM

cp $PBS_O_WORKDIR/$1 $tdir

foreach f ($PBS_O_WORKDIR/*.gbw $PBS_O_WORKDIR/*.pot) cp $f $tdir

cd $tdir

echo "Job started from $PBS_O_HOST, running on $(hostname) in $tdir using

$(which orca)" > $log

file

=orca $1 1>>$logfile 2>&1

cp ˆ(*.(inp|tmp*)) $PBS_O_WORKDIR/

rm -rf $tdir

EOF

qsub -j oe -o $b.job.out $b.job

6. Parallel ORCA distinguishes 3 cases of disk availability:

• each process works on its own (private) scratch directory (the data on this directory cannot be seen

from any other process)

• all processes work in a common scratch directory (all processes can see all file-data)

• there are at least 2 groups of processes on different scratch directories, one of the groups consisting of

more than 1 process

Parallel ORCA will find out, which case exists and handle its I/O respectively. If ORCA states disk availability

differently from what you would expect, check the number of available nodes and/or the distribution pattern

(fill up/round robin)

7. If Parallel ORCA finds a file named “MyMol.nodes” in the directory where it’s running, it will use the

nodes listed in this file to start the processes on, provided your input file was “MyMol.inp”. You can use this

file as your machinefile specifying your nodes, using the usual OpenMPI machinefile notation.

8. It is possible to pass additional MPI-parameters to the mpirun by adding these arguments to the ORCA
call:

• /mypath orca executables/orca MyMol.inp --bind-to core

- or - for multiple arguments
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• /mypath orca executables/orca MyMol.inp "--bind-to core --verbose"

9. An additional remark on multi-process numerical calculations (frequencies, gradient, hybrid hessian):

The processes that execute these calculations do not work in parallel, but independently, often in a totally

asynchronous manner. The numerical calculations will start as many processes, as you dedicated for the

parallel parts before and they will run on the same nodes. If your calculation runs on multiple nodes, you

have to set the environment variable RSH COMMAND to either “rsh” or “ssh”. You may specify special flags,

like “ssh -x”. If RSH COMMAND is not set, ORCA will start all processes of a multi-process run on localhost.

(Take care not to exceed your localhost’s ressources!) There is no gain in taking more processes than 3-times

the number of atoms to be displaced. For restart (available for numerical frequencies, hybrid hessian and

partial hessian calculations) make sure you have all local Hessian files (input.proc%d.hess). ORCA will

check these files to determine which displacements are left to be done.
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6 General Structure of the Input File

In general, the input file is a free format ASCII file and can contain one or more keyword lines that start

with a “!” sign, one or more input blocks enclosed between an “%” sign and “end” that provide finer control

over specific aspects of the calculation, and finally the specification of the coordinates for the system along

with the charge and multiplicity provided either with a %coords block, or more usually enclosed within two

“*” symbols. Here is an example of a simple input file that contains all three input elements:

! HF def2-TZVP

%scf

convergence tight

end

* xyz 0 1

C 0.0 0.0 0.0

O 0.0 0.0 1.13

*

Comments in the file start by a “#”. For example:

# This is a comment. Continues until the end of the line

Comments can also be closed by a second “#”, as the example below where TolE and TolMaxP are two

variables that can be user specified:

TolE=1e-5; #Energy conv.# TolMaxP=1e-6; #Density conv.#

The input may contain several blocks, which consist of logically related data that can be user controlled. The

program tries to choose sensible default values for all of these variables. However, it is impossible to give

defaults that are equally sensible for all systems. In general the defaults are slightly on the conservative

side and more aggressive cutoffs etc. can be chosen by the user and may help to speed things up for actual

systems or give higher accuracy if desired.
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6.1 Input Blocks

The following blocks exist:

autoci Controls autogenerated correlation calculations
basis Basis sets are specified
casscf Control of CASSCF/NEVPT2 and DMRG calculations
cipsi Control of Iterative-Configuration Expansion Configuration Interaction calcula-

tion
cim Control of Cluster In Molecules calculations
cis Control of CIS and TD-DFT calculations (synonym is tddft)
coords Input of atomic coordinates
cpcm Control of the Conductor-like Polarizable Continuum Model
elprop Control of electric property calculations
eprnmr Control of EPR and NMR calculations
esd Control of ESD calculations
freq Control of frequency calculations
geom Control of geometry optimization
loc Localization of orbitals

md Control of molecular dynamics simulation
mdci Controls single reference correlation methods
method Here a computation method is specified
mp2 Controls the details of the MP2 calculation
mrcc Control of multi-reference CC calculations
mrci Control of MRCI calculations
numgrad Control of numerical gradients
nbo Controls NBO analysis with GENNBO
output Control of output
pal Control of parallel jobs
paras Input of semi-empirical parameters
plots Control of plot generation
rel Control of relativistic options
rocis Control of restricted-open-shell CIS
rr Control of resonance Raman and absorption/fluorescence band-shape calculations
scf Control of the SCF procedure

Blocks start with “%” and end with “end”. Note that input is not case sensitive. For example:

%method method HF

end

No blocks need to be present in an input file but they can be present if detailed control over the behavior of

the program is desired. Otherwise all normal jobs can be defined via the keywords described in the next

section. Variable assignments have the following general structure:
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VariableName Value

Some variables are actually arrays. In this case several possible assignments are useful:

Array[1] Value1

Array[1] Value1,Value2,Value3

Array Value1,Value2

Note: Arrays always start with index 0 in ORCA (this is because ORCA is a C++ program). The first line in

the example gives the value “Value1” to Array[1], which is the second member of this array. The second line

assigns Value1 to Array[1], Value2 to Array[2] and Value3 to Array[3]. The third line assigns Value1

to Array[0] and Value2 to Array[1]. Strings (for examples filenames) must be enclosed in quotes. For

example:

MOInp "Myfile.gbw"

In general the input is not case sensitive. However, inside strings the input is case sensitive. This is because

on unix systems MYFILE.GBW and MyFile.gbw are different files. Under Windows the file names are not case

sensitive.

6.2 Keyword Lines

It is possible to give a line of keywords that assign certain variables that normally belong to different input

blocks. The syntax for this “simple input” is line-oriented. A keyword line starts with the “!” sign.

! Keywords

6.2.1 Main Methods and Options

Table 6.1 provides a list of keywords that can be used within the “simple input” keyword line to request

specific methods and/or algorithmic options. Most of them are self-explanatory. The others are explained in

detail in the section of the manual that deals with the indicated input block.
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Table 6.1: Main keywords that can be used in the simple input of ORCA.

Keyword Input

block

Variable Comment

HF METHOD METHOD Selects the Hartree–Fock method

DFT Selects the DFT method (see table 6.2

on page 23 for a list of functionals)

FOD FOD analysis (see 9.6.8.2) employ-

ing default settings (TPSS/def2-TZVP,

TightSCF, SmearTemp = 5000 K)

Runtypes

ENERGY or SP METHOD RUNTYP Selects a single point calculation

OPT Selects a geometry optimization calcu-

lation (using internal redundant coordi-

nates)

COPT Optimization in Cartesian coordinates

(if you are desperate)

ZOPT Optimization in Z-matrix coordinates

(dangerous)

GDIIS-COPT COPT using GDIIS

GDIIS-ZOPT ZOPT using GDIIS

GDIIS-OPT Normal optimization using GDIIS

ENGRAD Selects an energy and gradient calcula-

tion

NUMGRAD Numerical gradient (has explicitly to

be asked for, if analytic gradient is not

available)

NUMFREQ Numerical frequencies

NUMNACME Numerical non-adiabatic coplings (only

for CIS/TD-DFT)

MD Molecular dynamic simulation

CIM Cluster-In-Molecule calculation

Atomic mass/weight handling

Mass2016 METHOD AMASS Use the latest (2016) atomic masses of

the most abundant or most stable iso-

topes instead of atomic weights.

Symmetry handling

UseSym Turns on the use of molecular symme-

try (see section 6.5). THIS IS VERY

RUDIMENTARY!

NoUseSym Turns symmetry off

Second order many body perturbation theory

MP2 Selects Method=HF and DoMP2=true

MP2RI or RI-MP2 Select the MP2-RI method

SCS-MP2 Spin-component scaled MP2

RI-SCS-MP2 Spin-component scaled RI-MP2

(synonym is SCS-RI-MP2)
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OO-RI-MP2 Orbital optimized RI-MP2

OO-RI-SCS-MP2 Orbital optimized and spin-component

scaled RI-MP2

MP2-F12 MP2 with F12 correction

(synonym is F12-MP2)

MP2-F12-RI MP2-RI with RI-F12 correction

MP2-F12D-RI MP2-RI with RI-F12 correction employ-

ing the D approximation (less expensive)

(synonyms are F12-RI-MP2, RI-MP2-

F12)

High-level single reference methods. These are implemented in the MDCI module.

They can be run in a number of technical variants.

CCSD MDCI CITYPE Coupled-cluster singles and doubles

CCSD(T) Same with perturbative triples correc-

tion

CCSD-F12 CCSD with F12 correction

CCSD(T)-F12 CCSD(T) with F12 correction

CCSD-F12/RI CCSD with RI-F12 correction

CCSD-F12D/RI CCSD with RI-F12 correction employ-

ing the D approximation (less expensive)

CCSD(T)-F12/RI CCSD(T) with RI-F12 correction

CCSD(T)-

F12D/RI

CCSD(T) with RI-F12 correction em-

ploying the D approximation (less ex-

pensive)

QCISD Quadratic Configuration interaction

QCISD(T) Same with perturbative triples correc-

tion

QCISD-F12 QCISD with F12 correction

QCISD(T)-F12 QCISD(T) with F12 correction

QCISD-F12/RI QCISD with RI-F12 correction

QCISD(T)-F12/RI QCISD(T) with RI-F12 correction

CPF/1 Coupled-pair functional

NCPF/1 A “new” modified coupled-pair func-

tional

CEPA/1 Coupled-electron-pair approximation

NCEPA/1 The CEPA analogue of NCPF/1

RI-CEPA/1-F12 RI-CEPA with F12 correction

MP3 MP3 energies

SCS-MP3 Grimme’s refined version of MP3

Other coupled-pair methods are available and are documented later in the manual in detail

(section 7.8) In general you can augment the method with RI-METHOD in order to make

the density fitting approximation operative; RI34-METHOD does the same but only for the

3- and 4-external integrals). MO-METHOD performs a full four index transformation and

AO-METHOD computes the 3- and 4-external contributions on the fly. With AOX-METHOD

this is is done from stored AO integrals.
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Local correlation methods. These are local, pair natural orbital based correlation

methods. They must be used together with auxiliary correlation fitting basis sets. Open-shell

variants are available for some of the methods, for full list please see section 8.1.3. We

recommend n = 1 for the CEPA methods.

LPNO-CEPA/n MDCI Various Local pair natural orbital CEPA meth-

ods

LPNO-CPF/n Same for coupled-pair functionals

LPNO-NCEPA/n Same for modified versions

LPNO-NCPF/n Same for modified versions

LPNO-QCISD Same for quadratic CI with singles and

doubles

LPNO-CCSD Same for coupled-cluster theory with

single and double excitations

DLPNO-CCSD Domain based local pair natural orbital

coupled-cluster method with single and

double excitations (closed-shell only)

DLPNO-CCSD(T) DLPNO-CCSD with perturbative triple

excitations

DLPNO-

CCSD(T1)

DLPNO-CCSD with iterative perturba-

tive triple excitations

DLPNO-MP2 MP2 Various Local (DLPNO) MP2

DLPNO-SCS-MP2 Spin-component scaled DLPNO-MP2

(a synonym is SCS-DLPNO-MP2)

DLPNO-MP2-F12 DLPNO-MP2 with F12 correction em-

ploying an efficient form of the C ap-

proximation

DLPNO-MP2-

F12/D

DLPNO-MP2-F12 with approach D

(less expensive than the C approxima-

tion)

DLPNO-CCSD-

F12

DLPNO-CCSD with F12 correction em-

ploying an efficient form of the C ap-

proximation

DLPNO-CCSD-

F12/D

DLPNO-CCSD-F12 with approach D

(less expensive than the C approxima-

tion)

DLPNO-CCSD(T)-

F12

DLPNO-CCSD(T) with F12 correction

employing an efficient form of the C

approximation

DLPNO-CCSD(T)-

F12/D

DLPNO-CCSD(T)-F12 with approach

D (less expensive than the C approxi-

mation)

DLPNO-NEVPT2 DLPNO-NEVPT2 requires a CASSCF

block



6.2 Keyword Lines 15

Accuracy control for local correlation methods. These keywords select predefined sen-

sible sets of thresholds to control the accuracy of DLPNO calculations. See the corresponding

sections on local correlation methods for more details.

LoosePNO MDCI, MP2 Various Selects loose DLPNO thresholds

NormalPNO Selects default DLPNO thresholds

TightPNO Selects tight DLPNO thresholds

DLPNO-HFC1 Tightened truncation setting for

DLPNO-CCSD hyperfine coupling

constants calculation

DLPNO-HFC2 Tighter truncation setting than for

DLPNO-HFC1

Automatic basis set eaxtrapolation

Extrapolate (n/m,

bas)

Extrapolation of the basis set fam-

ily “bas” (bas=cc,aug-cc, cc-core, ano,

saug-ano, aug-ano, def2; if omitted

“cc-pVnZ” is used) for cardinal num-

bers n,m (n<m=2,3,4,5), e.g. Extrapo-

late(2/3,cc) extrapolates the SCF, MP2

and MDCI energies to the basis set

limit. “core” refers to basis sets with

core correlation function. In this case

the frozen core approximation is - by

default - turned off. This setting can

be overridden in the “methods” block if

one just wants to use the basis set with

core correlation functions (steep primi-

tives) but without unfreezing the core

electrons.

Extrapolate (n,

bas)

Calculate the first n-energies for mem-

ber of the basis set family basis, e.g. Ex-

trapolate(3) is doing calculations with

cc-pVDZ, cc-pVTZ and cc-pVQZ.

ExtrapolateEP2

(n/m,

bas,[method,method-

details])

Similar: performs SCF, MP2 and MDCI

calculations. The higher basis set can

only be done with DLPNO-CCSD(T) or

MP2 methods and then used to extrap-

olate the MDCI calculation to the basis

set limit.

ExtrapolateEP3

(bas,[method,method-

details])

Similar to EP2: for the high basis set

method we go one cardinal number

higher.

CASSCF related options. All of them require the CASSCF block as minimal input

DMRG Sets DMRG as “CIStep” in CASSCF

NEVPT2 SC NEVPT2
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SC-NEVPT2 SC-NEVPT2 same as NEVPT2

RI-NEVPT2 SC-NEVPT2 with the RI approximation

FIC-NEVPT2 FIC-NEVPT2 aka PC-NEVPT2

DLPNO-NEVPT2 FIC-NEVPT2 in the framework of

DLPNO

CASPT2 FIC-CASPT2

RI-CASPT2 FIC-CASPT2 with the RI approxima-

tion

DCD-CAS(2) 2nd order Dynamic Correlation Dressed

CAS

RI-DCD-CAS(2) 2nd order Dynamic Correlation Dressed

CAS with RI approximation

(internally contracted)Multireference methods beyond NEVPT2/CASPT2: If spec-

ified in a single keyword all information about reference spaces, number of roots etc. is taken

from the CASSCF module that is assumed to be run in advance. These methods reside in the

autoci module. More refined settings require the autoci block in the input.

FIC-MRCI CIType Invokes the fully internally contracted

MRCI

FIC-DDCI3 Fully internally contracted DDCI3

FIC-CEPA0 Fully internally contracted CEPA0

FIC-ACPF Fully internally contracted ACPF

FIC-AQCC Fully internally contracted AQCC

(uncontracted)Multireference methods: If specified in a single keyword all information

about reference spaces, number of roots etc. is taken from the CASSCF module that is assumed

to be run in advance. In general, these calculations are of the individually selecting type and are

very time consuming. Very many flags can be set and modified for these methods and in general

using these methods requires expert users! In general see the variables Tsel, Tpre and Tnat

that define the individual selection process. All of these methods can be used with RI integrals

by using RI-MRCI etc. However, then the calculations become even more time consuming since

integrals are made one- by one on the fly. Non-RI calculations will be pretty much limited to

about 200-300 orbitals that are included in the CI

MRCI MRCI CIType Initiates a multireference configuration

interaction calculation with single and

double excitations

MRCI+Q Same with multireference Davidson cor-

rection for unlinked quadruples

MRACPF Average coupled-pair functional

MRAQCC Average quadratic coupled-cluster

MRDDCI1 Difference dedicated CI with one degree

of freedom

MRDDCI2 Same with two degrees of freedom

MRDDCI3 Same with three degrees of freedom

MRDDCIn+Q MRDDCI with Davidson correction

SORCI Spectroscopy oriented CI
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Frozen core features. NOTE: this deviates from previous versions of ORCA! We are now

counting core electrons rather than using an energy window. If you do want to use an orbital

energy window use %method FrozenCore FC EWIN end. Otherwise the EWin commands will

be ignored! (alternatives are FC ELECTRONS (default) and FC NONE).

FROZENCORE METHOD FrozenCore Use a frozen core. By default this is done

by counting the number of chemical core

electrons

NOFROZENCORE Do not use a frozen core

Semiempirical methods

ZINDO/S Selects the ZINDO/S method

ZINDO/1 Selects the ZINDO/1 method

ZINDO/2 Selects the ZINDO/2 method

NDDO/1 Selects the NDDO/1 method

NDDO/2 Selects the NDDO/2 method

MNDO Selects the MNDO method

AM1 Selects the AM1 method

PM3 Selects the PM3 method

Algorithmic variations, options, add-ons, modifiers,. . .

RHF or RKS SCF HFTYP Selects closed-shell SCF

UHF or UKS Selects spin unrestricted SCF

ROHF or ROKS Selects open-shell spin restricted SCF

AllowRHF METHOD ALLOWRHF Allow a RHF calculation even if the sys-

tem is open-shell (Mult>1). Default is

to switch to UHF then

RI METHOD RI Sets RI=true to use the RI approxima-

tion in DFT calculations. Default to

Split-RI-J

NORI Sets RI=false

RIJCOSX METHOD/

SCF

RI, KMatrix Sets the flag for the efficient RIJCOSX

algorithm (treat the Coulomb term via

RI and the Exchange term via seminu-

merical integration)

RI-JK METHOD/

SCF

RI, KMatrix Sets the flag for the efficient RI al-

gorithm for Coulomb and Exchange.

Works for SCF (HF/DFT) energies and

gradients. Works direct or conventional.

SPLITJ SCF JMATRIX Select the efficient Split-J procedure for

the calculation of the Coulomb matrix

in non-hybrid DFT (rarely used)

SPLIT-RI-J SCF JMATRIX,RI Select the efficient Split-RI-J procedure

for the improved evaluation of the RI-

approximation to the Coulomb-matrix

NoSplit-RI-J SCF JMATRIX,RI Turns the Split-RI-J feature off (but

does not set the RI flag to false!)
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RI-J-XC SCF JMATRIX, KMA-

TRIX,RI

Turn on RI for the Coulomb term and

the XC terms. This saves time when the

XC integration is significant but intro-

duces another basis set incompleteness

error. (rarely used)

DIRECT SCF SCFMODE Selects an integral direct calculation

SEMIDIRECT Selects an integral semidirect calculation

(rarely used nowadays)

CONV Selects an integral conventional calcula-

tion

NOITER SCF MAXITER Sets the number of SCF iterations to

0. This works together with MOREAD

and means that the program will work

with the provided starting orbitals.

Initial guess options: In most cases the default PMODEL guess will be adequate. In some

special situations you may want to switch to a different choice

PATOM SCF GUESS Selects the polarized atoms guess

PMODEL Selects the model potential guess

HUECKEL Selects the extended Hückel guess

HCORE Selects the one-electron matrix guess

MOREAD Read MOs from a previous calulation

(use %moinp "myorbitals.gbw" in a

separate line to specify the GBW file

that contains these MOs to be read)

AUTOSTART AUTOSTART Try to start from the existing GBW file

of the same name as the present one

NOAUTOSTART Don’t try to do that

Basis-set related keywords

DecontractBas BASIS DecontractBas Decontract the basis set. If the basis set

arises from general contraction, dupli-

cate primitives will be removed.

NoDecontractBas NoDecontractBas Do not decontract the basis set

DecontractAuxJ DecontractAuxJ Decontract the AuxJ basis set

NoDecontractAuxJ NoDecontractAuxJ Do not decontract the AuxJ basis

DecontractAuxJK DecontractAuxJK Decontract the AuxJK basis set

NoDecontractAuxJK NoDecontractAuxJK Do not decontract the AuxJK basis

DecontractAuxC DecontractAuxC Decontract the AuxC basis set

NoDecontractAuxC NoDecontractAuxC Do not decontract the AuxC basis

Decontract Decontract Decontract all (orbital and auxiliary)

basis sets

Relativistic options: There are several variants of scalar relativistic Hamiltonians to use

in all electron calculations

DKH or DKH2 REL METHOD/ORDER Selects the scalar relativistic Douglas–

Kroll–Hess Hamiltonian of 2nd order
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ZORA REL METHOD Selects the scalar relativistic ZORA

Hamiltonian

ZORA/RI REL METHOD Selects the scalar relativistic ZORA

Hamiltonian in RI approximation

IORA/RI REL METHOD Selects the scalar relativistic IORA

Hamiltonian in RI approximation

IORAmm/RI REL METHOD Selects the scalar relativistic IORA mm

(modified metric) Hamiltonian in RI ap-

proximation

Grid options

GRIDn (n = 0–7) METHOD GRID Selects the DFT integration grid no n

FINALGRIDn Selects the DFT final integration grid

no n

NOFINALGRID Turns the final grid feature off

GRIDXn (n = 1–9) METHOD GRIDX Grids for the COSX approximation. A

sequence of three grids is used. Higher

accuracy at higher cost is offered by the

higher grids.

NOFINALGRIDX Turn off the final grid in COSX (not

recommended)

Convergence thresholds: These keywords control how tightly the SCF and geometry

optimizations will be converged. The program makes an effort to set the convergence

thresholds for correlation modules consistently with that of the SCF.

NORMALSCF SCF CONVERGENCE Selects normal SCF convergence

LOOSESCF Selects loose SCF convergence

SLOPPYSCF Selects sloppy SCF convergence

STRONGSCF Selects strong SCF convergence

TIGHTSCF Selects tight SCF convergence

VERYTIGHTSCF Selects very tight SCF convergence

EXTREMESCF Selects “extreme” convergence. All

thresholds are practically reduced to nu-

merical precision of the computer. Only

for benchmarking (very expensive).

SCFCONVn Selects energy convergence check and

sets ETol to 10−n (n = 6–10). Also se-

lects appropriate thresh, tcut, and bfcut

values.

VERYTIGHTOPT GEOM TolE,TolRMSG Selects very tight optimization conver-

gence

TIGHTOPT TolMaxG Selects tight optimization convergence

NORMALOPT TolRMSD,TolMaxD Selects default optimization convergence

LOOSEOPT Selects loose optimization convergence
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Convergence acceleration: the default is DIIS which is robust. For most closed-shell organic

molecules SOSCF converges somewhat better and might be a good idea to use. For “trailing

convergence”, KDIIS or the true second-order procedures NRSCF and AHSCF might be good

choices.

DIIS SCF DIIS Turns DIIS on

NODIIS Turns DIIS off

KDIIS SCF KDIIS Turns Kollmar’s DIIS on

NRSCF SCF NR Turns Newton-Raphson SCF on

AHSCF Same but with augmented Hessian step

NONRSCF Turns Newton-Raphson SCF off

SOSCF SCF SOSCF Turns SOSCF on

NOSOSCF Turns SOSCF off

DAMP SCF CNVDAMP Turns damping on

NODAMP Turns damping off

LSHIFT SCF CNVSHIFT Turns level shifting on

NOLSHIFT Turns level shifting off

Convergence strategies (does not modify the convergence criteria)

EasyConv Assumes no convergence problems.

NormalConv Normal convergence criteria.

SlowConv Selects appropriate SCF converger cri-

teria for difficult cases. Most transition

metal complexes fall into this category.

VerySlowConv Selects appropriate SCF converger cri-

teria for very difficult cases.

ForceConv Force convergence: do not continue with

the calculation, if the SCF did not fully

converge.

IgnoreConv Ignore convergence: continue with the

calculation, even if the SCF wavefunc-

tion is far from convergence.

CPCM(solvent)

C-PCM

CPCM Invoke the conductor-like polarizable

continuum model with a standard sol-

vent (see section 9.35 for a list of sol-

vents). If no solvent is given, infinity (a

conductor) is assumed.

Spin-orbit coupling

SOMF(1X) REL SOCType,

SOCFlags

Invokes the RI-SOMF(1X) treatment of

the spin-orbit coupling operator

Miscellaneous options

ANGS COORDS UNITS Select angstrom units

BOHRS Select input coordinates in atomic units

FRACOCC SCF FRACOCC Turns the fractional occupation option

on (FOD is always calculated in this

case)
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SMEAR SCF SMEARTEMP Temperature for occupation number

smearing on (default is 5000 K; FOD

(see 9.6.8.2) is always calculated in this

case)

NOSMEAR Turn occupation number smearing off

KEEPINTS SCF KEEPINTS Keep two electron integrals on disk

NOKEEPINTS Do not keep two electron integrals

KEEPDENS SCF KEEPDENS Keep the density matrix on disk

NOKEEPDENS Do not keep the density matrix

READINTS SCF READINTS Reading of two electron integrals on

NOREADINTS Reading of two electron integrals off

CHEAPINTS SCF USECHEAPINTS Use the cheap integral feature in direct

SCF calculations

NOCHEAPINTS Turn that feature off

FLOAT SCF VALFORMAT Set storage format for numbers to single

precision (SCF, RI-MP2, CIS, CIS(D),

MDCI)

DOUBLE SCF VALFORMAT Set storage format for numbers to dou-

ble precision (default)

UCFLOAT SCF VALFORMAT

COMPRESSION

Use float storage in the matrix contain-

ers without data compression

CFLOAT SCF VALFORMAT

COMPRESSION

Use float storage in the matrix contain-

ers with data compression

UCDOUBLE SCF VALFORMAT

COMPRESSION

Use double storage in the matrix con-

tainers without data compression

CDOUBLE SCF VALFORMAT

COMPRESSION

Use double storage in the matrix con-

tainers with data compression

Output control

NORMALPRINT OUTPUT PRINTLEVEL Selects the normal output

MINIPRINT Selects the minimal output

SMALLPRINT Selects the small output

LARGEPRINT Selects the large output

PRINTMOS OUTPUT Print[p MOS] Prints MO coefficients

NOPRINTMOS OUTPUT Suppress printing of MO coefficients

PRINTBASIS OUTPUT Print[p basis] Print the basis set in input format

PRINTGAP OUTPUT Print[p

homolumogap]

Prints the HOMO/LUMO gap in each

SCF iteration. This may help to detect

convergence problems

ALLPOP OUTPUT Print[. . . ] Turns on all population analysis

NOPOP Turns off all populaton analysis

MULLIKEN Turns on the Mulliken analysis

NOMULLIKEN Turns off the Mulliken analysis

LOEWDIN Turns on the Loewdin analysis

NOLOEWDIN Turns off the Loewdin analysis

MAYER Turns on the Mayer analysis
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NOMAYER Turns off the Mayer analysis

NPA Turns on interface for the NPA analysis

using the GENNBO program

NBO Turns on the interface for the NPA plus

NBO analysis with the GENNBO pro-

gram

NONPA Turns off NPA analysis

NONBO Turns of NBO analysis

REDUCEDPOP Prints Loewdin reduced orb.pop per MO

NOREDUCEDPOP Turns this feature off

UNO SCF UNO Produce UHF natural orbitals

AIM Produce a WFN file

XYZFILE OUTPUT XYZFILE Produce an XYZ coordinate file

PDBFILE PDBFILE Produce a PDB file

Compression and storage. The data compression and storage options deserve some comment: in a number

of modules including RI-MP2, MDCI, CIS, (D) correction to CIS, etc. the program uses so called “Matrix

Containers”. This means that the data to be processed is stored in terms of matrices in files and is accessed

by a double label. A typical example is the exchange operator Kij with matrix elements Kij(a, b) = (ia|jb).
Here the indices i and j refer to occupied orbitals of the reference state and a and b are empty orbitals of

the reference state. Data of this kind may become quite large (formally N4 scaling). To store the numbers

in single precision cuts down the memory requirements by a factor of two with (usually very) slight loss

in precision. For larger systems one may also gain advantages by also compressing the data (e.g. use a

“packed” storage format on disk). This option leads to additional packing/unpacking work and adds some

overhead. For small molecules UCDOUBLE is probably the best option, while for larger molecules UCFLOAT

or particularly CFLOAT may be the best choice. Compression does not necessarily slow the calculation

down for larger systems since the total I/O load may may be substantially reduced and thus (since CPU

is much faster than disk) the work of packing and unpacking takes less time than to read much larger files

(the packing may reduce disk requirements for larger systems by approximately a factor of 4 but it has not

been extensively tested so far). There are many factors contributing to the overall wall clock time in such

cases including the total system load. It may thus require some experimentation to find out with which set of

options the program runs fastest with.

! CAUTION !

• It is possible that FLOAT may lead to unacceptable errors. Thus it is
not the recommended option when MP2 or RI-MP2 gradients or relaxed
densities are computed. For this reason the default is DOUBLE.

• If you have convinced yourself that FLOAT is OK, it may save you a
factor of two in both storage and CPU.

Global memory use. Some ORCA modules (in particular those that perform some kind of wavefunction

based correlation calculations) require large scratch arrays. Each module has an independent variable
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to control the size of these dominant scratch arrays. However, since these modules are never running

simultaneously, we provide a global variable MaxCore that assigns a certain amount of scratch memory to all

of these modules. Thus:

%MaxCore 4000

sets 4000 MB (= 4 GB) as the limit for these scratch arrays. This limit applies per processing core.

Do not be surprised if the program takes more than that – this size only refers to the dominant work areas.

Thus, you are well advised to provide a number that is significantly less than your physical memory. Note

also that the memory use of the SCF program cannot be controlled: it dynamically allocates all memory that

it needs and if it runs out of physical memory you are out of luck. This, however, rarely happens unless you

run on a really small memory computer or you are running a gigantic job.

6.2.2 Density Functional Methods

For density functional calculations a number of standard functionals can be selected via the “simple input”

feature. Since any of these keywords will select a DFT method, the keyword “DFT” is not needed in the

input. Further functionals are available via the %method block. References are given in section 9.3.2.1.

Table 6.2: Density functionals available in ORCA.

Local and gradient corrected functionals

HFS Hartree–Fock–Slater Exchange only functional

LDA or LSD Local density approximation (defaults to VWN5)

VWN or VWN5 Vosko–Wilk–Nusair local density approx. parameter set “V”

VWN3 Vosko–Wilk–Nusair local density approx. parameter set “III”

PWLDA Perdew-Wang parameterization of LDA

BP86 or BP Becke ’88 exchange and Perdew ’86 correlation

BLYP Becke ’88 exchange and Lee-Yang-Parr correlation

OLYP Handy’s “optimal” exchange and Lee-Yang-Parr correlation

GLYP Gill’s ’96 exchange and Lee-Yang-Parr correlation

XLYP The Xu and Goddard exchange and Lee-Yang-Parr correlation

PW91 Perdew-Wang ’91 GGA functional

mPWPW Modified PW exchange and PW correlation

mPWLYP Modified PW exchange and LYP correlation

PBE Perdew-Burke-Erzerhoff GGA functional

RPBE “Modified” PBE

REVPBE “Revised” PBE

PWP Perdew-Wang ’91 exchange and Perdew ’86 correlation

Hybrid functionals

B1LYP The one-parameter hybrid functional with Becke ’88 exchange

and Lee-Yang-Parr correlation (25% HF exchange)

B3LYP and B3LYP/G The popular B3LYP functional (20% HF exchange) as defined

in the TurboMole program system and the Gaussian program

system, respectively

O3LYP The Handy hybrid functional
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X3LYP The Xu and Goddard hybrid functional

B1P The one-parameter hybrid version of BP86

B3P The three-parameter hybrid version of BP86

B3PW The three-parameter hybrid version of PW91

PW1PW One-parameter hybrid version of PW91

mPW1PW One-parameter hybrid version of mPWPW

mPW1LYP One-parameter hybrid version of mPWLYP

PBE0 One-parameter hybrid version of PBE

PW6B95 Hybrid functional by Truhlar

BHANDHLYP Half-and-half hybrid functional by Becke

Meta-GGA and hybrid meta-GGA functionals

TPSS The TPSS meta-GGA functional

TPSSh The hybrid version of TPSS (10% HF exchange)

TPSS0 A 25% exchange version of TPSSh that yields improved ener-

getics compared to TPSSh but is otherwise not well tested

M06L The Minnesota M06-L meta-GGA functional

M06 The M06 hybrid meta-GGA (27% HF exchange)

M062X The M06-2X version with 54% HF exchange

B97M-V Head-Gordon’s DF B97M-V with nonlocal correlation

B97M-D3BJ Modified version of B97M-V with D3BJ correction by Najibi

and Goerigk

SCANfunc Perdew’s SCAN functional

Range-separated hybrid functionals

wB97 Head-Gordon’s fully variable DF ωB97

wB97X Head-Gordon’s DF ωB97X with minimal Fock exchange

wB97X-D3 Chai’s refit incl. D3 in its zero-damping version

wB97X-V Head-Gordon’s DF ωB97X-V with nonlocal correlation

wB97X-D3BJ Modified version of ωB97X-V with D3BJ correction by Najibi

and Goerigk

wB97M-V Head-Gordon’s DF ωB97M-V with nonlocal correlation

wB97M-D3BJ Modified version of ωB97M-V with D3BJ correction by Najibi

and Goerigk

CAM-B3LYP Handy’s fit

LC-BLYP Hirao’s original application

Perturbatively corrected double-hybrid functionals (add the prefix RI- or DLPNO-

to use the respective approximation for the MP2 part)

B2PLYP Grimme’s mixture of B88, LYP, and MP2

B2PLYP-D B2PLYP with Grimme’s empirical dispersion correction from

2006 (D2) [1]

B2PLYP-D3 B2PLYP with Grimme’s atom-pairwise dispersion correction

from 2010 [2] and Becke-Johnson damping (D3BJ)

mPW2PLYP mPW exchange instead of B88, which is supposed to improve

on weak interactions.

mPW2PLYP-D mPW2PLYP with Grimme’s empirical dispersion correction

from 2006 (D2)

B2GP-PLYP Gershom Martin’s “general purpose” reparameterization
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B2K-PLYP Gershom Martin’s “kinetic” reparameterization

B2T-PLYP Gershom Martin’s “thermochemistry” reparameterization

PWPB95 Goerigk and Grimme’s mixture of modified PW91, modified

B95, and SOS-MP2

DSD-BLYP Gershom Martin’s “general purpose” double-hybrid with B88

exchange, LYP correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

DSD-PBEP86 Gershom Martin’s “general purpose” double-hybrid with PBE

exchange, P86 correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

DSD-PBEB95 Gershom Martin’s “general purpose” double-hybrid with PBE

exchange, B95 correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

Range-separated double-hybrid functionals (add the prefix RI- or DLPNO- to use the

respective approximation for the MP2 part)

wB2PLYP Goerigk and Casanova-Páez’s range-separated DHDF, with

the correlation contributions based on B2PLYP, optimized for

excitation energies

wB2GP-PLYP Goerigk and Casanova-Páez’s range-separated DHDF, with the

correlation contributions based on B2GP-PLYP, optimized for

excitation energies

Dispersion corrections (see 8.1.4.6 and 9.3.2.11 for details)

D4 density dependent atom-pairwise dispersion correction with

Becke-Johnson damping and ATM

D3BJ Atom-pairwise dispersion correction to the DFT energy with

Becke-Johnson damping

D3ZERO Atom-pairwise dispersion correction with zero damping

D2 Empirical dispersion correction from 2006 (not recommended)

6.3 Basis Sets

6.3.1 Standard basis set library

There are standard basis sets that can be specified via the “simple input” feature in the keyword line.

However, any basis set that is not already included in the ORCA library can be provided either directly

in the input or through an external file. See the BASIS input block for a full list of internal basis sets

and various advanced aspects (section 9.4). Effective core potentials and their use are described in section 6.3.3.

Table 6.3: Basis sets available on ORCA.

Pople-style basis sets

3-21G Pople 3-21G (H–Cs)

STO-3G Minimal basis set(H–I)

3-21GSP Buenker 3-21GSP (H–Ar)
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4-22GSP Buenker 4-22GSP (H–Ar)

6-31G Pople 6-31G and its modifications (H–Zn)

m6-31G Modified 6-31G for 3d transition metals (Sc–Cu)

6-311G Pople 6-311G and its modifications (H–Br)

Polarization functions for the 6-31G basis set:

* or (d) One set of first polarization functions on all atoms except H

** or (d,p) One set of first polarization functions on all atoms

Further combinations: (2d), (2df), (2d,p), (2d,2p), (2df,2p), (2df,2pd)

Polarization functions for the 6-311G basis set:

All of the above plus (3df) and (3df,3pd)

Diffuse functions for the 6-31G and 6-311G basis sets:

+ before “G” Include diffuse functions on all atoms except H (e.g. 6-31+G)

++ before “G” Include diffuse functions on all atoms. Works only when H

polarization is already included, e.g. 6-31++G(d,p)

The def2 basis sets of the Karlsruhe group

These basis sets are all-electron for elements H–Kr, and automatically load Stuttgart-Dresden

effective core potentials for elements Rb–Rn.

def2-SVP Valence double-zeta basis set with “new” polarization functions.

def2-SV(P) The above with slightly reduced polarization.

def2-TZVP Valence triple-zeta basis set with “new” polarization functions.

Note that this is quite similar to the older (“def”) TZVPP for

the main group elements and TZVP for hydrogen.

def2-TZVP(-f) TZVP with f polarization removed from main group elements.

def2-TZVPP TZVPP basis set with “new” polarization functions.

def2-QZVPP Accurate polarized quadruple-zeta basis.

Older (“def”) Ahlrichs basis sets

All-electron basis sets for elements H–Kr.

SV Valence double-zeta basis set.

SV(P) Valence double-zeta with polarization only on heavy elements.

SVP Polarized valence double-zeta basis set.

TZV Valence triple-zeta basis set.

TZV(P) Valence triple-zeta with polarization on heavy elements.

TZVP Polarized valence triple-zeta basis set.

TZVPP Doubly polarized triple-zeta basis set.

QZVP Polarized valence quadruple-zeta basis set.

QZVPP Doubly polarized quadruple-zeta basis set.

Note: Past versions of ORCA used to load all-electron basis sets also for elements Rb–I with

the above keywords for double- and triple-zeta basis sets. The Rb–I basis sets originated from

non-relativistic all-electron basis sets of the Turbomole library (such as “TZVPAlls”). This

automatic substitution is now deprecated. However, we offer temporarily the ability to

reproduce that behavior by adding the prefix “old-” to the above keywords, e.g. “old-TZVP”.

Diffuse def2 basis sets
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Minimally augmented def2 ba-

sis sets

Augmented def2 basis sets by diffuse s and p functions according

to Truhlar [3]. Recommended for general use.

ma-def2-SVP Minimally augmented def2-SVP basis set.

ma-def2-SV(P) Minimally augmented def2-SV(P) basis set.

ma-def2-TZVP Minimally augmented def2-TZVP basis set.

ma-def2-TZVP(-f) Minimally augmented def2-TZVP(-f) basis set.

ma-def2-TZVPP Minimally augmented def2-TZVPP basis set.

ma-def2-QZVPP Minimally augmented def2-QZVPP basis set.

Rappoport property-optimized

diffuse def2 basis sets

Augmented def2 basis sets by diffuse functions according to

Rappoport et al. [4]

def2-SVPD Diffuse def2-SVP basis set for property calculations

def2-TZVPD Diffuse def2-TZVP basis set for property calculations

def2-TZVPPD Diffuse def2-TZVPP basis set for property calculations

def2-QZVPD Diffuse def2-QZVP basis set for property calculations

def2-QZVPPD Diffuse def2-QZVPP basis set for property calculations

Relativistically recontracted Karlsruhe basis sets

For use in DKH or ZORA calculations we provide adapted versions of the def2 basis sets

for the elements H–Kr (i.e., for the all-electron def2 basis sets). These basis sets retain the

original def2 exponents but have only one contracted function per angular momentum (and

hence are somewhat larger), with contraction coefficients suitable for the respective scalar

relativistic Hamiltonian. These basis sets can be called with the prefix DKH- or ZORA-, and

can be combined with the SARC basis sets for the heavier elements.

DKH-def2-SVP and ZORA-def2-SVP

DKH-def2-SV(P) and ZORA-def2-SV(P)

DKH-def2-TZVP and ZORA-def2-TZVP

DKH-def2-TZVP(-f) and ZORA-def2-TZVP(-f)

DKH-def2-TZVPP and ZORA-def2-TZVPP

DKH-def2-QZVPP and ZORA-def2-QZVPP

Minimally augmented versions:

ma-DKH-def2-SVP and ma-ZORA-def2-SVP

ma-DKH-def2-SV(P) and ma-ZORA-def2-SV(P)

ma-DKH-def2-TZVP and ma-ZORA-def2-TZVP

ma-DKH-def2-TZVP(-f) and ma-ZORA-def2-TZVP(-f)

ma-DKH-def2-TZVPP and ma-ZORA-def2-TZVPP

ma-DKH-def2-QZVPP and ma-ZORA-def2-QZVPP

The same functionality is offered for the “def” basis sets, e.g. “ZORA-TZVP”. In this case

too, the relativistically recontracted versions refer to the elements H–Kr. To replicate the

behavior of past ORCA versions for elements Rb–I, the prefix “old-” can be used with these

keywords as in the non-relativistic case.
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WARNING: Previous verions of ORCA made extensive use of automatic basis

set substitution and aliasing when the use of the DKH or ZORA Hamiltonians

was detected. This is no longer the case! Relativistic versions of Karlsruhe basis

sets now have to be requested explicitly with the appropriate prefix. SARC basis

sets also have to be requested explicitly.

SARC basis sets [5–9]

Segmented all-electron relativistically contracted basis sets for use with the DKH2 and ZORA

Hamiltonians. Available for elements beyond Xe.

SARC-DKH-TZVP

SARC-DKH-TZVPP

SARC-ZORA-TZVP

SARC-ZORA-TZVPP

SARC-DKH-SVP and SARC-ZORA-SVP are also available for the 5d transition metals only.

Note: SARC/J is the general-purpose Coulomb-fitting auxiliary for all SARC orbital basis

sets.

SARC2 basis sets for the lanthanides [10]

SARC basis sets of quadruple-zeta quality for lanthanides. With polarization they are suitable

for accurate calculations using correlated wavefunction methods.

SARC2-DKH-QZV SARC2 basis set of valence quadruple-zeta quality.

SARC2-DKH-QZVP Extended with NEVPT2-optimized (3g2h) polarization.

SARC2-ZORA-QZV

SARC2-ZORA-QZVP

Note: Each of the above basis sets has a large dedicated /JK auxiliary basis set for simulta-

neous Coulomb and exchange fitting.

Jensen basis sets

pc-n (n = 0, 1, 2, 3, 4) “Polarization-consistent” generally contracted

basis sets (H–Kr) of up to quintuple-zeta quality, optimized for

SCF calculations

aug-pc-n As above, augmented by diffuse functions

pcseg-n Segmented PC basis sets (H–Kr), DFT-optimized

aug-pcseg-n As above, augmented by diffuse functions

pcSseg-n Segmented contracted basis sets (H–Kr) optimized for nuclear

magnetic shielding

aug-pcSseg-n As above, augmented by diffuse functions

pcJ-n Segmented contracted basis sets (H–Ar) optimized for spin-spin

coupling constants

aug-pcJ-n As above, augmented by diffuse functions

Sapporo basis bets

Sapporo-nZP-2012 (n = D, T, Q) All-electron generally contracted non-relativistic

basis sets (H–Xe)

Sapporo-DKH3-nZP-2012 (n = D, T, Q) All-electron basis sets optimized for the DKH3

Hamiltonian and finite nucleus (K–Rn)

Correlation-consistent basis sets
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cc-pVDZ Dunning correlation-consistent polarized double-zeta

cc-pVTZ Dunning correlation-consistent polarized triple-zeta

cc-pVQZ Dunning correlation-consistent polarized quadruple-zeta

cc-pV5Z Dunning correlation-consistent polarized quintuple-zeta

cc-pV6Z Dunning correlation-consistent polarized sextuple-zeta

aug-cc-pVnZ (n = D, T, Q, 5, 6) Augmented with diffuse functions

cc-pCVnZ (n = D, T, Q, 5, 6) Core-polarized basis sets

aug-cc-pCVnZ (n = D, T, Q, 5, 6) as above, augmented with diffuse functions

cc-pwCVnZ (n = D, T, Q, 5) Core-polarized with weighted core functions

aug-cc-pwCVnZ (n = D, T, Q, 5) as above, augmented with diffuse functions

cc-pVn(+d)Z (n = D, T, Q, 5) with tight d functions

DKH versions of correlation-consistent basis sets

cc-pVnZ-DK (n = D, T, Q, 5) Correlation-consistent all-electron basis sets

for use with the 2nd-order Douglas-Kroll-Hess Hamiltonian

aug-cc-pVnZ-DK (n = D, T, Q, 5) as above, augmented with diffuse functions

cc-pwCVnZ-DK (n = D, T, Q, 5) DK versions of weighted core correlation-

consistent basis sets

aug-cc-pwCVnZ-DK (n = D, T, Q, 5) weighted-core DK basis sets with diffuse

functions

ECP-based versions of correlation-consistent basis sets

cc-pVnZ-PP (n = D, T, Q, 5) Correlation-consistent all-electron basis sets

combined with SK-MCDHF-RSC effective core potentials

aug-cc-pVnZ-PP (n = D, T, Q, 5) as above, augmented with diffuse functions

cc-pwCVnZ-PP (n = D, T, Q, 5) with weighted core functions

aug-cc-pwCVnZ-PP (n = D, T, Q, 5) as above, augmented with diffuse functions

F12 and F12-CABS basis sets

cc-pVnZ-F12 (n = D, T, Q) Special orbital basis sets for F12 calculations

(larger than the regular D, T, Q-zeta basis sets!)

cc-pCVnZ-F12 (n = D, T, Q) with core polarization functions

cc-pVnZ-PP-F12 (n = D, T, Q) ECP-based versions

cc-pVnZ-F12-CABS (n = D, T, Q) Near-complete auxiliary basis sets for F12

calculations

cc-pVnZ-F12-OptRI (n = D, T, Q) identical to the cc-pVnZ-F12-CABS basis above

cc-pCVnZ-F12-OptRI (n = D, T, Q)

cc-pVnZ-PP-F12-OptRI (n = D, T, Q)

aug-cc-pVnZ-PP-F12-OptRI (n = D, T, Q, 5)

aug-cc-pwCVnZ-PP-F12-

OptRI

(n = D, T, Q, 5)

Atomic Natural Orbital basis sets
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ano-pVnZ (n = D, T, Q, 5). Our newly contracted ANO basis sets on

the basis of the cc-pV6Z (or pc-4 where missing) primitives.

These are very accurate basis sets that are significantly better

than the cc-pVnZ counterparts for the same number of basis

functions (but much larger number of primitives of course).

saug-ano-pVnZ (n = D, T, Q) augmentation with a single set of sp functions.

Greatly enhances the accuracy of the SCF energies but not for

correlation energies.

aug-ano-pVnZ (n = D, T, Q) full augmentation with spd, spdf, spdfg set of

polarization functions. Almost as expensive as the next higher

basis set. In fact, aug-ano-pVnZ = ano-pV(n+ 1)Z with the

highest angular momentum polarization function deleted.

Relativistic contracted ANO-RCC basis sets

ANO-RCC-FULL The complete ANO-RCC basis sets (H-Cm). Some default

contractions are provided for convenience with the keywords:

ANO-RCC-DZP

ANO-RCC-TZP

ANO-RCC-QZP

Miscellaneous and specialized basis sets

D95 Dunning’s double-zeta basis set (H–Cl).

D95p Polarized version of D95.

MINI Huzinaga’s minimal basis set.

MINIS Scaled version of the MINI.

MIDI Huzinaga’s valence double-zeta basis set.

MINIX Combination of small basis sets by Grimme (see Table 9.6).

Wachters+f First-row transition metal basis set (Sc–Cu).

Partridge-n (n = 1, 2, 3, 4) Uncontracted basis sets by Partridge.

LANL2DZ Los Alamos valence double-zeta with Hay–Wadt ECPs.

LANL2TZ Triple-zeta version.

LANL2TZ(f) Triple-zeta plus polarization.

LANL08 Uncontracted basis set.

LANL08(f) Uncontracted basis set + polarization.

EPR-II Barone’s basis set (H, B–F) for EPR calculations (double-zeta).

EPR-III Barone’s basis set for EPR calculations (triple-zeta).

IGLO-II Kutzelnigg’s basis set (H, B–F, Al–Cl) for NMR and EPR

calculations.

IGLO-III Larger version of the above.

aug-cc-pVTZ-J Sauer’s basis set for accurate hyperfine coupling constants.

Auxiliary basis sets. Auxiliary basis sets for the RI-J and RI-MP2 approximations can also be specified

directly in the simple input:

Table 6.4: Overview of auxiliary basis sets available in ORCA.
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Auxiliary basis sets for Coulomb fitting

Def2/J Weigend’s “universal” Coulomb fitting basis that is suitable for

all def2 type basis sets. Assumes the use of ECPs beyond Kr (do

not use with DKH/ZORA).

SARC/J General-purpose Coulomb fitting basis set for all-electron calcula-

tions. Consists of the decontracted def2/J up to Kr and of our own

auxiliary basis sets for the rest of the periodic table. Appropriate

for use in DKH or ZORA calculations with the recontracted ver-

sions of the all-electron def2 basis sets (up to Kr) and the SARC

basis sets for the heavier elements.

Auxiliary basis sets for simultaneously fitting Coulomb and exchange

Fitting basis sets developed by Weigend for fitting simultaneously Coulomb and exchange energies.

They are quite large and accurate. They fit SCF energies very well but even if they are large they

do not fit correlation as well as the dedicated “/C” auxiliary basis sets.

Def2/JK Coulomb+Exchange fitting for all def2 basis sets

Def2/JKsmall reduced version of the above

cc-pVnZ/JK (n = T, Q, 5) for the respective cc-pVnZ orbital basis

aug-cc-pVnZ/JK (n = T, Q, 5) for the respective aug-cc-pVnZ orbital basis

Auxiliary basis sets for correlation calculations

Def2-SVP/C Correlation fitting for the def2-SVP orbital basis

Def2-TZVP/C for the def2-TZVP orbital basis

Def2-TZVPP/C for the def2-TZVPP orbital basis

Def2-QZVPP/C for the def2-QZVPP orbital basis

cc-pVnZ/C (n = D, T, Q, 5, 6) for the respective cc-pVnZ orbital basis

aug-cc-pVnZ/C (n = D, T, Q, 5, 6) for the respective aug-cc-pVnZ orbital basis

cc-pwCVnZ/C (n = D, T, Q, 5) for the respective cc-pwCVnZ orbital basis

aug-cc-pwCVnZ/C (n = D, T, Q, 5) for the respective aug-cc-pwCVnZ orbital basis

cc-pVnZ-PP/C (n = D, T, Q) for the respective cc-pVnZ-PP orbital basis

aug-cc-pVnZ-PP/C (n = D, T, Q) for the respective aug-cc-pVnZ-PP orbital basis

cc-pwCVnZ-PP/C (n = D, T, Q) for the respective cc-pwCVnZ-PP orbital basis

aug-cc-pwCVnZ-PP/C (n = D, T, Q) for the respective aug-cc-pwCVnZ-PP orbital basis

cc-pVnZ-F12-MP2fit (n = D, T, Q) for the respective cc-pVnZ-F12 orbital basis

cc-pCVnZ-F12-MP2fit (n = D, T, Q) for the respective cc-pCVnZ-F12 orbital basis

cc-pVnZ-PP-F12-MP2fit (n = D, T, Q) for the respective cc-pVnZ-PP-F12 orbital basis

AutoAux Automatic construction of a general purpose auxiliary basis for

simultaneously fitting Coulomb, exchange and correlation calcula-

tions. See section 9.4.2 for details.

NOTE: ORCA versions before 4.0 allowed the use of multiple keywords to invoke the same def2 Coulomb or

Coulomb+exchange fitting basis set of Weigend. To avoid confusion all these keywords are now deprecated

and the auxiliary basis sets are simply called using “def2/J” and “def2/JK”.

NOTE: Starting from version 2.6.63 ORCA can deal with two auxiliary basis sets – one for Coulomb and

one for correlation. The default is the Coulomb fitting aux-basis. If you select a separate correlation fitting

basis, the correlation modules (RI-MP2, RI-MDCI, RI-MRCI) will replace this Coulomb fitting aux-basis



32 6 General Structure of the Input File

with the correlation fitting basis. In order to use this feature you have to give the “/C”-fit basis via the

“simple input” lines.

6.3.2 Use of scalar relativistic basis sets

For DKH and ZORA calculations ORCA provides relativistically recontracted versions of the Karlsruhe basis

sets for elements up to Kr. These can be requested by adding the prefix DKH- or ZORA- to the normal basis

set name. Note that for other non-relativistic basis sets (for example Pople-style bases) no recontraction has

been performed and consequently such calculations are inconsistent! The basis set and the scalar relativistic

Hamiltonian are specified in the keyword line, for example:

! B3LYP ZORA ZORA-TZVP ...

If an auxiliary basis set is required for these recontracted Karlsruhe basis sets, we recommend the use of

the decontracted def2/J. This can be obtained simply by using the keyword “! SARC/J” (instead of the

equivalent “! def2/J DecontractAuxJ”) and is the recommended option as it simultaneously covers the use

of SARC basis sets for elements beyond Krypton.

! TPSS ZORA ZORA-def2-TZVP SARC/J ...

For all-electron calculations with heavier elements (third-row transition metals, lanthanides, actinides and

6p elements) we offer the SARC (segmented all-electron relativistically contracted) basis sets [5–9]. These

were specifically developed for scalar relativistic calculations and are individually adapted to the DKH2 and

ZORA Hamiltonians. In this case the auxiliary basis set must be specified as SARC/J.

! PBE DKH SARC-DKH-TZVP SARC/J ...

Other basis sets suitable for scalar relativistic calculations are various versions of the all-electron correlation-

consistent basis sets that are optimized for the DKH2 Hamiltonian and can be called with the suffix ”-DK”.

The relativistically contracted atomic natural orbital (ANO-RCC) basis sets of Roos and coworkers were also

developed for the DKH2 Hamiltonian and have almost complete coverage of the periodic table (up to Cm).

6.3.3 Effective Core Potentials

Starting from version 2.8.0, ORCA features effective core potentials (ECPs). They are a good alternative

to scalar relativistic all-electron calculations if heavy elements are involved. This pertains to geometry

optimizations and energy calculations but may not be true for property calculations.

In order to reduce the computational effort, the usually highly contracted and chemically inert core basis

functions can be eliminated by employing ECPs. ECP calculations comprise a “valence-only” basis and thus

are subject to the frozen core approximation. Contributions due to the core orbitals are accounted for by an

effective one-electron operator U core which replaces the interactions between core and valence electrons and

accounts for the indistinguishability of the electrons. Its radial parts Ul(r) are generally expressed as a linear
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combination of Gaussian functions, while the angular dependence is included through angular momentum

projectors |Slm〉.

U core = UL(r) +
L−1∑
l=0

l∑
m=−l

∣∣Slm〉 [Ul(r)− UL(r)] 〈Slm
∣∣

Ul =
∑
k

dklr
nkl exp(−αklr2)

The maximum angular momentum L is generally defined as latom
max + 1. The parameters nkl, αkl and dkl

that are necessary to evaluate the ECP integrals have been published by various authors, among them the

well-known Los Alamos (LANL) [11] and Stuttgart–Dresden (SD) [12–57] parameter sets. Depending on

the specific parametrization of the ECP, relativistic effects can be included in a semiempirical fashion in an

otherwise nonrelativistic calculation. Introducing U core into the electronic Hamiltonian yields two types of

ECP integrals, the local (or type-1) integrals that arise because of the maximum angular momentum potential

UL and the semi-local (or type-2) integrals that result from the projected potential terms. The evaluation of

these integrals in ORCA proceeds according to the scheme published by Flores-Moreno et al. [58].

A selection of ECP parameters and associated basis sets is directly accessible in ORCA through the internal

ECP library (see table 6.5 for a listing of keywords).

Table 6.5: Overview of library keywords for ECPs and associated basis sets available in ORCA.

ECP keyword Core size1 Elements Valence basis sets

Recommended

def2-ECP 28 Rb–Xe Karlsruhe basis sets:

46 Cs–La def2-SVP, def2-TZVP, etc.

28 Ce–Lu def2-SVPD, def2-TZVPD, etc.

60 Hf–Rn ma-def2-SVP, ma-def2-TZVP, etc.

SK-MCDHF-RSC 10 Ca, Cu–Kr Correlation-consistent basis sets:

28 Sr–Xe cc-pVnZ-PP, aug-cc-pVnZ-PP,

46 Ba cc-pCVnZ-PP, aug-cc-pCVnZ-PP,

60 Hf–Rn cc-pwCVnZ-PP, aug-cc-pwCVnZ-PP

78 Ra (n = D, T, Q, 5)

HayWadt2 10 Na–Cu LANL-type basis sets:

18 Zn LANL2DZ, LANL2TZ, LANL2TZ(f),

28 Ga–Ag LANL08, LANL08(f)

36 Cd

46 In–La

60 Hf–Au

68 Hg–Tl

78 Pb–Bi, U–Pu

Legacy definitions

def2-SD 28,MWB Rb–Cd

28,MDF3 In–Xe

46,MWB Cs–La

60,MWB Hf–Pt
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60,MDF4 Au–Rn

def-SD 28,MWB Rb–Cd

46,MWB In–La

28,MWB Ce–Lu

60,MWB Hf–Pt

60,MDF4 Au, Hg, Rn

78,MWB Tl–At

78,MDF Fr, Ra

60,MWB Ac–Lr

SDD 2,SDF Li, Be

2,MWB B–Ne

10,SDF Na, Mg

10,MWB Al–Ca

10,MDF Sc–Zn

10,MWB Cu-Zn

28,MWB Ga–Sr

28,MHF Y–Cd

28,MDF Ge–Br, Rb–Xe

46,MWB In–Ba

28,MWB La–Lu

60,MWB Hf–Hg

78,MWB Tl–Rn

60,MWB Ac–Lr

LANL1 10 Na–Ar

18 K–Zn

28 Ga–Kr

36 Rb–Cd

46 In–Xe

54 Cs–La

68 Hf–Tl

78 Pb, Bi

LANL2 10 K–Cu

28 Rb–Ag

46 Cs–La

60 Hf–Au
1 Where applicable, reference method and data are given (S: single-valence-electron ion; M: neutral

atom; HF: Hartree–Fock; WB: quasi-relativistic; DF: relativistic).
2 Corresponds to LANL2 and to LANL1 where LANL2 is unavailable.
3 I: OLD-SD(28,MDF) for compatibility with TURBOMOLE.
4 Au, Hg: OLD-SD(60,MDF) for compatibility with TURBOMOLE.

By default, the Def2-X basis sets use the Def2-ECP effective core potential definition!

The simplest way to assign ECPs is by using the ECP keyword within the keyword line. The ECP keyword

itself assigns only the effective core potential, not a valence basis set!
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As an example for an explicitly named ECP you could use

! def2-TZVP def2-SD

This would assign the def2-SD ECP according to the definition given in the table above. Without the def2-SD

keyword ORCA would default to Def2-ECP. Other basis sets also have default ECP definitions - see the

footnotes under table 9.8.

6.4 Input priority and processing order

In more complicated calculations, the input can get quite involved. Therefore it is worth knowing how it is

internally processed by the program:

• First, all the simple input lines (starting with “!”) are collected into a single string.

• The program looks for all known keywords in a predefined order, regardless of the order in the input

file.

• An exception are basis sets: if two different orbital basis sets (e.g. ! def2-SVP def2-TZVP) are given,

the latter takes priority. The same applies to auxiliary basis sets of the same type (e.g. ! def2/J

SARC/J).

• Some simple input keywords set multiple internal variables. Therefore, it is possible for one keyword to

overwrite an option, set by another keyword. We have tried to resolve most such cases in a reasonable

way (e.g. the more “specific” keyword should take precedence over a more “general” one) but it is

difficult to forsee every combination of options.

• Next, the block input is parsed in the order it is given in the input file.

• Most block input keywords control a single variable (although there are exceptions). If a keyword is

duplicated, the latter value is used.

Consider the following (bad) example:

! def2-TZVP UKS

%method

functional BP86

correlation C_LYP

SpecialGridAtoms[1] 26, 27

SpecialGridIntacc 8, 8, 8

SpecialGridAtoms 28, 29

end

! PBE def2-SVP RKS

Using the rules above, one can figure out why it is equivalent to this one:
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! UKS BLYP def2-SVP

%method

SpecialGridAtoms 28, 29, 27

SpecialGridIntacc 8, 8, 8

end

6.5 ORCA and Symmetry

For most of its life, ORCA did not take advantage of molecular symmetry. Starting from version 2.8.0 there

is at least limited use. On request, with the UseSym keyword, the program detects the point group, cleans up

the coordinates, orients the molecule and produces symmetry-adapted orbitals in SCF/CASSCF calculations.

Note however that the calculation time will not be reduced. Only D2h and subgroups are currently supported.

The only correlation module that makes use of this information so far is the MRCI module. Here and in

CASSCF calculations, the use of symmetry helps to control the calculation and the interpretation of the

results. More symmetry is likely to be implemented in the future, although it is unlikely that the program

will ever take advantage of symmetry in a very big way.

If the automatic symmetry detection fails to find the expected point group, the coordinates specified are not

absolutely symmetrical to that group, and one should take a careful look at the input coordinates, maybe

using a visualization program. A problem often encountered when using coordinates generated from other

jobs (e.g. geometry optimizations) is the detection of a “too low” symmetry because of numerical noise. This

can be solved by increasing the detection threshold using an input line which looks like this:

%method SymThresh 5.0e-2 end

However, it is not recommended to run calculations on a very high threshold, since this may introduce some

odd behavior. Instead, a method to symmetrize the coordinates is to do a “fake” run with NoIter, XYZFile

and an increased threshold, and then to use the created .xyz file as input for the actual calculation. This

has the additional benefit that the input coordinates stored in your data are already symmetrical. To give

an example: the following coordinates for staggered ethane were obtained by geometry optimization NOT

using the symmetry module. They are, however, not recognized as D3d symmetrical due to numerical noise

and instead are found to be of Ci symmetry (a subgroup of D3d). To counter this, the detection threshold is

increased and a symmetry perfected coordinate file is produced by the following input:

! RHF SVP UseSym NoIter XYZfile

%method SymThresh 1.0e-2 end

*xyz 0 1

C -0.002822 -0.005082 -0.001782

C -0.723141 -1.252323 -0.511551

H 0.017157 0.029421 1.100049

H 1.042121 0.030085 -0.350586

H -0.495109 0.917401 -0.350838

H -0.743120 -1.286826 -1.613382
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H -0.230855 -2.174806 -0.162495

H -1.768085 -1.287489 -0.162747

*

6.6 Jobs with Multiple Steps

ORCA supports input files with multiple jobs. This feature is designed to simplify series of closely related

calculations on the same molecule or calculations on different molecules. The objectives for implementing

this feature include:

• Calculate of a molecular property using different theoretical methods and/or basis sets for one molecule.

• Calculations on a series of molecules with identical settings.

• Geometry optimization followed by more accurate single points and perhaps property calculations.

• Crude calculations to provide good starting orbitals that may then be used for subsequent calculations

with larger basis sets.

For example consider the following job that in the first step computes the g-tensor of BO at the LDA level,

and in the second step using the BP86 functional.

# -----------------------------------------------------

! UKS LSD SVP grid5 NoFinalGrid TightSCF KeepInts

# -----------------------------------------------------

%eprnmr gtensor 1 end

* int 0 2

B 0 0 0 0 0 0

O 1 0 0 1.2049 0 0

*

# *************************************************

# ****** This starts the input for the next job *

# *************************************************

$new_job

# --------------------------------------------------

! BP86 SVP SmallPrint ReadInts NoKeepInts

# --------------------------------------------------

%eprnmr gtensor 1 end

* int 0 2

B 0 0 0 0 0 0

O 1 0 0 1.2049 0 0

*
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What happens if you use the $new job feature is that all calculation flags for the actual job are transferred

from the previous job and that only the changes in the settings must be input by the user. Thus if you turn

on some flags for one calculation that you do not want for the next, you have to turn them off again yourself

(for example the use of the RI approximation)! In addition, the default is that the new job takes the orbitals

from the old job as input. If you do not want this you have to overwrite this default by specifying your

desired guess explicitly.

Changing the default BaseName

Normally the output files for MyJob.inp are returned in MyJob.xxx (any xxx, for example xxx=out).

Sometimes, and in particular in multistep jobs, you will want to change this behavior. To this end there is

the variable “%base” that can be user controlled. All filenames (also scratch files) will then be based on this

default name.
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7 Input of Coordinates

Coordinates can be either specified directly in the input file or read from an external file, and they can be in

either Cartesian (“xyz”) or internal coordinate format (“Z-matrix”).

7.1 Reading coordinates from the input file

The easiest way to specify coordinates in the input file is by including a block like the following, enclosed by

star symbols:

* CType Charge Multiplicity

...

coordinate specifications

...

*

Here CType can be one of xyz, int (or internal), or gzmt, which correspond to Cartesian coordinates,

internal coordinates, and internal coordinates in Gaussian Z-matrix format.

The input of Cartesian coordinates in the “xyz” option is straightforward. Each line consists of the label

for a given atom type and three numbers that specify the coordinates of the atom. The units can be either

Ångström or Bohr. The default is to specify the coordinates in Ångströms (this can be changed through the

keyword line or via the variable Units in the %coords main block described below).

* xyz Charge Multiplicity

Atom1 x1 y1 z1

Atom2 x2 y2 z2

...

*

For example for CO+ in a S = 1/2 state (multiplicity = 2× 1/2 + 1 = 2)

* xyz 1 2

C 0.0 0.0 0.0

O 0.0 0.0 1.1105

*
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Internal coordinates are specified in the form of the familiar “Z-matrix”. A Z-matrix basically contains

information about molecular connectivity, bond lengths, bond angles and dihedral angles. The program then

constructs Cartesian coordinates from this information. Both sets of coordinates are printed in the output

such that conversion between formats is facilitated. The input in that case looks like:

* int Charge Multiplicity

Atom1 0 0 0 0.0 0.0 0.0

Atom2 1 0 0 R1 0.0 0.0

Atom3 1 2 0 R2 A1 0.0

Atom4 1 2 3 R3 A2 D1

. . .

AtomN NA NB NC RN AN DN

*

The rules for connectivity in the “internal” mode are as follows:

• NA: The atom that the actual atom has a distance (RN) with.

• NB: The actual atom has an angle (AN) with atoms NA and NB.

• NC: The actual atom has a dihedral angle (DN) with atoms NA, NB and NC. This is the angle between

the actual atom and atom NC when looking down the NA-NB axis.

• Note that - contrary to other parts in ORCA - atoms are counted starting from 1.

Angles are always given in degrees! The rules are compatible with those used in the well known MOPAC and

ADF programs.

Finally, gzmt specifies internal coordinates in the format used by the Gaussian program. This resembles the

following:

* gzmt 0 1

C

O 1 4.454280

Si 2 1.612138 1 56.446186

O 3 1.652560 2 114.631525 1 -73.696925

C 4 1.367361 3 123.895399 2 -110.635060

...

*

An alternative way to specify coordinates in the input file is through the use of the %coords block, which is

organized as follows:
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%coords

CTyp xyz # the type of coordinates = xyz or internal

Charge 0 # the total charge of the molecule

Mult 2 # the multiplicity = 2S+1

Units Angs # the unit of length = angs or bohrs

# the subblock coords is for the actual coordinates

# for CTyp=xyz

coords

Atom1 x1 y1 z1

Atom2 x2 y2 z2

end

# for CTyp=internal

coords

Atom1 0 0 0 0.0 0.0 0.0

Atom2 1 0 0 R1 0.0 0.0

Atom3 1 2 0 R2 A1 0.0

Atom4 1 2 3 R3 A2 D1

. . .

AtomN NA NB NC RN AN DN

end

end

7.2 Reading coordinates from external files

It is also possible to read the coordinates from external files. The most common format is a .xyz file, which

can in principle contain more than one structure (see section 8.2.9 for this multiple XYZ feature):

* xyzfile 1 2 mycoords.xyz

A lot of graphical tools like Gabedit, molden or Jmol can write Gaussian Z-Matrices (.gzmt). ORCA can

also read them from an external file with the following

* gzmtfile 1 2 mycoords.gzmt

Note that if multiple jobs are specified in the same input file then new jobs can read the coordinates from

previous jobs. If no filename is given as fourth argument then the name of the actual job is automatically

used.
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... specification for the first job

$new_job

! keywords

* xyzfile 1 2

In this way, optimization and single point jobs can be very conveniently combined in a single, simple input

file. Examples are provided in the following sections.

7.3 Special definitions

• Dummy atoms are defined in exactly the same way as any other atom, by using “DA” as the atomic

symbol.

• Ghost atoms are specified by adding “:” right after the symbol of the element (see 8.1.6).

• Point charges are specified with the symbol “Q”, followed by the charge (see 9.1.4).

• Embedding potentials are specified by adding a “>” right after the symbol of the element (see

9.4.8).

• Non-standard isotopes or nuclear charges are specified with the statements “M = . . . ” and “Z =

. . . ”, respectively, after the atomic coordinate definition.

• Fragments can be conveniently defined by declaring the fragment number a given atom belongs to in

parentheses “(n)” following the element symbol (see 9.1.1).
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8 Running Typical Calculations

Before entering the detailed documentation of the various features of ORCA it is instructive to provide a

chapter that shows how “typical” tasks may be performed. This should make it easier for the user to get

started on the program and not get lost in the details of how-to-do-this or how-to-do-that. We hope that the

examples are reasonably intuitive.

8.1 Single Point Energies and Gradients

8.1.1 Hartree-Fock

8.1.1.1 Standard Single Points

In general single point calculations are fairly easy to run. What is required is the input of a method, a basis

set and a geometry. For example, in order run a single point Hartree-Fock calculation on the CO molecule

with the SVP basis set type:

#

# My first ORCA calculation :-)
#

! HF SVP

* xyz 0 1

C 0 0 0

O 0 0 1.13

*

As an example consider this simple calculation on the cyclohexane molecule that may serve as a prototype

for this type of calculation.

# Test a simple direct HF calculation

! HF RHF SV(P)

* xyz 0 1

C -0.79263 0.55338 -1.58694

C 0.68078 0.13314 -1.72622

C 1.50034 0.61020 -0.52199
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C 1.01517 -0.06749 0.77103

C -0.49095 -0.38008 0.74228

C -1.24341 0.64080 -0.11866

H 1.10490 0.53546 -2.67754

H 0.76075 -0.97866 -1.78666

H -0.95741 1.54560 -2.07170

H -1.42795 -0.17916 -2.14055

H -2.34640 0.48232 -0.04725

H -1.04144 1.66089 0.28731

H -0.66608 -1.39636 0.31480

H -0.89815 -0.39708 1.78184

H 1.25353 0.59796 1.63523

H 1.57519 -1.01856 0.93954

H 2.58691 0.40499 -0.67666

H 1.39420 1.71843 -0.44053

*

8.1.1.2 Basis Set Options

There is extensive flexibility in the specification of basis sets in ORCA. First of all, you are not only restricted

to the basis sets that are built in ORCA, but can also read basis set definitions from files. In addition there

is a convenient way to change basis sets on certain types of atoms or on individual atoms. Consider the

following example:

# CuCl4

! UHF HF

%basis basis "SV"

newGTO Cl "DUNNING-DZP" end

end

* xyz -2 2

Cu 0 0 0 newGTO "TZVPP" end

Cl 2.25 0 0

Cl -2.25 0 0

Cl 0 2.25 0

Cl 0 -2.25 0

*

In this example the basis set is initialized as the Ahlrichs split valence basis. Then the basis set on all

atoms of type Cl is changed to DUNNING-DZP and finally the basis set for only the copper atom is changed

to the more accurate TZVPP set. In this way you could treat different atom types or even individual groups

in a molecule according to the desired accuracy. Similar functionality regarding per-element or per-atom

assignments exists for effective core potentials. More details are provided in section 9.4.
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Sometimes you will like to change the ordering of the starting orbitals to obtain a different electronic state in

the SCF calculation. For example, if we take the last input and want to converge to a ligand field excited

state this can be achieved by:

! UHF HF SV

%basis newGTO Cl "Dunning-DZP" end

end

%scf rotate {48, 49, 90, 1, 1} end

end

* xyz -2 2

Cu 0 0 0 newGTO "TZVPP" end

Cl 2.25 0 0

Cl -2.25 0 0

Cl 0 2.25 0

Cl 0 -2.25 0

*

In the present case, MO 48 is the spin-down HOMO and MO49 the spin-down LUMO. Since we do a

calculation on a Cu(II) complex (d9 electron configuration) the beta LUMO corresponds with the “SOMO”.

Thus, by changing the SOMO we proceed to a different electronic state (in this case the one with the “hole”

in the “dxy” orbital instead of the “dx2−y2” orbital). The interchange of the initial guess MOs is achieved by

the command rotate {48, 49, 90, 1, 1} end. What this does is the following: take the initial guess MOs

48 and 49 and rotate them by an angle of 90 degree (this just interchanges them). The two last numbers

mean that both orbitals are from the spin-down set. For RHF or ROHF calculations the operator would be 0.

In general you would probably first take a look at the initial guess orbitals before changing them.

8.1.1.3 SCF and Symmetry

Upon request, the SCF program produces symmetry adapted orbitals. This can help to converge the SCF

on specific excited states of a given symmetry. Take for example the cation H2O+: We first run the simple

job:

! SVP UseSym

* xyz 1 2

O 0.000000 0.000000 0.068897

H 0.000000 0.788011 -0.546765

H 0.000000 -0.788011 -0.546765

*

The program will recognize the C2v symmetry and adapt the orbitals to this:
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------------------

SYMMETRY DETECTION

------------------

Preparing Data ... done

Detection Threshold: SymThresh ... 1.0000e-04

Point Group will now be determined:

Moving molecule to center of mass ... done

POINT GROUP ... C2v

The coordinates will now be cleaned:

Moving to standard coord frame ... done

(Changed main axis to z and one of the symmetry planes to xz plane)

Structure cleanup requested ... yes

Selected point group ... C2v

Cleaning Tolerance SymThresh ... 1.0000e-04

Some missing point group data is constructed:

Constructing symmetry operations ... done

Creating atom transfer table ... done

Creating asymmetric unit ... done

Cleaning coordinates ... done

-----------------------------------------------

SYMMETRY-PERFECTED CARTESIAN COORDINATES (A.U.)

-----------------------------------------------

0 O 0.00000000 0.00000000 0.13019595

1 H 0.00000000 1.48912498 -1.03323662

2 H 0.00000000 -1.48912498 -1.03323662

------------------

SYMMETRY REDUCTION

------------------

ORCA supports only abelian point groups.

It is now checked, if the determined point group is supported:

Point Group ( C2v ) is ... supported

(Re)building abelian point group:

Creating Character Table ... done

Making direct product table ... done

----------------------

ASYMMETRIC UNIT IN C2v

----------------------

# AT MASS COORDS BAS

0 O 15.9990 0.00000000 0.00000000 0.13019595 0

1 H 1.0080 0.00000000 1.48912498 -1.03323662 0

----------------------

SYMMETRY ADOPTED BASIS

----------------------

The coefficients for the symmetry adopted linear combinations (SALCS)

of basis functions will now be computed:

Number of basis functions ... 24
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Preparing memory ... done

Constructing Gamma(red) ... done

Reducing Gamma(red) ... done

Constructing SALCs ... done

Checking SALC integrity ... nothing suspicious

Normalizing SALCs ... done

Storing the symmetry object:

Symmetry file ... Test-SYM-H2O+.sym.tmp

Writing symmetry information ... done

The initial guess in the SCF program will then recognize and freeze the occupation numbers in each irreducible

representation of the C2v point group.

The symmetry of the initial guess is 2-B1

Irrep occupations for operator 0

A1 - 3

A2 - 0

B1 - 1

B2 - 1

Irrep occupations for operator 1

A1 - 3

A2 - 0

B1 - 0

B2 - 1

The calculation converges smoothly to

Total Energy : -75.56349710 Eh -2056.18729 eV

With the final orbitals being:

SPIN UP ORBITALS

NO OCC E(Eh) E(eV) Irrep

0 1.0000 -21.127827 -574.9174 1-A1

1 1.0000 -1.867576 -50.8193 2-A1

2 1.0000 -1.192139 -32.4397 1-B2

3 1.0000 -1.124657 -30.6035 1-B1

4 1.0000 -1.085062 -29.5260 3-A1

5 0.0000 -0.153303 -4.1716 4-A1

6 0.0000 -0.071324 -1.9408 2-B2

...

SPIN DOWN ORBITALS

NO OCC E(Eh) E(eV) Irrep

0 1.0000 -21.081198 -573.6486 1-A1

1 1.0000 -1.710193 -46.5367 2-A1

2 1.0000 -1.152855 -31.3708 1-B2

3 1.0000 -1.032556 -28.0973 1-B1

4 0.0000 -0.306683 -8.3453 3-A1

5 0.0000 -0.139418 -3.7937 4-A1

6 0.0000 -0.062261 -1.6942 2-B2

7 0.0000 0.374727 10.1968 3-B2

...
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Suppose now that we want to converge on an excited state formed by flipping the spin-beta HOMO and

LUMO that have different symmetries.

! SVP UseSym

! moread

%moinp "Test-SYM-H2O+.gbw"

%scf rotate {3,4,90,1,1}

end

end

* xyz 1 2

O 0.000000 0.000000 0.068897

H 0.000000 0.788011 -0.546765

H 0.000000 -0.788011 -0.546765

*

The program now finds:

Irrep occupations for operator 0

A1 - 3

A2 - 0

B1 - 1

B2 - 1

Irrep occupations for operator 1

A1 - 2

A2 - 0

B1 - 1

B2 - 1

And converges smoothly to

Total Energy : -75.48231924 Eh -2053.97833 eV

Which is obviously an excited state of the H2O+ molecule. In this situation (and in many others) it is an

advantage to have symmetry adapted orbitals.

SymRelax. Sometimes, one may want to obtain the ground state of a system but due to a particularly bad

initial guess, the calculation converges to an excited state. In such cases, the following option can be used:

%method SymRelax True

end

This will allow the occupation numbers in each irreducible representation to change if and only if a virtual

orbital has a lower energy than an occupied one. Hence, nothing will change for the excited state of H2O+

discussed above. However, the following calculation
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! SVP UseSym

! moread

%moinp "Test-SYM-H2O+.gbw"

%scf rotate {3,4,90,1,1}

end

end

* xyz 1 2

O 0.000000 0.000000 0.068897

H 0.000000 0.788011 -0.546765

H 0.000000 -0.788011 -0.546765

*

which converges to a high-lying excited state:

Total Energy : -73.87704009 Eh -2010.29646 eV

...

SPIN UP ORBITALS

NO OCC E(Eh) E(eV) Irrep

0 1.0000 -21.314859 -580.0068 1-A1

1 1.0000 -1.976707 -53.7889 2-A1

2 1.0000 -1.305096 -35.5135 3-A1

3 1.0000 -1.253997 -34.1230 1-B2

4 1.0000 -1.237415 -33.6718 1-B1

5 0.0000 -0.122295 -3.3278 4-A1

6 0.0000 -0.048384 -1.3166 2-B2

...

SPIN DOWN ORBITALS

NO OCC E(Eh) E(eV) Irrep

0 1.0000 -21.212928 -577.2331 1-A1

1 1.0000 -1.673101 -45.5274 2-A1

2 1.0000 -1.199599 -32.6427 1-B2

3 1.0000 0.727889 19.8069 1-A2

4 0.0000 -0.449647 -12.2355 3-A1

5 0.0000 -0.371861 -10.1189 1-B1

6 0.0000 -0.106365 -2.8943 4-A1

...

would revert to the ground state with the SymRelax option.

8.1.1.4 SCF and Memory

As the SCF module cannot restrict its use of memory to MaxCore we introduced an estimation of the expected

memory consumption. If the memory needed is larger than MaxCore ORCA will abort.

To check, if a certain job can be run with a given amount of MaxCore, you can ask for the estimation of

memory requirements by
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%scf DryRun true

end

ORCA will finish execution after having printed the estimated amount of memory needed.

If you want to run the calculation (if doable), and only are interested in the estimated memory consumption,

you can ask for the printing via

%scf Print[P_SCFMemInfo] 1

end

NOTE: The estimation is given per process. If you want to run a parallel job, you will need the estimated

memory x number of parallel processes.

8.1.2 MP2

8.1.2.1 MP2 and RI-MP2 Energies

You can do conventional or integral direct MP2 calculations for RHF, UHF or high-spin ROHF reference

wavefunctions. MP3 functionality is not implemented as part of the MP2 module, but can be accessed

through the MDCI module. Analytic gradients and Hessians are available for RHF and UHF. The frozen

core approximation is used by default. An extensive coverage of MP2 exists in the literature. [59–72]

! MP2 RHF def2-TZVP TightSCF

%mp2 MaxCore 100

end

%paras rCO = 1.20

ACOH = 120

rCH = 1.08

end

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 {rCO} 0.0 0.00

H 1 2 0 {rCH} {ACOH} 0.00

H 1 2 3 {rCH} {ACOH} 180.00

*

NOTE:

• There are two algorithms for MP2 calculations without the RI approximation. The first one uses

main memory as much as possible. The second one uses more disk space and is usually faster (in

particular, if you run the calculations in single precision using ! FLOAT, UCFLOAT or CFLOAT). The

memory algorithm is used using Q1Opt >0 and the disk based algorithm uses Q1Opt = -1. Gradients

are presently only available for the memory based algorithm.



8.1 Single Point Energies and Gradients 51

The RI approximation to MP2 [69–72] is fairly easy to use, too. It results in a tremendous speedup of the

calculation, while errors in energy differences are very small. For example, consider the same calculation as

before:

# only the auxiliary basis set def2-TZV/C is added to

# the keyword line

#

! RI-MP2 RHF def2-TZP def2-TZVP/C TightSCF

%mp2 MaxCore 100

end

%paras rCO = 1.20

ACOH = 120

rCH = 1.08

end

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 {rCO} 0.0 0.00

H 1 2 0 {rCH} {ACOH} 0.00

H 1 2 3 {rCH} {ACOH} 180.00

*

Generally, the RI approximation can be switched on by setting RI true in the %MP2 block. Specification of

an appropriate auxiliary basis set (“/C”) for correlated calculations is required. Note that if the RIJCOSX

method (section 8.1.4.3) or the RI-JK method (section 8.1.4.4) is used to accelerate the SCF calculation, then

two basis sets should be specified: firstly the appropriate Coulomb (“/J”) or exchange fitting set (“/JK”),

and secondly the correlation fitting set (“/C”), as shown in the example below.

# Simple input line for RIJCOSX:

! RHF RI-MP2 RIJCOSX def2-TZVP def2/J def2-TZVP/C TightSCF

# Simple input line for RI-JK:

! RHF RI-MP2 RI-JK def2-TZVP def2/JK def2-TZVP/C TightSCF

The MP2 module can also do Grimme’s spin-component scaled MP2 [73]. It is a semi-empirical modification

of MP2 which applies different scaling factors to same-spin and opposite-spin components of the MP2 energy.

Typically it gives a fair bit better results than MP2 itself.

#

# Spin-component scaled MP2 example

#

! SCS-MP2 RHF def2-TZVPP TightSCF

%paras rCO = 1.20

ACOH = 120
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rCH = 1.08

end

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 {rCO} 0.0 0.00

H 1 2 0 {rCH} {ACOH} 0.00

H 1 2 3 {rCH} {ACOH} 180.00

*

Energy differences with SCS-MP2 appear to be much better than from MP2 itself according to Grimme’s

detailed evaluation study. For the sake of efficiency, it is beneficial to make use of the RI approximation using

the RI-SCS-MP2 keyword. The opposite-spin and same-spin scaling factors can be modified using PS and PT

in the MP2-block, respectively. By default, PS = 6/5 and PT = 1/3.

NOTE

• In very large RI-MP2 runs you can cut down the amount of main memory used by a factor of two

if you use the keyword ! FLOAT. This is more important in gradient runs than in single point runs.

Deviations from double precision values for energies and gradients should be in the µEh and sub-µEh

range. However, we have met cases where this option introduced a large and unacceptable error, in

particular in transition metal calculations. You are therefore adviced to be careful and check things

out beforehand.

A word of caution is due regarding MP2 calculations with a linearly dependent basis. This can happen, for

example, with very diffuse basis sets (see 9.4.5 for more information). If some vectors were removed from the

basis in the SCF procedure, those redundant vectors are still present as ”virtual” functions with a zero orbital

energy in the MP2 calculation. When the number of redundant vectors is small, this is often not critical (and

when their number is large, one should probably use a different basis). However, it is better to avoid linearly

dependent basis sets in MP2 calculations whenever possible. Moreover, in such a situation the orbitals should

not be read with the MORead and NoIter keywords, as that is going to produce wrong results!

8.1.2.2 Frozen Core Options

In MP2 energy and gradient runs the Frozen Core (FC) approximation is applied by default. This implies that

the core electrons are not included in the perturbation treatment, since the inclusion of dynamic correlation

in the core electrons usually effects relative energies or geometry parameters insignificantly.

The frozen core option can be switched on or off with FrozenCore or NoFrozenCore in the simple input line.

Furthermore, frozen orbitals can be selected by means of an energy window:

%method FrozenCore FC_EWIN end

%mp2 ewin -1.5, 1.0e3 end

More information and the different options can be found in section 9.10
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8.1.2.3 Orbital Optimized MP2 Methods

By making the Hylleraas functional stationary with respect to the orbital rotations one obtains the orbital-

optimized MP2 method that is implemented in ORCA in combination with the RI approximation (OO-

RI-MP2). One obtains from these calculations orbitals that are adjusted to the dynamic correlation field

at the level of second order many-body perturbation theory. Also, the total energy of the OO-RI-MP2

method is lower than that of the RI-MP2 method itself. One might think of this method as a special form of

multiconfigurational SCF theory except for the fact that the Hamiltonian is divided into a 0th order term

and a perturbation.

The main benefit of the OO-RI-MP2 method is that it “repairs” the poor Hartree–Fock orbitals to some

extent which should be particularly beneficial for systems which suffer from the inbalance in the Hartree-Fock

treatment of the Coulomb and the Exchange hole. Based on the experience gained so far, the OO-RI-MP2

method is no better than RI-MP2 itself for the thermochemistry of organic molecules. However, for reactions

barriers and radicals the benefits of OO-MP2 over MP2 are substantial. This is particularly true with respect

to the spin-component scaled variant of OO-RI-MP2 that is OO-RI-SCS-MP2. Furthermore, the OO-RI-MP2

method substantially reduces the spin contamination in UHF calculations on radicals.

Since every iteration of the OO-MP2 method is as expensive as a RI-MP2 relaxed density calculation, the

computational cost is much higher than for RI-MP2 itself. One should estimate about a factor of 10 increase

in computation time with respect to the RI-MP2 time of a normal calculation. This may still be feasible

for calculations in the range of 1000–2000 basis functions (the upper limit, however, implies very significant

computational costs). A full assessment of the orbital optimized MP2 method has been published. [74]

OO-RI-MP2 is triggered with ! OO-RI-MP2 or ! OO-RI-SCS-MP2 (with spin component scaling). The

method comes with new variables:

%mp2 OrbOpt true # turns on the orbital optimization

CalcS2 false # calculate the S**2 expectation value

# in spin-unrestricted calculations

MaxOrbIter 64 # Max. number of iterations

MP2Shift 0.1 # Level shift for the procedure

end

The solver is a simple DIIS type scheme with additional level shifting. We have found that it is not really

beneficial to first converge the Hartree-Fock equations. Thus it is sensible to additionally use the keyword !

noiter in order to turn off the standard Hartree-Fock SCF process before entering the orbital optimizations.

The OO-RI-MP2 method is implemented for RHF and UHF reference wavefunctions. Analytic gradients are

available.

The density does not need to be requested separately in OO-RI-MP2 calculations because it is automatically

calculated. Also, there is no distinction between relaxed and unrelaxed densities because the OO-RI-MP2

energy is fully stationary with respect to all wavefunction parameters and hence the unrelaxed and relaxed

densities coincide.
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8.1.2.4 MP2 and RI-MP2 Gradients and Hessians

Geometry optimization with MP2, RI-MP2, SCS-MP2 and RI-SCS-MP2 proceeds just as with any SCF

method. Frequencies can be calculated analytically in all-electron calculations. With frozen core orbitals,

second derivatives of any kind are currently only available numerically. The RIJCOSX approximation (section

8.1.4.3) is supported in RI-MP2 and hence also in double-hybrid DFT gradient runs. This leads to large

speedups in larger calculations, particularly if the basis sets are accurate.

#

# MP2 optimization example

#

! RHF SCS-MP2 def2-TZVP TightSCF Opt NoFrozenCore

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.09 120.0 0.00

H 1 2 3 1.09 120.0 180.00

*

This job results in:

---------------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal

----------------------------------------------------------------------------

1. B(O 1,C 0) 1.2081 0.000488 -0.0003 1.2078

2. B(H 2,C 0) 1.1027 0.000009 -0.0000 1.1027

3. B(H 3,C 0) 1.1027 0.000009 -0.0000 1.1027

4. A(O 1,C 0,H 3) 121.85 0.000026 -0.00 121.85

5. A(H 2,C 0,H 3) 116.29 -0.000053 0.01 116.30

6. A(O 1,C 0,H 2) 121.85 0.000026 -0.00 121.85

7. I(O 1,H 3,H 2,C 0) -0.00 -0.000000 0.00 0.00

----------------------------------------------------------------------------

Just to demonstrate the accuracy of RI-MP2, here is the result with RI-SCS-MP2 instead of SCS-MP2, with

the addition of def2-TZVP/C:

---------------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)
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Definition OldVal dE/dq Step FinalVal

----------------------------------------------------------------------------

1. B(O 1,C 0) 1.2081 0.000487 -0.0003 1.2078

2. B(H 2,C 0) 1.1027 0.000009 -0.0000 1.1027

3. B(H 3,C 0) 1.1027 0.000009 -0.0000 1.1027

4. A(O 1,C 0,H 3) 121.85 0.000026 -0.00 121.85

5. A(H 2,C 0,H 3) 116.29 -0.000053 0.01 116.30

6. A(O 1,C 0,H 2) 121.85 0.000026 -0.00 121.85

7. I(O 1,H 3,H 2,C 0) -0.00 0.000000 -0.00 -0.00

----------------------------------------------------------------------------

You see that nothing is lost in the optimized geometry through the RI approximation thanks to the efficient

and accurate RI-auxiliary basis sets of the Karlsruhe group (in general the deviations in the geometries

between standard MP2 and RI-MP2 are very small). Thus, RI-MP2 really is a substantial improvement in

efficiency over standard MP2.

Geometric gradients and Hessians can be calculated with RI-MP2 in conjunction with the RIJCOSX method.

They are called the same way as with a conventional SCF wave function, for example to perform a geometry

optimization with tight convergence parameters:

! RI-MP2 def2-TZVPP def2/J def2-TZVPP/C TightSCF RIJCOSX

! TightOpt

...

8.1.2.5 MP2 Properties, Densities and Natural Orbitals

The MP2 method can be used to calculate electric and magnetic properties such as dipole moments,

polarizabilities, hyperfine couplings, g-tensors or NMR chemical shielding tensors. For this purpose, the

appropriate MP2 density needs to be requested - otherwise the properties are calculated using the SCF

density!

Two types of densities can be constructed - an ”unrelaxed” density (which basically corresponds to the MP2

expectation value density) and a ”relaxed” density which incorporates orbital relaxation. For both sets

of densities a population analysis is printed if the SCF calculation also requested this population analysis.

These two densities are stored as JobName.pmp2ur.tmp and JobName.pmp2re.tmp, respectively. For the open

shell case case the corresponding spin densities are also constructed and stored as JobName.rmp2ur.tmp and

JobName.rmp2re.tmp.

In addition to the density options, the user has the ability to construct MP2 natural orbitals. If relaxed

densities are available, the program uses the relaxed densities and otherwise the unrelaxed ones. The natural

orbitals are stored as JobName.mp2nat which is a GBW type file that can be read as input for other jobs (for

example, it is sensible to start CASSCF calculations from MP2 natural orbitals). The density construction

can be controlled separately in the input file (even without running a gradient or optimization) by:
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#

# MP2 densities and natural orbitals

#

%mp2 Density none # no density

unrelaxed # unrelaxed density

relaxed # relaxed density

NatOrbs true # Natural orbital construction on or off

end

Below is a calculation of the dipole and quadrupole moments of a water molecule:

! RHF RI-MP2 def2-SVP def2-SVP/C

%mp2 density relaxed end

%elprop dipole true

quadrupole true

end

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 0.9584 0 0

H 1 2 0 0.9584 104.45 0

*

Another example is a simple g-tensor calculation with MP2:

! UHF RI-MP2 def2-SVP def2-SVP/C TightSCF SOMF(1X) NoFrozenCore

%eprnmr gtensor 1

ori CenterOfElCharge

end

%mp2 density relaxed end

* int 1 2

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*

NMR chemical shielding as well as g-tensor calculations with GIAOs are only available for RI-MP2. The

input for NMR chemical shielding looks as follows:

! RHF RIJK RI-MP2 def2-SVP def2/JK def2-SVP/C TightSCF NMR NoFrozenCore

%mp2

density relaxed # required
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end

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*

Note that by default core electrons are not correlated unless the NoFrozenCore keyword is present.

For details, see sections 9.11 and 9.36.3.5.

8.1.2.6 Explicitly correlated MP2 calculations

ORCA features an efficient explicit correlation module that is available for MP2 and coupled-cluster calculations

(section 8.1.3.6). It is described below in the context of coupled-cluster calculations.

8.1.2.7 Local MP2 calculations

Purely domain-based local MP2 methodology dates back to Pulay and has been developed further by Werner,

Schütz and co-workers. ORCA features a local MP2 method (DLPNO-MP2) that combines the ideas of

domains and local pair natural orbitals, so that RI-MP2 energies are reproduced efficiently to within chemical

accuracy. Due to the intricate connections with other DLPNO methods, reading of the sections 8.1.3.8 and

and 9.12.4 is recommended. A full description of the method for RHF reference wave functions has been

published. [75]

Since DLPNO-MP2 employs an auxiliary basis set to evaluate integrals, its energies converge systematically

to RI-MP2 as thresholds are tightened. The computational effort of DLPNO-MP2 with default settings is

usually comparable with or less than that of a Hartree-Fock calculation. However, for small and medium-sized

molecules, RI-MP2 is even faster than DLPNO-MP2.

Calculations on open-shell systems are supported through a UHF treatment. While most approximations

are consistent between the RHF and UHF versions, this is not true for the PNO spaces. DLPNO-MP2

gives different energies for closed-shell molecules in the RHF and UHF formalisms. When

calculating reaction energies or other energy differences involving open-shell species, energies

of closed-shell species must also be calculated with UHF-DLPNO-MP2, and not with RHF-

DLPNO-MP2. As for canonical MP2, ROHF reference wave functions are subject to an ROMP2 treatment

through the UHF machinery. It is not consistent with the RHF version of DLPNO-MP2, unlike in the case of

RHF-/ROHF-DLPNO-CCSD.

Input for DLPNO-MP2 requires little specification from the user:
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# DLPNO-MP2 calculation with standard settings

# sufficient for most purposes

! def2-TZVP def2-TZVP/C DLPNO-MP2 TightSCF

# OR: DLPNO-MP2 with tighter thresholds

# May be interesting for weak interactions, calculations with diffuse basis sets etc.

! def2-TZVP def2-TZVP/C DLPNO-MP2 TightPNO TightSCF

%maxcore 2000

*xyz 0 1

... (coordinates)

*

Noteworthy aspects of the DLPNO-MP2 method:

• Both DLPNO-CCSD(T) and DLPNO-MP2 are linear-scaling methods (albeit the former has a larger

prefactor). This means that if a DLPNO-MP2 calculation can be performed, DLPNO-CCSD(T) is

often going to be within reach, too. However, CCSD(T) is generally much more accurate than MP2

and thus should be given preference.

• A correlation fitting set must be provided, as the method makes use of the RI approximation.

• Canonical RI-MP2 energy differences are typically reproduced to within a fraction of 1 kcal/mol. The

default thresholds have been chosen so as to reproduce about 99.9 % of the total RI-MP2 correlation

energy.

• The preferred way to control the accuracy of the method is by means of specifying “LoosePNO”,

“NormalPNO” and “TightPNO” keywords. “NormalPNO” corresponds to default settings and does not

need to be given explicitly. More details and an exhaustive list of input parameters are provided in

section 9.11.7. Note that the thresholds differ from DLPNO coupled cluster.

• Results obtained from RI-MP2 and DLPNO-MP2, or from DLPNO-MP2 with different accuracy

settings, must never be mixed, such as when computing energy differences. In calculations involving

open-shell species, even the closed-shell molecules need to be subject to a UHF treatment.

• Spin-component scaled DLPNO-MP2 calculations are invoked by using the ! DLPNO-SCS-MP2 keyword

instead of ! DLPNO-MP2 in the simple input line. Weights for same-spin and opposite-spin contributions

can be adjusted as described for the canonical SCS-MP2 method. Likewise, there is a DLPNO-SOS-MP2

keyword to set the parameters defined by the SOS-MP2 method (but there is no Laplace transformation

involved).

• The frozen core approximation is used by default. If core orbitals are involved in the calculation, they

are subject to the treatment described in section 9.11.7.

• Calculations can be performed in parallel.

• It may be beneficial to accelerate the Hartree-Fock calculation by means of the RIJCOSX method

(requiring specification of a second auxiliary set).
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Explicit correlation has been implemented in the DLPNO-MP2-F12 methodology for RHF reference wave

functions. [76] The available approaches are C (keyword ! DLPNO-MP2-F12) and the somewhat more approxi-

mate D (keyword ! DLPNO-MP2-F12/D). Approach D is generally recommended as it results in a significant

speedup while leading only to small errors relative to approach C. In addition to the MO and correlation

fitting sets, a CABS basis set is also required for both F12 approaches as shown below.

# DLPNO-MP2-F12 calculation using approach C

! cc-pVDZ-F12 aug-cc-pVDZ/C cc-pVDZ-F12-CABS DLPNO-MP2-F12 TightSCF

# OR: DLPNO-MP2-F12 calculation using approach D (recommended)

! cc-pVDZ-F12 aug-cc-pVDZ/C cc-pVDZ-F12-CABS DLPNO-MP2-F12/D TightSCF

8.1.2.8 Local MP2 derivatives

Analytical gradients and the response density are available for the RHF variant of the DLPNO-MP2

method. [77, 78] Usage is as simple as that of RI-MP2. For example, the following input calculates the

gradient and the natural orbitals:

! RHF DLPNO-MP2 def2-SVP def2-SVP/C TightSCF EnGrad

%MaxCore 512

# With ’EnGrad’, specifying ’density relaxed’ is unnecessary.

# However, it is needed when calculating properties without the gradient.

%MP2 Density Relaxed

NatOrbs True

End

*xyz 0 1

C 0.000 0.000 0.000

O 0.000 0.000 1.162

O 0.000 0.000 -1.162

*

The implementation supports spin-component scaling and can be used together with double-hybrid density

functionals. The latter are invoked with the name of the functional preceded by ”DLPNO-”. A simple geometry

optimization with a double-hybrid density functional is illustrated in the example below:

! RKS DLPNO-B2PLYP D3 NormalPNO Grid5 def2-TZVP def2-TZVP/C Opt

%MaxCore 1000

*xyz 0 1

O 0.000 0.000 0.000

H 0.000 0.000 1.000

H 0.000 1.000 0.000

*
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For smaller systems, the performance difference between DLPNO-MP2 and RI-MP2 is not particularly large,

but very substantial savings in computational time over RI-MP2 can be achieved for systems containing more

than approximately 70-80 atoms.

Since MP2 is an expensive method for geometry optimizations, it is generally a good idea to use well-optimized

starting structures (calculated, for example, with a dispersion-corrected DFT functional). Moreover, it is

highly advisable to employ accurate Grids for RIJCOSX or the exchange-correlation functional (if applicable),

as the SCF iterations account only for a fraction of the overall computational cost. If calculating calculating

properties without requesting the gradient, Density Relaxed needs to be specified in the %MP2-block.

Only the Foster-Boys localization scheme is presently supported by the derivatives implementation. The

default localizer in DLPNO-MP2 is AHFB, and changing this setting is strongly discouraged, since tightly

converged localized orbitals are necessary to calculate the gradient.

8.1.3 Coupled-Cluster and Coupled-Pair Methods

8.1.3.1 Basics

The coupled-cluster method is presently available for RHF and UHF references. The implementation is fairly

efficient and suitable for large-scale calculations. The most elementary use of this module is fairly simple.

! METHOD

# where METHOD is:

# CCSD CCSD(T) QCISD QCISD(T) CPF/n NCPF/n CEPA/n NCEPA/n

# (n=1,2,3 for all variants) ACPF NACPF AQCC CISD

! AOX-METHOD

# computes contributions from integrals with 3- and 4-external

# labels directly from AO integrals that are pre-stored in a

# packed format suitable for efficient processing

! AO-METHOD

# computes contributions from integrals with 3- and 4-external

# labels directly from AO integrals. Can be done for integral

# direct and conventional runs. In particular, the conventional

# calculations can be very efficient

! MO-METHOD (this is the default)

# performs a full four index integral transformation. This is

# also often a good choice

! RI-METHOD

# selects the RI approximation for all integrals. Rarely advisable

! RI34-METHOD

# selects the RI approximation for the integrals with 3- and 4-



8.1 Single Point Energies and Gradients 61

# external labels

#

# The module has many additional options that are documented

# later in the manual.

! RCSinglesFock

! RIJKSinglesFock

! NoRCSinglesFock

! NoRIJKSinglesFock

# Keywords to select the way the so-called singles Fock calculation

# is evaluated. The first two keywords turn on, the second two turn off

# RIJCOSX or RIJK, respectively.

NOTE

• The same FrozenCore options as for MP2 are applied in the MDCI module.

• Since ORCA 4.2, an additional term, called ”4th-order doubles-triples correction” is considered in

open-shell CCSD(T). To reproduce previous results, one should use a keyword,

%mdci

Include 4thOrder DT in Triples false

end

The computational effort for these methods is high — O(N6) for all methods and O(N7) if the triples

correction is to be computed (calculations based on an unrestricted determinant are roughly 3 times more

expensive than closed-shell calculations and approximately six times more expensive if triple excitations

are to be calculated). This restricts the calculations somewhat: on presently available PCs 300–400 basis

functions are feasible and if you are patient and stretch it to the limit it may be possible to go up to 500–600;

if not too many electrons are correlated may be even up to 800–900 basis functions (then using AO-direct

methods).

TIP

• For calculations on small molecules and large basis sets the MO-METHOD option is usually the most

efficient; say perhaps up to about 300 basis functions. For integral conventional runs the AO-METHOD

may even more efficient.

• For large calculations (>300 basis functions) the AO-METHOD option is a good choice. If, however,

you use very deeply contracted basis sets such as ANOs these calculations should be run in the integral

conventional mode.

• AOX-METHOD is usually slightly less efficient than MO-METHOD or AO-METHOD.

• RI-METHOD is seldom the most efficient choice. If the integral transformation time is an issue than

you can select %mdci trafotype trafo ri or choose RI-METHOD and then %mdci kcopt kc ao.
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• Regarding the singles Fock keywords (RCSinglesFock, etc.), the program usually decides which method

to use to evaluate the singles Fock term. For more details on the nature of this term, and options

related to its evaluation, see 9.12.6.

To put this into perspective, consider a calculation on serine with the cc-pVDZ basis set — a basis on the

lower end of what it suitable for a highly correlated calculation. The time required to solve the equations is

listed in Table 8.1. We can draw the following conclusions:

• As long as one can store the integrals and the I/O system of the computer is not the bottleneck, the

most efficient way to do coupled-cluster type calculations is usually to go via the full transformation

(it scales as O(N5) whereas the later steps scale as O(N6) and O(N7) respectively).

• AO-based coupled-cluster calculations are not much inferior. For larger basis sets (i.e. when the ratio

of virtual to occupied orbitals is larger), the computation times will be even more favorable for the

AO based implementation. The AO direct method uses much less disk space. However, when you use

a very expensive basis set the overhead will be larger than what is observed in this example. Hence,

conventionally stored integrals — if affordable — are a good choice.

• AOX based calculations runs at essentially the same speed as AO based calculations. Since AOX

based calculations take four times as much disk space they are pretty much outdated and the AOX

implementation is only kept for historical reasons.

• RI based coupled-cluster methods are significantly slower. There are some disk space savings but the

computationally dominant steps are executed less efficiently.

• CCSD is at most 10% more expensive than QCISD. With the latest AO implementation the awkward

coupled-cluster terms are handled efficiently.

• CEPA is not much more than 20% faster than CCSD. In many cases CEPA results wil be better than

CCSD and then it is a real saving compared to CCSD(T), which is the most rigorous.

• If triples are included practically the same comments apply for MO versus AO based implementations

as in the case of CCSD.

ORCA is quite efficient in this type of calculation but it is also clear that the range of application of these

rigorous methods is limited as long as one uses canonical MOs. ORCA implements novel variants of the

so-called local Coupled-Cluster method which can calculate large, real-life molecules in a linear scaling time.

This will be addressed in Sec. 8.1.3.8.

Table 8.1: Computer times (minutes) for solving the coupled-cluster/coupled-pair equations for Serine (cc-

pVDZ basis set).

Method SCFMode Time (min)

MO-CCSD Conv 38.2

AO-CCSD Conv 47.5

AO-CCSD Direct 50.8

AOX-CCSD Conv 48.7

RI-CCSD Conv 64.3

AO-QCISD Conv 44.8
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AO-CEPA/1 Conv 40.5

MO-CCSD(T) Conv 147.0

AO-CCSD(T) Conv 156.7

All of these methods are designed to cover dynamic correlation in systems where the Hartree-Fock determinant

dominates the wavefunctions. The least attractive of these methods is CISD which is not size-consistent and

therefore practically useless. The most rigorous are CCSD(T) and QCISD(T). The former is perhaps to

be preferred since it is more stable in difficult situations.1 One can get highly accurate results from such

calculations. However, one only gets this accuracy in conjunction with large basis sets. It is perhaps not

very meaningful to perform a CCSD(T) calculation with a double-zeta basis set (see Table 8.2). The very

least basis set quality required for meaningful results would perhaps be something like def2-TZVP(-f) or

preferably def2-TZVPP (cc-pVTZ, ano-pVTZ). For accurate results quadruple-zeta and even larger basis sets

are required and at this stage the method is restricted to rather small systems.

Let us look at the case of the potential energy surface of the N2 molecule. We study it with three different

basis sets: TZVP, TZVPP and QZVP. The input is the following:

! RHF TZVPP CCSD(T)

%paras R= 1.05,1.13,8

end

* xyz 0 1

N 0 0 0

N 0 0 {R}

*

For even higher accuracy we would need to introduce relativistic effects and - in particular - turn the core

correlation on. 2

Table 8.2: Computed spectroscopic constants of N2 with coupled-cluster methods.

Method Basis set Re (pm) ωe (cm−1) ωexe (cm−1)

CCSD(T) SVP 111.2 2397 14.4

TZVP 110.5 2354 14.9

TZVPP 110.2 2349 14.1

QZVP 110.0 2357 14.3

ano-pVDZ 111.3 2320 14.9

ano-pVTZ 110.5 2337 14.4

1The exponential of the T1 operator serves to essentially fully relax the orbitals of the reference wavefunction. This
is not included in the QCISD model that only features at most a blinear T1T2 term in the singles residuum.
Hence, if the Hartree-Fock wavefunction is a poor starting point but static correlation is not the main problem,
CCSD is much preferred over QCISD. This is not uncommon in transition metal complexes.

2Note that core correlation is not simply introduced by including the core orbitals in the correlation problem. In
addition, special correlation core-polarization functions are needed. They have been standardized for a few elements
in the cc-pCVxZ (X=D,T,Q,5,6) basis sets.
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Table 8.2: Computed spectroscopic constants of N2 with coupled-cluster methods.

ano-pVQZ 110.1 2351 14.5

CCSD QZVP 109.3 2437 13.5

Exp 109.7 2358.57 14.32

One can see from Table 8.2 that for high accuracy - in particular for the vibrational frequency - one needs

both - the connected triple-excitations and large basis sets (the TZVP result is fortuitously good). While this

is an isolated example, the conclusion holds more generally. If one pushes it, CCSD(T) has an accuracy (for

reasonably well-behaved systems) of approximately 0.2 pm in distances, <10 cm−1 for harmonic frequencies

and a few kcal/mol for atomization energies.3 It is also astonishing how well the Ahlrichs basis sets do in

these calculations — even slightly better than the much more elaborate ANO bases.

NOTE:

• The quality of a given calculation is not always high because it carries the label “Coupled-Cluster”.

Accurate results are only obtained in conjunction with large basis sets and for systems where the HF

approximation is a good 0th order starting point.

8.1.3.2 Coupled-Cluster Densities

If one is mainly accustomed to Hartree-Fock or DFT calculations, the calculation of the density matrix

is more or less a triviality and is automatically done together with the solution of the self-consistent field

equations. Unfortunately, this is not the case in coupled-cluster theory (and also not in MP2 theory). The

underlying reason is that in coupled-cluster theory, the expansion of the exponential eT̂ in the expectation

value

Dpq =
〈Ψ|Eqp |Ψ〉
〈Ψ|Ψ〉 =

〈eT̂Ψ0|Eqp |eT̂Ψ0〉
〈eT̂Ψ0|eT̂Ψ0〉

only terminates if all possible excitation levels are exhausted, i.e., if all electrons in the reference determinant

Ψ0 (typically the HF determinant) are excited from the space of occupied to the space of virtual orbitals

(here Dpq denotes the first order density matrix, Eqp are the spin traced second quantized orbital replacement

operators, and T̂ is the cluster operator). Hence, the straightforward application of these equations is far

too expensive. It is, however, possible to expand the exponentials and only keep the linear term. This

then defines a linearized density which coincides with the density that one would calculate from linearized

coupled-cluster theory (CEPA/0). The difference to the CEPA/0 density is that converged coupled-cluster

amplitudes are used for its evaluation. This density is straightforward to compute and the computational

effort for the evaluation is very low. Hence, this is a density that can be easily produced in a coupled-cluster

run. It is not, however, what coupled-cluster aficionados would accept as a density.

3However, in recent years it became more evident that even CCSD(T) achieves its high apparent accuracy through
error cancellations. The full CCSDT method (triples fully included) usually performs worse than CCSD(T). The
reason is that the (T) correction undershoots the effects of the triples to some extent and thereby compensates for
the neglect of connected quadruple excitations. For very high accuracy quantum chemistry, even these must be
considered. The prospects for treating chemically more relevant molecules with such methods is not particularly
bright for the foreseeable future. . .
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The subject of a density in coupled-cluster theory is approached from the viewpoint of response theory.

Imagine one adds a perturbation of the form

H(λ) = λ
∑

pq
hλpqE

q
p

to the Hamiltonian. Then it is always possible to cast the first derivative of the total energy in the form:

dE

dλ
=
∑
pq

D(response)
pq hλpq

This is a nice result. The quantity D
(response)
pq is the so-called response density. In the case of CC theory

where the energy is not obtained by variational optimization of an energy functional, the energy has to be

replaced by a Lagrangian reading as follows:

LCC = EHF +
∑
ai

zaiFai +
1

4

∑
ijab

〈ij||ab〉tijab +
∑
µ

zµ〈µ|ĤeT̂ |Ψ0〉

Here µ denotes any excited determinant (singly, doubly, triply, ....). There are two sets of Lagrange multipliers:

the quantities zai that guarantee that the perturbed wavefunction fulfills the Hartree-Fock conditions by

making the off-diagonal Fock matrix blocks zero and the quantities zµ that guarantee that the coupled-cluster

projection equations for the amplitudes are fulfilled. If both sets of conditions are fulfilled then the coupled-

cluster Lagrangian simply evaluates to the coupled-cluster energy. The coupled-cluster Lagrangian can be

made stationary with respect to the Lagrangian multipliers zai and zµ. The response density is then defined

through:
dLCC
dλ

=
∑
pq

D(response)
pq hλpq

The density Dpq appearing in this equation does not have the same properties as the density that would arise

from an expectation value. For example, the response density can have eigenvalues lower than 0 or larger

than 2. In practice, the response density is, however, the best “density” there is for coupled-cluster theory.

Unfortunately, the calculation of the coupled-cluster response density is quite involved because additional sets

of equations need to be solved in order to determine the zai and zµ. If only the equations for zµ are solved one

speaks of an “unrelaxed” coupled-cluster density. If both sets of equations are solved, one speaks of a “relaxed”

coupled-cluster density. For most intents and purposes, the orbital relaxation effects incorporated into the

relaxed density are small for a coupled-cluster density. This is so, because the coupled-cluster equations

contain the exponential of the single excitation operator eT̂1 = exp(
∑
ai t

i
aE

a
i ). This brings in most of the

effects of orbital relaxation. In fact, replacing the T̂1 operator by the operator κ̂ =
∑
ai κ

i
a(Eai − Eia) would

provide all of the orbital relaxation thus leading to “orbital optimized coupled-cluster theory” (OOCC).

Not surprisingly, the equations that determine the coefficients zµ (the Z vector equations) are as complicated

as the coupled-cluster amplitude equations themselves. Hence, the calculation of the unrelaxed coupled-cluster

density matrix is about twice as expensive as the calculation of the coupled-cluster energy (but not quite as

with proper program organization terms can be reused and the Z vector equations are linear equations that

converge somewhat better than the non-linear amplitude equations).

ORCA features the calculation of the unrelaxed coupled-cluster density on the basis of the Z vector equations

for closed- and open-shell systems. If a fully relaxed coupled-cluster density is desired then ORCA still

features the orbital-optimized coupled-cluster doubles method (OOCCD). This is not exactly equivalent to
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the fully relaxed CCSD density matrix because of the operator κ̂ instead of T̂1. However, results are very

close and orbital optimized coupled-cluster doubles is the method of choice if orbital relaxation effects are

presumed to be large.

In terms of ORCA keywords, the coupled-cluster density is obtained through the following keywords:

#

# coupled-cluster density

#

%mdci density none

linearized

unrelaxed

orbopt

end

which will work together with CCSD or QCISD (QCISD and CCSD are identical in the case of OOCCD

because of the absence of single excitations). Note, that an unrelaxed density for CCSD(T) is NOT available.

Instead of using the density option “orbopt” in the mdci-block, OOCCD can also be invoked by using the

keyword:

! OOCD

8.1.3.3 Static versus Dynamic Correlation

Having said that, let us look at an “abuse” of the single reference correlation methods by studying (very

superficially) a system which is not well described by a single HF determinant. This already occurs for the

twisting of the double bond of C2H4. At a 90◦ twist angle the system behaves like a diradical and should be

described by a multireference method (see section 8.1.7)

Figure 8.1: A rigid scan along the twisting coordinate of C2H4. The inset shows the T1 diagnostic
for the CCSD calculation.
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As can be seen in Figure 8.1, there is a steep rise in energy as one approaches a 90◦ twist angle. The HF

curve is actually discontinuous and has a cusp at 90◦. This is immediately fixed by a simple CASSCF(2,2)

calculation which gives a smooth potential energy surface. Dynamic correlation is treated on top of the

CASSCF(2,2) method with the MRACPF approach as follows:

#

# twisting the double bond of C2H4

#

! RHF SV(P) def2-TZVP/C SmallPrint NoPop MRACPF

%casscf nel 2

norb 2

mult 1

nroots 1

TrafoStep RI

end

%mrci tsel 1e-10

tpre 1e-10

end

%method scanguess pmodel

end

%paras R= 1.3385

Alpha=0,180,18

end

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 {R} 0 0

H 1 2 0 1.07 120 0

H 1 2 3 1.07 120 180

H 2 1 3 1.07 120 {Alpha}

H 2 1 3 1.07 120 {Alpha+180}

*

This is the reference calculation for this problem. One can see that the RHF curve is far from the MRACPF

reference but the CASSCF calculation is very close. Thus, dynamic correlation is not important for this

problem! It only appears to be important since the RHF determinant is such a poor choice. The MP2

correlation energy is insufficient in order to repair the RHF result. The CCSD method is better but still falls

short of quantitative accuracy. Finally, the CCSD(T) curve is very close the MRACPF. This even holds for

the total energy (inset of Figure 8.2) which does not deviate by more than 2–3 mEh from each other. Thus,

in this case one uses the powerful CCSD(T) method in an inappropriate way in order to describe a system

that has multireference character. Nevertheless, the success of CCSD(T) shows how stable this method is

even in tricky situations. The “alarm” bell for CCSD and CCSD(T) is the so-called “T1-diagnostic”4 that is

also shown in Figure 8.2. A rule of thumb says, that for a value of the diagnostic of larger than 0.02 the

results are not to be trusted. In this calculation we have not quite reached this critical point although the T1

diagnostic blows up around the 90◦ twist.

4It is defined as ‖T1‖ /N1/2 where T1 are the singles amplitudes and N the number of correlated electrons. The
original reference is [79]
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Figure 8.2: Comparison of the CCSD(T) and MRACPF total energies of the C2H4 along the twist-
ing coordinate. The inset shows the difference E(MRACPF)-E(CCSD(T)).

The computational cost (disregarding the triples) is such that the CCSD method is the most expensive

followed by QCISD (∼10% cheaper) and all other methods (about 50% to a factor of two cheaper than

CCSD). The most accurate method is generally CCSD(T). However, this is not so clear if the triples are

omitted and in this regime the coupled pair methods (in particular CPF/1 and NCPF/15) can compete with

CCSD.

Let us look at the same type of situation from a slightly different perspective and dissociate the single bond

of F2. As is well known, the RHF approximation fails completely for this molecule and predicts it to be

unbound. Again we use a much too small basis set for quantitative results but it is enough to illustrate the

principle.

We first generate a “reference” PES with the MRACPF method:

! RHF def2-SV def2-SVP/C MRACPF

%casscf nel 2

norb 2

nroots 1

mult 1

end

%mrci tsel 1e-10

tpre 1e-10

end

%paras R= 3.0,1.3,35

end

* xyz 0 1

F 0 0 0

F 0 0 {R}

5The “N” methods have been suggested by [80] and are exclusive to ORCA. Please note that our NCPF/1 is different
from the MCPF method in the literature [81]. The original CPF method — which we prefer — is from [82]; see
also [83] for a nice review about the coupled pair approaches and the underlying philosophy.
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*

Note that we scan from outward to inward. This helps the program to find the correct potential energy

surface since at large distances the σ and σ∗ orbitals are close in energy and fall within the desired 2× 2

window for the CASSCF calculation (see section 8.1.7). Comparing the MRACPF and CASSCF curves it

becomes evident that the dynamic correlation brought in by the MRACPF procedure is very important and

changes the asymptote (loosely speaking the binding energy) by almost a factor of two. Around the minimum

(roughly up to 2.0 Å) the CCSD(T) and MRACPF curves agree beautifully and are almost indistinguishable.

Beyond this distance the CCSD(T) calculation begins to diverge and shows an unphysical behavior while

the multireference method is able to describe the entire PES up to the dissociation limit. The CCSD curve

is qualitatively ok but has pronounced quantitative shortcomings: it predicts a minimum that is much too

short and a dissociation energy that is much too high. Thus, already for this rather “simple” molecule, the

effect of the connected triple excitations is very important. Given this (rather unpleasant) situation, the

behavior of the much simpler CEPA method is rather satisfying since it predicts a minimum and dissociation

energy that is much closer to the reference MRACPF result than CCSD or CASSCF. It appears that in this

particular case CEPA/1 and CEPA/2 bracket the correct result.

Figure 8.3: Potential energy surface of the F2 molecule calculated with some single-reference meth-
ods and compared to the MRACPF reference.

As for MP2 calculations, the RI approximation can be introduced. It does not lead to spectacular performance

gains but easens the burden for the integral transformation in larger calculations. The error introduced by

the RI-approximation is usually negligible. For larger systems the AO or AOX methods are usually used.

8.1.3.4 Basis Sets for Correlated Calculations. The case of ANOs.

In HF and DFT calculations the generation and digestion of the two-electron repulsion integrals is usually

the most expensive step of the entire calculation. Therefore, the most efficient approach is to use loosely
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contracted basis sets with as few primitives as possible — the Ahlrichs basis sets (SVP, TZVP, TZVPP, QZVP,

def2-TZVPP, def2-QZVPP) are probably the best in this respect. Alternatively, the polarization-consistent

basis sets pc-1 through pc-4 could be used, but they are only available for H-Ar. For large molecules such

basis sets also lead to efficient prescreening and consequently efficient calculations.

This situation is different in highly correlated calculations such as CCSD and CCSD(T) where the effort

scales steeply with the number of basis functions. In addition, the calculations are usually only feasible for a

limited number of basis functions and are often run in the integral conventional mode since high angular

momentum basis functions are present and these are expensive to recomputed all the time. Hence, a different

strategy concerning the basis set design seems logical. It would be good to use as few basis functions as

possible but make them as accurate as possible. This is compatible with the philosophy of atomic natural

orbital (ANO) basis sets. Such basis sets are generated from correlated atomic calculations and replicate

the primitives of a given angular momentum for each basis function. Therefore, these basis sets are deeply

contracted and expensive but the natural atomic orbitals form a beautiful basis for molecular calculations.

In ORCA an accurate and systematic set of ANOs (ano-pVnZ, n = D, T, Q, 5 is incorporated). A related

strategy underlies the design of the correlation-consistent basis sets (cc-pVnZ, n = D, T, Q, 5, 6,. . . ) that are

also generally contracted except for the outermost primitives of the “principal” orbitals and the polarization

functions that are left uncontracted.

Let us study this subject in some detail using the H2CO molecule at a standard geometry and compute the

SCF and correlation energies with various basis sets. In judging the results one should view the total energy

in conjunction with the number of basis functions and the total time elapsed. Looking at the data in the

Table below, it is obvious that the by far lowest SCF energies for a given cardinal number (2 for double-zeta, 3

for triple zeta and 4 for quadruple-zeta) are provided by the ANO basis sets. Using specially optimized ANO

integrals that is available since ORCA 2.7.0, the calculations are not even much more expensive than those

with standard basis sets. Obviously, the correlation energies delievered by the ANO bases are also the best of

all 12 basis sets tested. Hence, ANO basis sets are a very good choice for highly correlated calculations. The

advantages are particularly large for the early members (DZ/TZ).

Table 8.3: Comparison of various basis sets for highly correlated calculations

Basis set
No. Basis

Fcns
E(SCF) EC(CCSD(T)) Etot(CCSD(T)) Total Time

cc-pVDZ 38 -113.876184 -0.34117952 -114.217364 2

cc-pVTZ 88 -113.911871 -0.42135475 -114.333226 40

cc-pVQZ 170 -113.920926 -0.44760332 -114.368529 695

def2-SVP 38 -113.778427 -0.34056109 -114.118988 2

def2-

TZVPP

90 -113.917271 -0.41990287 -114.337174 46

def2-

QZVPP

174 -113.922738 -0.44643753 -114.369175 730

pc-1 38 -113.840092 -0.33918253 -114.179274 2

pc-2 88 -113.914256 -0.41321906 -114.327475 43

pc-3 196 -113.922543 -0.44911659 -114.371660 1176

ano-pVDZ 38 -113.910571 -0.35822337 -114.268795 12

ano-pVTZ 88 -113.920389 -0.42772994 -114.348119 113

ano-pVQZ 170 -113.922788 -0.44995355 -114.372742 960
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Figure 8.4: Error in mEh for various basis sets for highly correlated calculations relative to the
ano-pVQZ basis set.

Let us look at one more example in Table 8.4: the optimized structure of the N2 molecule as a function of

basis set using the MP2 method (these calculations are a bit older from the time when the ano-pVnZ basis

sets did not yet exist. Today, the ano-pVnZ would be prefered).

The highest quality basis set here is QZVP and it also gives the lowest total energy. However, this basis set

contains up to g-functions and is very expensive. The Bonn-ANO-TZ3P is of the same size as TZVPP and

gives the same result as QZVP for the geometry and an energy that is intermediate between TZVPP and

QZVP. To not use a set of f-functions has still a noticeable effect on the outcome of the calculations and leads

to an overestimation of the bond distance of 0.2 pm — a small change but for benchmark calculations of this

kind still significant. Among these spd-only basis sets the Bonn-ANO-TZ2P basis set gives a better result

than TZV(2d,2p) and a lower energy as well. In fact, similarly as for the Bonn-ANO-TZ3P, the distances is as

good as that from TZVPP and the energy is intermediate between TZV(2d,2p) and TZVPP(≡TZV(2df,2pd)).

The error made by the TZVP basis set that lacks the second set of d-functions is surprisingly small even

though the deletion of the second d-set “costs” more than 20 mEh in the total energy.

A significant error on the order of 1 – 2 pm in the calculated distances is produced by smaller DZP type basis

sets which underlines once more that such basis sets are really too small for correlated molecular calculations

— the ANO-DZP basis sets are too strongly biased towards the atom and the “usual” molecule targeted

DZP basis sets like SVP have the d-set designed to cover polarization but not correlation (the correlating

d-functions are steeper than the polarizing ones). Among the three tested basis sets the Bonn-ANO-DZP

fares best in this test and cc-pVDZ fares worst. The relatively good energy of the Bonn-ANO-DZP basis

certainly comes from the good description of the atoms. The performance of the very economical SVP basis

set should be considered as very good.

Essentially the same picture is obtained by looking at the (uncorrected for ZPE) binding energy calculated

at the MP2 level – the largest basis set, QZVP gives the largest binding energy while the small basis set

underestimate it. The error of the DZP type basis sets is fairly large (≈ 2 eV) and therefore caution is

advisable when using such bases. In all cases it was found that the Bonn-ANO bases do slightly better than

the segmented contracted basis sets of the same size. This still holds for the calculated ionization potential of

the nitrogen atom. In principle, this is a worst case scenario for the ANO basis sets since they are supposedly

strongly biased towards the neutral atom. Yet, they fare no worse than the segmented contracted basis sets.
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Here, an error cancellation is likely: The ANO bases recover more correlation (larger for the neutral) but are

biased towards the neutral (underestimating the SCF energy for the cation). This bias perhaps shows up

most clearly for the ANO-DZP basis set which gives a calculated IP that is accidentally almost right. The

largest ANO-TZ3P even slightly overshoots relative to the QZVP basis set, which is expected.

Table 8.4: Comparison of various basis sets for correlated calculations.

Basis set Req (pm) E(2N-N2) (eV) IP(N/N+) (eV) E(MP2) (Eh)

SVP 112.2 -9.67 14.45 -109.1677

cc-pVDZ 112.9 9.35 14.35 -109.2672

Bonn-ANO-DZP 112.1 9.45 14.58 -109.3098

TZVP 111.5 10.41 14.37 -109.3423

TZV(2d,2p) 111.4 10.61 14.49 -109.3683

Bonn-ANO-TZ2P 111.1 10.80 14.56 -109.3791

TZVPP 111.1 10.94 14.56 -109.3973

Bonn-ANO-TZ3P 110.9 11.18 14.65 -109.4108

QZVP 110.9 11.52 14.60 -109.4389

8.1.3.5 Automatic exptrapolation to the basis set limit

As eluded to in the previous section, one of the biggest problems with correlation calculations is the slow

convergence to the basis set limit. One possibility to overcome this problem is the use of explicitly correlated

methods. The other possibility is to use basis set extrapolation techniques. Since this involves some fairly

repetitive work, some procedures were hardwired into the ORCA program. So far, only energies are supported.

For extrapolation, a systematic series of basis sets is required. This is, for example, provided by the cc-pVnZ,

aug-cc-pVnZ or the corresponding ANO basis sets. Here n is the “cardinal number” that is 2 for the

double-zeta basis sets, 3 for triple-zeta, etc.

The convergence of the HF energy to the basis set limit is assumed to be given by:

E
(X)
SCF = E

(∞)
SCF +A exp

(
−α
√
X
)

(8.1)

Here, E
(X)
SCF is the SCF energy calculated with the basis set with cardinal number X, E

(∞)
SCF is the basis set

limit SCF energy and A and α are constants. The approach taken in ORCA is to do a two-point extrapolation.

This means that either A or α have to be known. Here, we take A as to be determined and α as a basis set

specific constant.

The correlation energy is supposed to converge as:

E(∞)
corr =

XβE
(X)
corr − Y βE(Y )

corr

Xβ − Y β (8.2)

The theoretical value for β is 3.0. However, it was found by Truhlar and confirmed by us, that for 2/3

extrapolations β = 2.4 performs considerably better.

For a number of basis sets, we have determined the optimum values for α and β [84]:
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α23 β23 α34 β34

cc-pVnZ 4.42 2.46 5.46 3.05

pc-n 7.02 2.01 9.78 4.09

def2 10.39 2.40 7.88 2.97

ano-pVnZ 5.41 2.43 4.48 2.97

saug-ano-pVnZ 5.48 2.21 4.18 2.83

aug-ano-pVnZ 5.12 2.41

Since the β values for 2/3 are close to 2.4, we always take this value. Likewise, all 3/4 and higher extrapolations

are done with β = 3. However, the optimized values for α are taken throughout.

Using the keyword ! Extrapolate(X/Y,basis), where X and Y are the corresponding successive cardinal

numbers and basis is the type of basis set requested (= cc, aug-cc, cc-core, ano, saug-ano, aug-ano,

def2) ORCA will calculate the SCF and optionally the MP2 or MDCI energies with two basis sets and

separately extrapolate.

The keyword works also in the following way: ! Extrapolate(n,basis) where n is the is the number of

energies to be used. In this way the program will start from a double-zeta basis and perform calculations

with n cardinal numbes and then extrapolates the different pairs of basis sets. Thus for example the keyword

! Extrapolate(3,CC) will perform calculations with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets and then

estimate the extrapolation results of both cc-pVDZ/cc-pVTZ and cc-pVTZ/cc-pVQZ combinations.

Let us take the example of the H2O molecule at the B3LYP/TZVP optimized geometry. The reference values

have been determined from a HF calculation with the decontracted aug-cc-pV6Z basis set and the correlation

energy was obtained from the cc-pV5Z/cc-pV6Z extrapolation. This gives:

E(SCF,CBS) = -76.066958 Eh

EC(CCSD(T),CBS) = -0.30866 Eh

Etot(CCSD(T),CBS) = -76.37561 Eh

Now we can see what extrapolation can bring in:

!CCSD(T) Extrapolate(2/3) TightSCF Conv Bohrs

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 1.81975 0 0

H 1 2 0 1.81975 105.237 0

*

NOTE:

• The RI-JK and RIJCOSX approximations work well together with this option and RI-MP2 is also

possible. Auxiliary basis sets are automatically chosen and can not be changed.
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• All other basis set choices, externally defined bases etc. will be ignored — the automatic procedure

only works with the default basis sets!

• The basis sets with the “core” postfix contain core correlation functions. By default it is assumed

that this means that the core electrons are also to be correlated and the frozen core approximation is

turned off. However, this can be overriden in the method block by choosing, e.g. %method frozencore

fc electrons end!

• So far, the extrapolation is only implemented for single points and not for gradients. Hence, geometry

optimizations cannot be done in this way.

• The extrapolation method should only be used with verytight SCF. For open shell methods, additional

caution is advised.

This gives:

Alpha(2/3) : 4.420 (SCF Extrapolation)

Beta(2/3) : 2.460 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944

SCF energy with basis cc-pVTZ: -76.056728252

Extrapolated CBS SCF energy (2/3) : -76.066581429 (-0.009853177)

MDCI energy with basis cc-pVDZ: -0.214591061

MDCI energy with basis cc-pVTZ: -0.275383015

Extrapolated CBS correlation energy (2/3) : -0.310905962 (-0.035522947)

Estimated CBS total energy (2/3) : -76.377487391

Thus, the error in the total energy is indeed strongly reduced. Let us look at the more rigorous 3/4

extrapolation:

Alpha(3/4) : 5.460 (SCF Extrapolation)

Beta(3/4) : 3.050 (correlation extrapolation)

SCF energy with basis cc-pVTZ: -76.056728252

SCF energy with basis cc-pVQZ: -76.064381269

Extrapolated CBS SCF energy (3/4) : -76.066687152 (-0.002305884)

MDCI energy with basis cc-pVTZ: -0.275383015

MDCI energy with basis cc-pVQZ: -0.295324345

Extrapolated CBS correlation energy (3/4) : -0.309520369 (-0.014196024)

Estimated CBS total energy (3/4) : -76.376207521

In our experience, the ANO basis sets extrapolate similarly to the cc-basis sets. Hence, repeating the entire

calculation with Extrapolate(3,ANO) gives:

Estimated CBS total energy (2/3) : -76.377652793

Estimated CBS total energy (3/4) : -76.376983432
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Which is within 1 mEh of the estimated CCSD(T) basis set limit energy in the case of the 3/4 extrapolation

and within 2 mEh for the 2/3 extrapolation.

For larger molecules, the bottleneck of the calculation will be the CCSD(T) calculation with the larger basis

set. In order to avoid this expensive (or prohibitive) calculation, it is possible to estimate the CCSD(T)

energy at the basis set limit as:

E(CCSD(T);Y )
corr ≈ E(CCSD(T);X)

corr + E(MP2;∞)
corr − E(MP2;X)

corr (8.3)

This assumes that the basis set dependence of MP2 and CCSD(T) is similar. One can then extrapolate as

before. Alternatively, the standard way — as extensively exercised by Hobza and co-workers — is to simply

use:

E
(CCSD(T);CBS)
total ≈ E(Y )

SCF + E(CCSD(T);X)
corr + E(MP2;∞)

corr − E(MP2;X)
corr (8.4)

The appropriate keyword is:

!RHF ExtrapolateEP2(2/3,ANO,MP2) TightSCF Conv Bohrs

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 1.81975 0 0

H 1 2 0 1.81975 105.237 0

*

This creates the following output:

Alpha : 5.410 (SCF Extrapolation)

Beta : 2.430 (correlation extrapolation)

SCF energy with basis ano-pVDZ: -76.059178452

SCF energy with basis ano-pVTZ: -76.064774379

Extrapolated CBS SCF energy : -76.065995735 (-0.001221356)

MP2 energy with basis ano-pVDZ: -0.219202872

MP2 energy with basis ano-pVTZ: -0.267058629

Extrapolated CBS correlation energy : -0.295568596 (-0.028509967)

CCSD(T) correlation energy with basis ano-pVDZ: -0.229478341

CCSD(T) - MP2 energy with basis ano-pVDZ: -0.010275470

Estimated CBS total energy : -76.371839801

The estimated correlation energy is not really bad — within 3 mEh from the basis set limit.

Using the ExtrapolateEP2(n/m,bas,[method, method-details]) keyword one can use a generalization

of the above method where instead of MP2 any available correlation method can be used as described in
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Ref. [85]. method is optional and can be either MP2 or DLPNO-CCSD(T), the latter being the default. In

case the method is DLPNO-CCSD(T) in the method-details option one can ask for LoosePNO, NormalPNO

or TightPNO.

E(CCSD(T);CBS)
corr ≈ E(CCSD(T);X)

corr + E(M;CBS)
corr (X,X + 1)− E(M;X)

corr (8.5)

Here M represents any correlation method one would like to use. For the previous water molecule the input

of a calculation that uses DLPNO-CCSD(T (that is the default now) instead of MP2 would look like:

! RHF ExtrapolateEP2(2/3,cc,DLPNO-CCSD(T)) TightSCF Conv Bohrs

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 1.81975 0 0

H 1 2 0 1.81975 105.237 0

*

and it would produce the following output:

Alpha : 4.420 (SCF Extrapolation)

Beta : 2.460 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944

SCF energy with basis cc-pVTZ: -76.056728252

Extrapolated CBS SCF energy : -76.066581429 (-0.009853177)

MDCI energy with basis cc-pVDZ: -0.214582636

MDCI energy with basis cc-pVTZ: -0.275299616

Extrapolated CBS correlation energy : -0.310778753 (-0.035479137)

CCSD(T) correlation energy with basis cc-pVDZ: -0.214699894

CCSD(T) - MDCI energy with basis cc-pVDZ: -0.000117258

Estimated CBS total energy : -76.377477440

which is less than 2 mEh from the basis set limit. Finally it was shown [85] that instead of extrapolating

the cheap method, M, using cardinal numbers X and X + 1 it is better to use cardinal numbers X + 1 and

X + 2.

E(CCSD(T);CBS)
corr ≈ E(CCSD(T);X)

corr + E(M;CBS)
corr (X + 1, X + 2)− E(M;X)

corr (8.6)

This can be done using the ExtrapolateEP3(bas,[method,method-details]) keyword:

! RHF ExtrapolateEP3(CC) TightSCF Conv Bohrs
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and the corresponding output would be:

Alpha : 5.460 (SCF Extrapolation)

Beta : 3.050 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944

SCF energy with basis cc-pVTZ: -76.056728252

SCF energy with basis cc-pVQZ: -76.064381269

Extrapolated CBS SCF energy : -76.066687152 (-0.002305884)

MDCI energy with basis cc-pVDZ: -0.214582636

MDCI energy with basis cc-pVTZ: -0.275299615

MDCI energy with basis cc-pVQZ: -0.295229881

Extrapolated CBS correlation energy : -0.309418028 (-0.014188147)

CCSD(T) correlation energy with basis cc-pVDZ: -0.214699894

CCSD(T) - MDCI energy with basis cc-pVDZ: -0.000117257

Estimated CBS total energy : -76.376222438

For the ExtrapolateEP2, and ExtrapolateEP3 keywords the default cheap method is the DLPNO-CCSD(T)

with the NormalPNO thresholds. There also available options with MP2, and DLPNO-CCSD(T) with

LoosePNO and TightPNO settings.

8.1.3.6 Explicitly Correlated MP2 and CCSD(T) Calculations

A physically perhaps somewhat more satisfying alternative to basis set extrapolation is the theory of explicit

correlation. In this method terms are added to the wavefunction Ansatz that contain the interelectronic

coordinates explicitly (hence the name “explicit correlation”). Initially these terms were linear in the

interelectronic distances (“R12-methods”). However, it has later been found that better results can be

obtained by using other functions, such as an exponential, of the the interelectronic distance (“F12-methods”).

These methods are known to yield near basis set limit results for correlation energies in conjunction with

much smaller orbital basis sets.

In applying these methods several points are important:

• Special orbital basis sets are at least advantageous. The development of such basis sets is still in its

infancy. For a restricted range of elements the basis sets cc-pVnZ-F12 are available (where n = D, T,

Q) and are recommended. Note, that other than their names suggest, these are a fair bit larger than

regular double, triple or quadruple-zeta basis sets

• In addition to an orbital basis set, a near-complete auxiliary basis set must be specified. This is the

so-called “CABS” basis. For the three basis sets mentioned above these are called cc-pVnZ-F12-CABS.

If you have elements that are not covered you are on your own to supply a CABS basis set. CABS

basis sets can be read into ORCA in a way analogous to RI auxiliary basis sets (replace “AUX” by

“CABS” in the input
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• if the RI approximation is used in conjunction with F12, a third basis set is required - this can be the

regular auxiliary “/C” basis, but we recommend to step one level up in the auxiliary basis set (e.g. use

a cc-pVTZ/C fitting basis in conjunction with cc-pVDZ-F12)

• It is perfectly feasible to use RIJCOSX or RI-JK at the same time. In this case, you should provide a

fourth basis set for the Coulomb fitting

• RHF and UHF are available, ROHF not. (Although, one can do a ROHF like calculation by using

QROs)

• Gradients are not available

Doing explicitly correlated MP2 calculations is straightforward. For example look at the following calculation

on the water molecule at a given geometry:

#

! F12-MP2 cc-pVDZ-F12 cc-pVDZ-F12-CABS VeryTightSCF PModel

* xyz 0 1

O 0.000000000000 0.000000000000 0.369372944000

H 0.783975899000 0.000000000000 -0.184686472000

H -0.783975899000 0.000000000000 -0.184686472000

*

and similary in conjunction with the RI approximation:

#

! F12-RI-MP2 cc-pVDZ-F12 cc-pVDZ-F12-CABS cc-pVTZ/C VeryTightSCF PModel

* xyz 0 1

O 0.000000000000 0.000000000000 0.369372944000

H 0.783975899000 0.000000000000 -0.184686472000

H -0.783975899000 0.000000000000 -0.184686472000

*

The output is relatively easy to interprete:

-----------------

RI-MP2-F12 ENERGY

-----------------

EMP2 correlation Energy : -0.286878725335

F12 correction : -0.013254851100

-----------------

MP2 basis set limit estimate : -0.300133576436
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Hartree-Fock energy : -76.066649848665

(2)_CABS correction to EHF : -0.000124410174

-----------------

HF basis set limit estimate : -76.066774258839

MP2 total energy before F12 : -76.353528574000

Total F12 correction : -0.013379261275

-----------------

Final basis set limit MP2 estimate : -76.366907835275

It consists of several parts. The first is the regular (RI-)MP2 correlation energy in the orbitals basis followed

by the additive MP2 correction that are combined to provide a MP2 correlation energy basis set limit estimate.

The second part consists of an estimate in the error in the underlying SCF energy. This is the “(2) CABS”

correction. The combination of the SCF energy with this correction yields an estimate of the SCF basis set

limit. The correction will typically undershoot somewhat, but the error is very smooth. Finally, the corrected

correlation energy and the corrected SCF energy are added to yield the F12 total energy estimate at the

basis set limit.

Let’s look at some results and compare to extrapolation:

#

# Correlation energies of the water molecule: extrapolation versus F12

#

# cc-pVDZ MP2: -0.201 380 894

# T : -0.261 263 141

# Q : -0.282 661 311

# T/Q : -0.298 276 192

# Q/5 : -0.300 598 282

# F12-DZ : -0.295 775 804

# RI-F12-DZ : -0.295 933 560 (cc-pVDZ/C)

# -0.295 774 489 (cc-pVTZ/C)

# F12-TZ : -0.299 164 006

# RI-F12-TZ : -0.299 163 478 (cc-pVQZ/C)

# F12-QZ : -0.300 130 086

It is obvious that extrapolated and F12 correlation energies converge to the same number (in this case around

300 mEh). The best extrapolated result is still below the F12 result (this would primarily be meaningful in

a variational calculation). However, first of all this was an expensive extrapolation and second, the small

residual F12 error is very smooth and cancels in energy differences. In any case, already the F12-double-zeta

(where “double zeta” is to be interpreted rather loosely) brings one into within 5 mEh of the basis set limit

correlation energy and the F12-triple-zeta calculation to within 1 mEh, which is impressive.

The additional effort for the F12 calculation is rather high, since five types of additional two-electron integrals

need to be calculated. Both, integrals in CABS space and in the original orbital (OBS) space must be

calculated and mixed Fock matrices are also required. Hence, one may wonder, whether a double-zeta F12

calculation actually saves any time over, say, a quadruple-zeta regular calculation. The actual answer to this

question is: “NO”. Given all possibilities of obtained approximate MP2 and SCF energies, we have investigated

the question of how to obtain MP2 basis set limit energies most efficiently in some detail. The results show

that in terms of timings, basis set extrapolation in combination with RI-JK is the method of choice in
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combination for MP2. [86] However, energy differences are more reliable with F12-MP2. In combination with

RI-JK or RIJCOSX F12-MP2 becomes also competitive in terms of computational efficiency.

This situation is different in the case of coupled-cluster methods, where F12 methods outperform extrapolation

and are the method of choice.

For coupled-cluster theory, everything works in a very similar fashion:

# the keywords

! F12-CCSD(T)

# and

! CCSD(T)-F12

# are equivalent

A special feature of ORCA that can use large amounts of time, is to use the RI approximation only for the

F12-part. The keyword here is:

! F12/RI-CCSD(T)

# or

! CCSD(T)-F12/RI

Everything else works as described for F12-MP2.

8.1.3.7 Frozen Core Options

In Coupled Cluster calculations the Frozen Core (FC) approximation is applied by default. This implies that

the core electrons are not included in the correlation treatment, since the inclusion of dynamic correlation in

the core electrons usually effects relative energies insignificantly.

The frozen core option can be switched on or off with ! FrozenCore or ! NoFrozenCore in the simple

input. More information and further options are given in section 9.10 and in section 9.12.4.1.

8.1.3.8 Local Coupled Pair and Coupled-Cluster Calculations

ORCA features a special set of local correlation methods. The prevalent local coupled-cluster approaches

date back to ideas of Pulay and have been extensively developed by Werner, Schütz and co-workers. They

use the concept of correlation domains in order to achieve linear scaling with respect to CPU, disk and main

memory. While the central concept of electron pairs is very similar in both approaches, the local correlation

methods in ORCA follow a completely different and original philosophy.

In ORCA rather than trying to use sparsity, we exploit data compression. To this end two concepts are

used: (a) localization of internal orbitals, which reduces the number of electron pairs to be correlated since

the pair correlation energies are known to fall off sharply with distance; (b) use of a truncated pair specific

natural orbital basis to span the significant part of the virtual space for each electron pair. This guarantees

the fastest convergence of the pair wavefunction and a nearly optimal convergence of the pair correlation
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energy while not introducing any real space cut-offs or geometrically defined domains. These PNOs have

been used previously by the pioneers of correlation theory. However, as discussed in the original papers, the

way in which they have been implemented into ORCA is very different. For a full description of technical

details and numerical tests see:

• F. Neese, A. Hansen, D. G. Liakos: Efficient and accurate local approximations to the coupled-cluster

singles and doubles method using a truncated pair natural orbital basis. [84]

• F. Neese, A. Hansen, F. Wennmohs, S. Grimme: Accurate Theoretical Chemistry with Coupled

Electron Pair Models. [87]

• F. Neese, F. Wennmohs, A. Hansen:Efficient and accurate local approximations to coupled electron

pair approaches. An attempt to revive the pair-natural orbital method. [88]

• D. G. Liakos, A. Hansen, F. Neese: Weak molecular interactions studied with parallel implementations

of the local pair natural orbital coupled pair and coupled-cluster methods. [89]

• A. Hansen, D. G. Liakos, F. Neese: Efficient and accurate local single reference correlation methods for

high-spin open-shell molecules using pair natural orbitals. [90]

• C. Riplinger, F. Neese: An efficient and near linear scaling pair natural orbital based local coupled-cluster

method. [91]

• C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese: Natural triple excitations in local coupled-cluster

calculations with pair natural orbitals. [92]

• C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese: Sparse maps - A systematic infrastructure

for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital

coupled cluster theory. [93]

• D. Datta, S. Kossmann, F. Neese: Analytic energy derivatives for the calculation of the first-order

molecular properties using the domain-based local pair-natural orbital coupled-cluster theory [94]

• M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese: A new linear scaling, efficient and accurate,

open-shell domain based pair natural orbital coupled cluster singles and doubles theory. [95]

In 2013, the so-called DLPNO-CCSD method (“domain based local pair natural orbital”) was introduced. [91]

This method is near linear scaling with system size and allows for giant calculations to be performed. In 2016,

significant changes to the algorithm were implemented leading to linear scaling with system size concerning

computing time, hard disk and memory consumption. [93] The principle idea behind DLPNO is the following:

it became clear early on that the PNO space for a given electron pair (ij) is local and located in the same

region of space as the electron pair (ij). In LPNO-CCSD this locality was partially used in the local fitting

to the PNOs (controlled by the parameter TCutMKN). However, the PNOs were expanded in canonical

virtual orbitals which led to some higher order scaling steps. In DLPNO, the PNOs are expanded in the set

of projected atomic orbitals:

|µ̃〉 =
(

1−
∑

i
|i〉 〈i|

)
|µ〉 (8.7)

where |µ〉 is an atomic orbital and |i〉 refers to an occupied molecular orbital. Such projected orbitals are an

overcomplete representation of the virtual space. The projected orbital |µ̃〉 is located in the same region of



82 8 Running Typical Calculations

space as |µ〉 and hence can be assigned to atomic centers. This has first been invented and used by Pulay and

Saebo [96] in their pioneering work on local correlation methods and widely exploited by Werner, Schütz and

co-workers in their local correlation approaches. [97, 98] DLPNO-CCSD goes one step further in expanding

the PNOs
∣∣ãij〉 of a given pair (ij) as:

∣∣ãij〉 =
∑
µ̃∈{ij}

dijµ̃ã |µ̃〉 (8.8)

where µ̃ ∈ {ij} is the domain of atoms (range of µ̃) that is associated with the electron pair ij. The advantage

of the PNO method is, that these domains can be chosen to be large (>15-20 atoms) without compromising

the efficiency of the method.

The comparison between LPNO-CCSD and DLPNO-CCSD is shown in Figure 8.5. It is obvious that

DLPNO-CCSD is (almost) never slower than LPNO-CCSD. However, its true advantages do become most

apparent for molecules with more than approximately 60 atoms. The triples correction, that was added with

our second paper from 2013, shows a perfect linear scaling, as is shown in part (a) of Figure 8.5. For large

systems it adds about 10%–20% to the DLPNO-CCSD computation time, hence its addition is possible for

all systems for which the latter can still be obtained. Since 2016, the entire DLPNO-CCSD(T) algorithm is

linear scaling. The improvements of the linear-scaling algorithm, compared to DLPNO2013-CCSD(T), start

to become significant at system sizes of about 300 atoms, as becomes evident in part (b) of Figure 8.5.

(a) DLPNO2013 Scaling (b) DLPNO Scaling

Figure 8.5: a) Scaling behaviour of the canonical CCSD, LPNO-CCSD and DLPNO2013-CCSD(T)
methods. It is obvious that only DLPNO2013-CCSD and DLPNO2013-CCSD(T) can
be applied to large molecules. The advantages of DLPNO2013-CCSD over LPNO-
CCSD do not show before the system has reached a size of about 60 atoms. b) Scaling
behaviour of DLPNO2013-CCSD(T), DLPNO-CCSD(T) and RHF using RIJCOSX. It
is obvious that only DLPNO-CCSD(T) can be applied to truly large molecules, is faster
than the DLPNO2013 version, and even has a crossover with RHF at about 400 atoms.

Using the DLPNO-CCSD(T) approach it was possible for the first time (in 2013) to perform a CCSD(T)
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level calculation on an entire protein (Crambin with more than 650 atoms, Figure 8.6). While the calculation

using a double-zeta basis took about 4 weeks on one CPU with DLPNO2013-CCSD(T), it takes only about 4

days to complete with DLPNO-CCSD(T). With DLPNO-CCSD(T) even the triple-zeta basis calculation can

be completed within reasonable time, taking 2 weeks on 4 CPUs.

Figure 8.6: Structure of the Crambin protein - the first protein to be treated with a CCSD(T) level
ab initio method

The use of the LPNO (and DLPNO) methods is simple and requires little special attention from the user:

# Local Pair Natural Orbital Test

! cc-pVTZ cc-pVTZ/C LPNO-CCSD TightSCF

# or

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD TightSCF

%maxcore 2000

# these are the default values - they need not to be touched!

%mdci TCutPNO 3.33e-7 # cutoff for PNO occupation numbers. This

is the main truncation parameter

TCutPairs 1e-4 # cut-off for estimated pair correlation energies.

This exploits the locality in the internal space

TCutMKN 1e-3 # this is a technical parameter here that controls the domain

size for the local fit to the PNOs. It is conservative.

end

* xyz 0 1

... (coordinates)

*

Using the well tested default settings, the LPNO-CEPA (LPNO-CPF, LPNO-VCEPA), LPNO-QCISD and
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LPNO-CCSD (LPNO-pCCSD) methods6 can be run in strict analogy to canonical calculations and should

approximate the canonical result very closely. In fact, one should not view the LPNO methods as new model

chemistry - they are designed to reproduce the canonical results, including BSSE. This is different from the

domain based local correlation methods that do constitute a new model chemistry with properties that are

different from the original methods.

In some situations, it may be appropriate to adapt the accuracy of the calculation. Sensible defaults have

been determined from extensive benchmark calculations and are accessible via LoosePNO, NormalPNO and

TightPNO keywords in the simple input line. [99]

These keywords represent the recommended way to control the accuracy of DLPNO calculations as follows.

Manual changing of thresholds beyond these specifying these keywords is usually discouraged.

# Tight settings for increased accuracy, e.g. when investigating

# weak interactions or conformational equilibria

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) TightPNO TightSCF

# OR: Default settings (no need to give NormalPNO explicitly)

# Useful for general thermochemistry

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) NormalPNO TightSCF

# OR: Loose settings for rapid estimates

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) LoosePNO TightSCF

%maxcore 2000

* xyz 0 1

... (coordinates)

*

Since ORCA 4.0, the linear-scaling DLPNO implementation described in reference [93] is the default DLPNO

algorithm. However, for comparison, the first DLPNO implementation from references [91] and [92] can still

be called by using the DLPNO2013 prefix instead of the DLPNO- prefix.

# DLPNO-CCSD(T) calculation using the 2013 implementation

! cc-pVTZ cc-pVTZ/C DLPNO2013-CCSD(T)

# DLPNO-CCSD(T) calculation using the linear-scaling implementation

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T)

6As a technical detail: The closed-shell LPNO QCISD and CCSD come in two technical variants - LPNO1-
CEPA/QCISD/CCSD and LPNO2-CEPA/CCSD/QCISD. The “2” variants consume less disk space but are also
slightly less accurate than the “1” variants. This is discussed in the original paper in the case of QCISD and CCSD.
For the sake of accuracy, the “1” variants are the default. In those cases, where “1” can still be performed, the
computational efficiency of both approaches is not grossly different. For LPNO CCSD there is also a third variant
(LPNO3-CCSD, also in the open-shell version) which avoids neglecting the dressing of the external exchange
operator. However, the results do not differ significantly from variant 1 but the calculations will become more
expensive. Thus it is not recommend to use variant 3. Variant 2 is not available in the open-shell version.
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* xyz 0 1

... (coordinates)

*

Until ORCA 4.0, the ”semi-canonical” approximation is used in the perturbative triples correction for

DLPNO-CCSD. It was found that the ”semi-canonical” approximation is a very good approximation for most

systems. However, the ”semi-canonical” approximation can introduce large errors in rare cases, whereas the

DLPNO-CCSD is still very accurate. To improve the accuracy of perturbative triples correction, since 4.1,

an improved perturbative triples correction for DLPNO-CCSD is available, DLPNO-CCSD(T1) [100]. In

DLPNO-CCSD(T1), the triples amplitudes are computed iteratively, which can reproduce more accurate

canonical (T) energies.

It is necessary to clearify the nomenclature used in ORCA input file. The keyword to invoke ”semi-canonical”

perturbative triples correction approximation is DLPNO-CCSD(T). While, the keyword of improved iterative

approximation is DLPNO-CCSD(T1). However, in our recent paper [100], the ”semi-canonical” perturbative

triples correction approximation is name DLPNO-CCSD(T0), whereas the improved iterative one is called

DLPNO-CCSD(T). Note, the names used in our paper are different from that in ORCA input file. An

example input file to perform improved iterative perturbative triples correction for DLPNO-CCSD is given

below,

# DLPNO-CCSD(T1) calculation using the iterative triples correction

! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T1)

%mdci

TNOSCALES 10.0 #TNO truncation scale for strong triples, TNOSCALES*TCutTNO.

Default setting is 10.0

TNOSCALEW 100.0 #TNO truncation scale for weak triples, TNOSCALEW*TCutTNO

Default setting is 100.0

%end

* xyz 0 1

... (coordinates)

*

Since ORCA 4.2, the improved iterative perturbative triples correction for open-shell DLPNO-CCSD is

available as well. The keyword of open-shell DLPNO-CCSD(T) is as same as that of closed-shell case.

Since ORCA 4.0, the high-spin open-shell version of the DLPNO-CISD/QCISD/CCSD implementations

have been made available on top of the same machinery as the 2016 version of the RHF-DLPNO-CCSD

code. The present UHF-DLPNO-CCSD is designed to be an heir to the UHF-LPNO-CCSD and serves

as a natural extension to the RHF-DLPNO-CCSD. A striking difference between UHF-LPNO and newly

developed UHF-DLPNO methods is that the UHF-DLPNO approach gives the identical results to that of the

RHF variant when applied to the closed-shell species while the UHF-LPNO does not. Usage of this program

is quite straightforward and shown below:
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# (1) In case of ROHF reference

! ROHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (2) In case of UHF reference, the QROs are constructed first and used for

# the open-shell DLPNO-CCSD computations

! UHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (3) In case that the UKS are specified, the QROs are constructed first and used as

# "unconverged" UHF orbitals for the open-shell DLPNO-CCSD computations.

! UKS CAM-B3LYP DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

Note that this implementation is dedicated to the closed-shell and high-spin open-shell species. For spin-

polarized systems, the UHF-LPNO-CCSD or Mk-LPNO-CCSD are available in addition to DLPNO-NEVPT2.

The same set of truncation parameters as the closed-shell DLPNO-CCSD is used also in case of open-shell

DLPNO. The open-shell DLPNO-CCSD produces more than 99.9 % of the canonical CCSD correlation energy

as in case of the closed-shell variant. This feature is certainly different from the UHF-LPNO methods because

the open-shell DLPNO-CCSD is re-designed from scratch on the basis of a new PNO ansatz which makes use

of the high-spin open-shell NEVPT framework. The computational timings of the UHF-DLPNO-CCSD and

RIJCOSX-UHF for linear alkane chains in triplet state are shown in Figure 8.7.
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Figure 8.7: Computational times of RIJCOSX-UHF and UHF-DLPNO-CCSD for the linear alkane
chains (CnH2n+2) in triplet state with def2-TZVPP basis and default frozen core set-
tings. 4 CPU cores and 128 GB of memory were used on a single cluster node.

Although those systems are somewhat idealized for the DLPNO method to best perform, it is clear that the

preceding RIJCOSX-UHF is the rate-determining step in the total computational time for large examples. In

the open-shell DLPNO implementations, SOMOs are included not only in the occupied space but also in the

PNO space in the preceding integral transformation step. This means the presence of more SOMOs may lead

to more demanding PNO integral transformation and DLPNO-CCSD iterations. The illustrative examples

include active site model of the [NiFe] Hydrogenase in triplet state and the oxygen evolving complex (OEC)
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in the high-spin state, which are shown in Figures 8.8 and 8.9, respectively. With def2-TZVPP basis set and

NormalPNO settings, a single point calculation on [NiFe] Hydrogenase (Figure 8.8) took approximately 45

hours on a single cluster node by using 4 CPU cores of Xeon E5-2670 R©. A single point calculation on the

OEC compound (Figure 8.9) with the same computational settings finished in 44 hours even though the

number of AO in this system is even fewer than the Hydrogenase: the Hydrogenase active site model and

OEC involve 4007 and 2606 AO basis functions, respectively. Special care should be taken if the system

possess more than ten SOMOs since inclusion of more SOMOs may drastically increase the prefactor of the

calculations. In addition, if the SOMOs are distributed over the entire molecular skeleton, each pair domain

may not be truncated at all; in this case speedup attributed to the domain truncation will not be achieved at

all.

Figure 8.8: Ni-Fe active center in the [NiFe] Hydrogenase in its second-coordination sphere. The
whole model system is composed of 180 atoms.
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Figure 8.9: A model compound for the OEC in the S2 state of photosystem II which is comprised
of 238 atoms. In its high-spin state, the OEC possesses 13 SOMOs in total.

Calculation of the orbital-unrelaxed density has been implemented for closed-shell DLPNO-CCSD. This

permits analytical computation of first-order properties, such as multipole moments or electric field gradients.

In order to reproduce conventional unrelaxed CCSD properties to a high degree of accuracy, tighter thresholds

may be needed than given by the default settings. Reading of the reference [94] is recommended. Calculation

of the unrelaxed density is requested as usual:

%MDCI Density Unrelaxed End

There are a few things to be noticed about (D)LPNO methods:

• The LPNO methods obligatorily make use of the RI approximation. Hence, a correlation fit set must

be provided.

• The DLPNO-CCSD(T) method is applicable to closed-shell or high-spin open-shell species. When

performing DLPNO calculations on open-shell species, it is always better to have UCO option: If

preceding SCF converges to broken-symmetry solutions, it is not guaranteed that the DLPNO-CCSD

gives physically meaningful results.

• Besides the closed-shell version which uses a RHF or RKS reference determinant there is an open-shell

version of the LPNO-CCSD for high-spin open-shell molecules (see original paper) using an UHF or

UKS reference determinant build from quasi-restricted orbitals (QROs, see section 9.12.3). Since the

results of the current open-shell version are slightly less accurate than that of the closed-shell version

it is mandatory to specify if you want to use the closed-shell or open-shell version for calculations of

closed-shell systems, i.e. always put the “RHF” (“RKS”) or “UHF” (“UKS”) keyword in the simple

keyword line. Open-shell systems can be of course only treated by the open-shell version. Do not mix
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results of the closed- and open-shell versions of LPNO methods (e.g. if you calculate reaction

energies of a reaction in which both closed- and open-shell molecules take part, you should use the

open-shell version throughout). This is because the open-shell LPNO results for the closed-shell species

certainly differ from those of closed-shell implementations. This drawback of the open-shell LPNO

methods has led to the development of a brand new open-shell DLPNO approach which converges

to the RHF-DLPNO in the closed-shell limit. Importantly, one can mix the results of closed-

and open-shell versions of DLPNO approaches.

• The open-shell version of the DLPNO approach uses a different strategy to the LPNO variant to define

the open-shell PNOs. This ensures that, unlike the open-shell LPNO, the PNO space converges to the

closed-shell counterpart in the closed-shell limit. Therefore, in the closed-shell limit, the open-shell

DLPNO gives identical correlation energy to the RHF variant up to at least the third decimal place.

The perturbative triples correction referred to as, (T), is also available for the open-shell species.

• When performing a calculation on the open-shell species with either of canonical/LPNO/DLPNO

methods on top of the Slater determinant constructed from the QROs, a special attention should be

paid on the orbitals energies of those QROs. In some cases, the orbitals energy of the highest SOMO

appear to be higher than that of the lowest VMO. Similarly to this, the orbital energy of the highest

DOMO may appear to higher than that of the lowest SOMOs. In such cases, the CEPA/QCISD/CCSD

iteration may show difficulty in convergence. In the worst case, it just diverges. Most likely, in such

cases, one has to suspect the charge and multiplicity might be wrong. If they are correct, you may

need much prettier starting orbitals and a bit of good luck!

• DLPNO-CCSD(T)-F12 is available for both closed- and open-shell cases. These methods employ

a perturbative F12 correction on top of the DLPNO-CCSD(T) correlation energy calculation. The

F12 part of the code uses the RI approximation in the same spirit as the canonical RI-F12 methods

(refer to section 8.1.3.6). The F12 correction takes only a fraction (usually 10-30%) of the total time

(excluding SCF) required to calculate the DLPNO-CCSD(T)-F12 correlation energy. Thus, the F12

correction scales the same (linear or near-linear) as the parent DLPNO method. Furthermore, no new

truncation parameters are introduced for the F12 procedure preserving the black-box nature of the

DLPNO method. The F12D approximation is highly recommended as it is computationally cheaper

than the F12C approach which involves a double RI summation. keywords: DLPNO-CCSD(T)-F12D,

DLPNO-CCSD(T)-F12, DLPNO-CCSD-F12D, DLPNO-CCSD-F12.

• Parallelization is done.

• There are three thresholds that can be user controlled that can all be adjusted in the %mdci block: (a)

TCutPNO controls the number of PNOs per electron pair. This is the most critical parameter and has a

default value of 3.33×10−7. (b) TCutPairs controls a perturbative selection of significant pairs and has a

default value of 10−4. (c) TCutMKN is a technical parameter and controls the size of the fit set for each

electron pair. It has a default value of 10−3. All of these default values are conservative. Hence, no

adjustment of these parameters is necessary. All DLPNO-CCSD truncations are bound to these three

truncation parameters and should not almost be touched (Hence they are also not documented :-)).

• The preferred way to adjust accuracy when needed is to use the “LoosePNO/NormalPNO/TightPNO”

keywords. In addition, “TightPNO” triggers the full iterative (DLPNO-MP2) treatment in the MP2

guess, whereas the other options use a semicanonical MP2 calculation. Tables 8.6 and 8.7 contain the

thresholds used by the current (2016) and old (2013) implementations, respectively.
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• LPNO-VCEPA/n (n=1,2,3) methods are only available in the open-shell version yet.

• LPNO variants of the parameterized coupled-cluster methods (pCCSD, see section 9.12.1) are also

available (e.g. LPNO-pCCSD/1a and LPNO-pC CSD/2a).

• The LPNO methods reproduce the canonical energy differences typically better than 1 kcal/mol. This

accuracy exists over large parts of the potential energy surface. Tightening TCutPairs to 1e-5 gives

more accurate results but also leads to significantly longer computation times.

• Potential energy surfaces are virtually but not perfectly smooth (like any method that involves cut-offs).

Numerical gradient calculations have been attempted and reported to have been successful.

• The LPNO methods do work together with RIJCOSX, RI-JK and also with ANO basis sets and basis

set extrapolation. They also work for conventional integral handling.

• The methods behave excellently with large basis sets. Thus, they stay efficient even when large basis

sets are used that are necessary to obtain accurate results with wavefunction based ab initio methods.

This is a prerequisite for efficient computational chemistry applications.

• For LPNO-CCSD, calculations with about 1000 basis functions are routine, calculations with about

1500 basis functions are possible and calculations with 2000-2500 basis functions are the limit on

powerful computers. For DLPNO-CCSD much larger calculations are possible. There is virtually no

crossover and DLPNO-CCSD is essentially always more efficient than LPNO-CCSD. Starting from

about 50 atoms the differences become large. The largest DLPNO-CCSD calculation to date featured

>1000 atoms and more than 20000 basis functions!

• Using large main memory is not mandatory but advantageous since it speeds up the initial integral

transformation significantly (controlled by “MaxCore” in the %mdci block, see section 9.12.4).

• The open-shell versions are about twice as expensive as the corresponding closed-shell versions.

• Analytic gradients are not available.

• An unrelaxed density implementation is available for closed-shell DLPNO-CCSD, permitting calculation

of first-order properties.

Table 8.6: Accuracy settings for DLPNO coupled cluster (current version).

Setting TCutPairs TCutDO TCutPNO TCutMKN MP2 pair treatment

LoosePNO 10−3 2× 10−2 1.00× 10−6 10−3 semicanonical
NormalPNO 10−4 1× 10−2 3.33× 10−7 10−3 semicanonical
TightPNO 10−5 5× 10−3 1.00× 10−7 10−3 full iterative

Table 8.7: Accuracy settings for DLPNO coupled cluster (deprecated 2013 version).

Setting TCutPairs TCutPNO TCutMKN MP2 pair treatment

LoosePNO 10−3 1.00× 10−6 10−3 semicanonical
NormalPNO 10−4 3.33× 10−7 10−3 semicanonical
TightPNO 10−5 1.00× 10−7 10−4 full iterative
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As an example, see the following isomerization reaction that appears to be particularly difficult for DFT:

Isomerizes to:

The results of the calculations (closed-shell versions) with the def2-TZVP basis set (about 240 basis functions)

are shown below:

Method Energy Difference (kcal/mol) Time (min)

CCSD(T) -14.6 92.4

CCSD -18.0 55.3

LPNO-CCSD -18.6 20.0

CEPA/1 -12.4 42.2

LPNO-CEPA/1 -13.5 13.4

The calculations are typical in the sense that: (a) the LPNO methods provide answers that are within 1

kcal/mol of the canonical results, (b) CEPA approximates CCSD(T) more closely than CCSD. The speedups

of a factor of 2 – 5 are moderate in this case. However, this is also a fairly small calculation. For larger

systems, speedups of the LPNO methods compared to their canonical counterparts are on the order of a

factor >100–1000.
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8.1.3.9 Cluster in molecules (CIM)

Cluster in molecules (CIM) approach is a linear scaling local correlation method developed by Li and the

coworkers in 2002. [101] It was further improved by Li, Piecuch, Kállay and other groups recently. [102–106]

The CIM is inspired by the early local correlation method developed by Förner and coworkers. [107] The

total correlation energy of a close-shell molecule can be considered as a summation of correlation energies of

each occupied LMOs.

Ecorr =
occ∑
i

Ei =
occ∑
i

1

4

∑
j,ab

〈ij||ab〉T ijab (8.9)

For each occupied LMO, it only correlates with its nearby occupied LMOs and virtual MOs. To reproduce

the correlation energy of each occupied LMO, only a subset of occupied and virtual LMOs are needed in the

correlation calculation. Instead of doing the correlation calculation of the whole molecule, the correlation

energies of all LMOs can be obtained within various subsystems.

The CIM approach implemented in ORCA is following an algorithm proposed by Guo and coworkers with a

few improvements. [105,106]

1. To avoid the real space cutoff, the differential overlap integral (DOI) is used instead of distance threshold.

There is only one parameter ’CIMTHRESH’ in CIM approach, controlling the construction of CIM subsystems.

If the DOI between LMO i and LMO j is larger than CIMTHRESH, LMO j will be included into the MO

domain of i. By including all nearby LMO of i, one can construct a subsystem for MO i. The default value of

CIMTHRESH is 0.001. If accurate results are needed, the tight CIMTHRESH must be used.

2. Since ORCA 4.1, the neglected correlations between LMO i and LMOs outside the MO domain of i are

considered as well. These weak correlations are approximately evaluated by dipole moment integrals. With

this correction, the CIM results of 3 dimensional proteins are significantly improved. About 99.8% of the

correlation energies are recovered.

The CIM can invoke different single reference correlation methods for the subsystem calculations. In ORCA
the CIM-RI-MP2, CIM-CCSD(T), CIM-DLPNO-MP2 and CIM-DLPNO-CCSD(T) are available. The CIM-

RI-MP2 and CIM-DLPNO-CCSD(T) have been proved to be very efficent and accurate methods to compute

correlation energies of very big molecules, containing a few thousand atoms. [106]

The usage of CIM in ORCA is simple. For CIM-RI-MP2,

#

# CIM-RI-MP2 calculation

#

! RI-MP2 cc-pVDZ cc-pVDZ/C CIM

%CIM

CIMTHRESH 0.0005 # Default value is 0.001

end

* xyzfile 0 1 CIM.xyz
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For CIM-DLPNO-CCSD(T),

#

# CIM-DLPNO-CCSD calculation

#

! DLPNO-CCSD(T) cc-pVDZ cc-pVDZ/C CIM

* xyzfile 0 1 CIM.xyz

The parallel efficiency of CIM has been significantly improved. [106] Except for few domain construction

sub-steps, the CIM algorithm can achieve very high parallel efficiency. Since ORCA 4.1, the parallel version

does not support Windows platform anymore due to the parallelization strategy. The generalization of CIM

from close-shell to open-shell (multi-reference) will also be implemented in near furture.

8.1.3.10 Arbitrary Order Coupled-Cluster Calculations

ORCA features an interface to Kallay’s powerful MRCC program. This program must be obtained separately.

The interface is restricted to single point energies but can be used for rigid scan calculations or numerical

frequencies.

The use of the interface is simple:

#

# Test the MRCC code of Mihael Kallay

#

! cc-pVDZ Conv SCFConv10 UseSym

%mrcc method "CCSDT"

ETol 9

end

* xyz 0 1

F 0 0 0

H 0 0 0.95

*

The Method string can be any of:

# The excitation level specification can be anything

# like SD, SDT, SDTQ, SDTQP etc.

%mrcc method "CCSDT"

"CCSD(T)"

"CCSD[T]"

"CCSD(T)_L" (the lambda version)
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"CC3"

"CCSDT-1a"

"CCSDT-1b"

"CISDT"

It is not a good idea, of course, to use this code for CCSD or CCSD(T) or CISD. Its real power lies

in performing the higher order calculations. Open-shell calculations can presently not be done with the

interface.

8.1.4 Density Functional Theory

8.1.4.1 Standard Density Functional Calculations

Density functional calculations are as simple to run as HF calculations. In this case you may want to adjust

the integration grid and you almost certainly will want to use the RI-J approximation in case that you have

a LDA, GGA or meta-GGA functional (non-hybrid functional). For hybrid functionals, the RIJCOSX and

RI-JK approximations offer large speedups.

For example, consider this B3LYP calculation on the cyclohexane molecule.

# Test a simple DFT calculation

! RKS B3LYP SVP Grid4

* xyz 0 1

C -0.79263 0.55338 -1.58694

C 0.68078 0.13314 -1.72622

C 1.50034 0.61020 -0.52199

C 1.01517 -0.06749 0.77103

C -0.49095 -0.38008 0.74228

C -1.24341 0.64080 -0.11866

H 1.10490 0.53546 -2.67754

H 0.76075 -0.97866 -1.78666

H -0.95741 1.54560 -2.07170

H -1.42795 -0.17916 -2.14055

H -2.34640 0.48232 -0.04725

H -1.04144 1.66089 0.28731

H -0.66608 -1.39636 0.31480

H -0.89815 -0.39708 1.78184

H 1.25353 0.59796 1.63523

H 1.57519 -1.01856 0.93954

H 2.58691 0.40499 -0.67666

H 1.39420 1.71843 -0.44053

*
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If you want an accurate single point energy then it is wise to choose “TightSCF”, select a basis set of at

least valence triple-zeta plus polarization quality (e.g. def2-TZVP) and also to move one step up in the DFT

integration grid (i.e. “Grid4”).

8.1.4.2 DFT Calculations with RI

DFT calculations that do not require the HF exchange to be calculated (non-hybrid DFT) can be very

efficiently executed with the RI-J approximation. It leads to very large speedups at essentially no loss of

accuracy. The use of the RI-J approximation may be illustrated for a medium sized organic molecule -

Penicillin:

# RI-DFT calculation on the Penicillin molecule

! RKS BP86 RI SVP def2/J TightSCF

* xyz 0 1

N 3.17265 1.15815 -0.09175

C 2.66167 0.72032 1.18601

C 4.31931 0.59242 -0.73003

C 2.02252 1.86922 -0.54680

C 1.37143 1.52404 0.79659

S 2.72625 -1.05563 0.80065

C 4.01305 -0.91195 -0.52441

C 5.58297 1.09423 -0.06535

O 1.80801 2.36292 -1.62137

N 0.15715 0.73759 0.70095

C 5.25122 -1.72918 -0.12001

C 3.41769 -1.50152 -1.81857

O 6.60623 1.14077 -0.91855

O 5.72538 1.40990 1.08931

C -1.08932 1.35001 0.75816

C -2.30230 0.45820 0.54941

O -1.19855 2.53493 0.96288

O -3.48875 1.21403 0.57063

C -4.66939 0.59150 0.27339

C -4.84065 -0.79240 0.11956

C -5.79523 1.39165 0.03916

C -6.07568 -1.34753 -0.22401

C -7.03670 0.85454 -0.30482

C -7.18253 -0.52580 -0.43612

H 3.24354 1.09074 2.02120

H 4.33865 0.87909 -1.77554

H 1.26605 2.42501 1.39138

H 0.17381 -0.25857 0.47675

H 6.05024 -1.64196 -0.89101

H 5.67754 -1.39089 0.85176

H 5.01118 -2.81229 -0.01401

H 2.50304 -0.95210 -2.14173



96 8 Running Typical Calculations

H 4.15186 -1.44541 -2.65467

H 3.14138 -2.57427 -1.69700

H 7.29069 1.46408 -0.31004

H -2.21049 -0.02915 -0.44909

H -2.34192 -0.28647 1.37775

H -4.00164 -1.48999 0.26950

H -5.69703 2.48656 0.12872

H -6.17811 -2.44045 -0.33185

H -7.89945 1.51981 -0.47737

H -8.15811 -0.96111 -0.71027

*

The job has 42 atoms and 430 contracted basis functions. Yet, it executes in just a few minutes elapsed time

on any reasonable personal computer.

NOTES:

• The RI-J approximation requires an “auxiliary basis set” in addition to a normal orbital basis set. For

the Karlsruhe basis sets there is the universal auxiliary basis set of Weigend that is called with the

name def2/J (all-electron up to Kr). When scalar relativistic Hamiltonians are used (DKH or ZORA)

along with all-electron basis sets, then a general-purpose auxiliary basis set is the SARC/J that covers

most of the periodic table. Other choices are documented in sections 6.3 and 9.4.

• For “pure” functionals the use of RI-J with the def2/J auxiliary basis set is the default.

Since DFT is frequently applied to open-shell transition metals we also show one (more or less trivial) example

of a Cu(II) complex treated with DFT.

! UKS BP86 RI SV def2/J SlowConv

%base "temp"

* xyz -2 2

Cu 0 0 0

Cl 2.25 0 0

Cl -2.25 0 0

Cl 0 2.25 0

Cl 0 -2.25 0

*

$new_job

! UKS B3LYP NoRI TZVP TightSCF MORead

%moinp "temp.gbw"

%scf GuessMode CMatrix

end

* xyz -2 2

Cu 0 0 0
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Cl 2.25 0 0

Cl -2.25 0 0

Cl 0 2.25 0

Cl 0 -2.25 0

*

Although it would not have been necessary for this example, it shows a possible strategy how to converge such

calculations. First a less accurate but fast job is performed using the RI approximation, a GGA functional

and a small basis set without polarization functions. Note that a larger damping factor has been used in order

to guide the calculation (SlowConv). The second job takes the orbitals of the first as input and performs a

more accurate hybrid DFT calculation. A subtle point in this calculation on a dianion in the gas phase is the

command GuessMode CMatrix that causes the corresponding orbital transformation to be used in order to

match the orbitals of the small and the large basis set calculation. This is always required when the orbital

energies of the small basis set calculation are positive as will be the case for anions.

8.1.4.3 Hartree–Fock and Hybrid DFT Calculations with RIJCOSX

Frustrated by the large difference in execution times between pure and hybrid functionals, we have been

motivated to study approximations to the Hartree-Fock exchange term. The method that we have finally

come up with is called the “chain of spheres” COSX approximation and may be thought of as a variant

of the pseudo-spectral philosophy. Essentially, in performing two electron integrals, the first integration is

done numerically on a grid and the second (involving the Coulomb singularity) is done analytically.7 Upon

combining this treatment with the Split-RI-J method for the Coulomb term (thus, you do need a Coulomb

fitting basis!), we have designed the RIJCOSX approximation that can be used to accelerate Hartree-Fock

and hybrid DFT calculations. Note that this introduces another grid on top of the DFT integration grid

which is usually significantly smaller.

In particular for large and accurate basis sets, the speedups obtained in this way are very large - we have

observed up to a factor of sixty! The procedure is essentially linear scaling such that large and accurate

calculations become possible with high efficiency. The RIJCOSX approximation is basically available

throughout the program. The errors are on the order of 1 kcal mol−1 or less in the total energies as well as in

energy differences and can be made smaller with larger than the default grids or by running the final SCF

cycle without this approximation. The impact on bond distances is a fraction of a pm, angles are better than

a few tenth of a degree and soft dihedral angles are good to about 1 degree. To the limited extent to which it

has been tested, vibrational frequencies are roughly good to 2–10 wavenumbers with the default settings.

The use of RIJCOSX is very simple:

! B3LYP def2-TZVPP def2/J TightSCF RIJCOSX

...

7For algorithmic and theoretical details see: [108].
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One thing to be mentioned in correlation calculations with RIJCOSX is that the requirements for the SCF

and correlation fitting bases are quite different. We therefore now support two different auxiliary basis sets in

the same run:

! RI-MP2 def2-TZVPP def2/J def2-TZVPP/C TightSCF RIJCOSX

...

CAUTION:

• This feature does NOT work in multiple job inputs

8.1.4.4 Hartree–Fock and Hybrid DFT Calculations with RI-JK

An alternative algorithm for accelerating the HF exchange in hybrid DFT or HF calculations is to use the RI

approximation for both Coulomb and exchange. This is implemented in ORCA for SCF single point energies

but not for gradients.

! RHF def2-TZVPP def2/JK RI-JK

...

The speedups for small molecules are better than for RIJCOSX, for medium sized molecules (e.g. (gly)4)

similar, and for larger molecules RI-JK is less efficient than RIJCOSX. The errors of RI-JK are usually below

1 mEh and the error is very smooth (smoother than for RIJCOSX). Hence, for small calculations with large

basis sets, RI-JK is a good idea, for large calculations on large molecules RIJCOSX is better.

NOTES:

• For RI-JK you will need a larger auxiliary basis set. For the Karlsruhe basis set, the universal def2/JK

and def2/JKsmall basis sets are available. They are large and accurate.

• For UHF RI-JK is roughly twice as expensive as for RHF. This is not true for RIJCOSX.

• RI-JK is available for conventional and direct runs and also for ANO bases. There the conventional

mode is recommended.

A comparison of the RIJCOSX and RI-JK methods (taken from Ref. [109]) for the (gly)2, (gly)4 and (gly)8 is

shown below (wall clock times in second for performing the entire SCF):

Def2-SVP Def2-TZVP(-df) Def2-TZVPP Def2-QZVPP

(gly)2 Default 105 319 2574 27856

RI-JK 44 71 326 3072

RIJCOSX 70 122 527 3659

(gly)4 Default 609 1917 13965 161047

RI-JK 333 678 2746 30398

RIJCOSX 281 569 2414 15383

(gly)8 Default 3317 12505 82774

RI-JK 3431 5452 16586 117795

RIJCOSX 1156 2219 8558 56505
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It is obvious from the data that for small molecules the RI-JK approximation is the most efficient choice. For

(gly)4 this is already no longer obvious. For up to the def2-TZVPP basis set, RI-JK and RIJCOSX are almost

identical and for def2-QZVPP RIJCOSX is already a factor of two faster than RI-JK. For large molecules like

(gly)8 with small basis sets RI-JK is not a big improvement but for large basis set it still beats the normal

4-index calculation. RIJCOSX on the other hand is consistently faster. It leads to speedups of around 10 for

def2-TZVPP and up to 50-60 for def2-QZVPP. Here it outperforms RI-JK by, again, a factor of two.

8.1.4.5 DFT Calculations with Second Order Perturbative Correction (Double-Hybrid

Functionals)

There is a family of functionals which came up in 2006 and were proposed by Grimme [110]. They consist

of a semi-empirical mixture of DFT components and the MP2 correlation energy calculated with the DFT

orbitals and their energies. Grimme referred to his functional as B2PLYP (B88 exchange, 2 parameters that

were fitted and perturbative mixture of MP2 and LYP) – a version with improved performance (in particular

for weak interactions) is mPW2PLYP [111] and is also implemented. From the extensive calibration work,

the new functionals appear to give better energetics and a narrower error distribution than B3LYP. Thus, the

additional cost of the calculation of the MP2 energy may be well invested (and is quite limited in conjunction

with density fitting in the RI part). Martin has reported reparameterizations of B2PLYP (B2GP-PLYP,

B2K-PLYP and B2T-PLYP) that are optimized for “general-purpose”, “kinetic” and “thermochemistry”

applications. [112, 113] In 2011, Goerigk and Grimme published the PWPB95 functional with spin-opposite-

scaling and relatively low amounts of Fock exchange, which make it promising for both main-group and

transition-metal chemistry. [114]

Among the best performing density functionals [115] are Martin’s “DSD”-double-hybrids, which use different

combinations of exchange and correlation potentials and spin-component-scaled MP2 mixing. Three of these

double-hybrids (DSD-BLYP, DSD-PBEP86 and DSD-PBEB95) [116–118] are available via simple input

keywords. Different sets of parameters for the DSD-double-hybrids are published, e.g. for the use with and

without D3. The keywords DSD-BLYP, DSD-PBEP86 and DSD-PBEB95 request parameters consistent with the

GMTKN55 [115] benchmark set results. The keywords DSD-BLYP/2013 and DSD-PBEP86/2013 request the

slightly different parameter sets used in the 2013 paper by Kozuch and Martin. [118] To avoid confusion, the

different parameters are presented in table 8.10

Table 8.10: DSD-DFT parameters defined in ORCA

Keywords ScalDFX ScalHFX ScalGGAC PS PT D3S6 D3S8 D3A2

DSD-BLYP 0.25 0.75 0.53 0.46 0.60

DSD-BLYP D3BJ 0.31 0.69 0.54 0.46 0.37 0.50 0.213 6.0519

DSD-BLYP/2013 D3BJ 0.29 0.71 0.54 0.47 0.40 0.57 0 5.4

DSD-PBEP86 0.28 0.72 0.44 0.51 0.36

DSD-PBEP86 D3BJ 0.30 0.70 0.43 0.53 0.25 0.418 0 5.65

DSD-PBEP86/2013 D3BJ 0.31 0.69 0.44 0.52 0.22 0.48 0 5.6

DSD-PBEB95 0.30 0.70 0.52 0.48 0.22

DSD-PBEB95 D3BJ 0.34 0.66 0.55 0.46 0.09 0.61 0 6.2

Note that D3A1 is always 0 for these functionals.
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Three different variants of MP2 can be used in conjunction with these functionals. Just specifying the

functional name leads to the use of conventional MP2. Prepending ”RI-” to the functional name, for example

RI-B2PLYP or RI-DSD-BLYP, results in using RI-MP2. In this case, an appropriate auxiliary basis set for

correlation fitting needs to be specified. It is very strongly recommended to use the RI variants instead

of conventional MP2, as their performance is vastly better. Indeed, there is hardly ever any reason to use

conventional MP2. More information can be found in the relevant sections regarding RI-MP2.

Finally, DLPNO-MP2 can be used as a component of double-hybrid density functionals. In that case, a

”DLPNO-” prefix needs to be added to the functional name, for example DLPNO-B2GP-PLYP or DLPNO-DSD-PBEP86.

Please refer to the relevant manual sections for more information on the DLPNO-MP2 method.

For each functional, parameters can be specified explicitly in the input file, e.g. for RI-DSD-PBEB95 with

D3BJ:

! D3BJ

%method

Method DFT

DoMP2 True

Exchange X_PBE

Correlation C_B95

LDAOpt C_PWLDA # specific for B95

ScalDFX 0.34

ScalHFX 0.66

ScalGGAC 0.55

ScalLDAC 0.55 # must be equal to ScalGGAC

ScalMP2C 1.00 # for all DSD-DFs

D3S6 0.61

D3S8 0

D3A1 0 # for all DSD-DFs

D3A2 6.2

end

%mp2

DoSCS True

RI True

PS 0.46

PT 0.09

end

In this version of ORCA, double-hybrid DFT is available for single points, geometry optimizations [119],

dipole moments and other first order properties, magnetic second order properties (chemical shifts, g-tensors),

as well as for numerical polarizabilities and frequencies.

8.1.4.6 DFT Calculations with Atom-pairwise Dispersion Correction

It is well known that DFT does not include dispersion forces. It is possible to use a simple atom-pairwise

correction to account for the major parts of this contribution to the energy [1, 2, 120,121]. We have adopted



8.1 Single Point Energies and Gradients 101

the code and method developed by Stefan Grimme in this ORCA version. The method is parameterized

for many established functionals (e.g. BLYP, BP86, PBE, TPSS, B3LYP, B2PLYP).8 For the 2010 model

the Becke-Johnson damping version (! D3BJ) is the default and will automatically be invoked by the simple

keyword ! D3. The charge dependent atom-pairwise dispersion correction (keyword ! D4) is using the

D4(EEQ)-ATM dispersion model [123], other D4 versions, using tight-binding partial charges, are currently

only available with the standalone DFT-D4 program.

! BLYP D3 def2-QZVPP RI def2/J Opt Grid4

%paras R= 2.5,4.0,16

end

%geom Constraints

{ C 0 C }

{ C 1 C }

end

end

* xyz 0 1

Ar 0.0000000 0.0000000 {R}

H 0.0000000 0.0000000 0.0000000

C 0.0000000 0.0000000 -1.0951073

H 0.5163499 0.8943443 -1.4604101

H 0.5163499 -0.8943443 -1.4604101

H -1.0326998 0.0000000 -1.4604101

*

In this example, a BLYP calculation without dispersion correction will show a repulsive potential between

the argon atom and the methane molecule. Using the D3 dispersion correction as shown above, the potential

curve shows a minimum at about 3.1−3.2 Å. The atom-pairwise correction is quite successful and Grimme’s

work suggests that this is more generally true. For many systems like stacked DNA basepairs, hydrogen bond

complexes and other weak interactions the atom-pairwise dispersion correction will improve substantially the

results of standard functionals at essentially no extra cost.

8.1.4.7 DFT Calculations with Range-Separated Hybrid Functionals

All range-separated functionals in ORCA use the error function based approach according to Hirao and

coworkers. [124] This allows the definition of DFT functionals that dominate the short-range part by an

adapted exchange functional of LDA, GGA or meta-GGA level and the long-range part by Hartree-Fock

exchange.

8 For expert users: The keyword D2, D3ZERO, D3BJ and D4 select the empirical 2006, the atom-pairwise 2010 model,
respectively, with either zero-damping or Becke-Johnson damping, or the partial charge dependent atom-pairwise
2018 model. The default is the most accurate D3BJ model. The outdated model from 2004 [122] is no longer
supported and can only be invoked by setting DFTDOPT = 1. The C6-scaling coefficient can be user defined using
e.g. “%method DFTDScaleC6 1.2 end”
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CAM-B3LYP, [125] LC-BLYP [126] and members of the ωB97-family of functionals have been implemented

into ORCA, namely ωB97, ωB97X [127], ωB97X-D3 [128], ωB97X-V [129], ωB97M-V [130], ωB97X-D3BJ and

ωB97M-D3BJ. [131] (For more information on ωB97X-V [129] and ωB97M-V [130] see section 9.3.2.12) Some

of them incorporate fixed amounts of Hartree-Fock exchange (EXX) and/or DFT exchange and they differ

in the RS-parameter µ. In the case of ωB97X-D3, the proper D3 correction (employing the zero-damping

scheme) should be calculated automatically. The D3BJ correction is used automatically for ωB97X-D3BJ

and ωB97M-D3BJ (as well as for the meta-GGA B97M-D3BJ). The user is encouraged to check this.

Several restrictions apply to these functionals at the moment. They have only been implemented and tested

for use with the libint integral package and for RHF and UHF single-point, ground state nuclear gradient,

ground state nuclear hessian, TDDFT, and TDDFT nuclear gradient calculations. Only the standard integral

handling (NORI), RIJONX, and RIJCOSX are supported. Do not use these functionals with any other

options.

8.1.4.8 DFT Calculations with Range-Separated Double Hybrid Functionals

For the specifics of the range-separated double-hybrid functionals the user is referred to sections 8.1.4.5,

8.1.4.7 and 8.4.4. In ORCA the functionals ωB2PLYP and ωB2GP-PLYP are available. [132] Both were

optimized for the calculation of excitation energies. They will soon be tested for ground-state properties, but

currently we advise to solely use them for the purpose for which they were developed.

8.1.5 Quadratic Convergence

Convergence in SCF calculations is not always easy to achieve. One way to go if the calculations converges

only slowly or “creeps” towards the end of the SCF cycles such that many almost useless cycles are being

performed is to switch on a powerful but somewhat expensive convergence helper – the full Newton-Raphson

method. In the neighbourhood of a stable SCF solution this method converges quadratically which means

that after 3-4 Newton-Raphson cycles the calculations are normally converged. However, each cycle consists

of microiterations which are roughly as expensive as one SCF iteration. Thus, each SCF iteration becomes

somewhat expensive but this may be more than compensated by the reduced number of cycles.

Consider the following example of a molecule with a small HOMO–LUMO gap (≈ 1 eV):

! PModel RKS BP86 RI SemiDirect SV(P) def2/J TightSCF

* xyz 0 1

C -2.65720 1.06150 -0.05713

C -1.26906 0.45978 0.20734

C 2.30892 0.84241 -0.90960

C 3.66808 0.62825 -0.22855

C -3.24744 1.63074 1.22706

C 4.55462 1.85858 -0.37334

O -4.34718 2.12974 1.26070

O 4.32817 2.77288 -1.12962
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S -0.52934 -0.10251 -1.36344

S 1.32901 -0.69440 -0.81445

N -3.52304 -0.01967 -0.66394

N 3.40865 0.27323 1.21839

O -2.67918 1.59541 2.29262

O 5.54649 1.99821 0.30260

H -2.59274 1.90623 -0.78323

H -3.61570 -0.84473 -0.06839

H -3.16141 -0.34892 -1.56042

H -4.47232 0.30853 -0.85012

H 4.27898 0.16311 1.74252

H 2.86502 0.97910 1.71822

H 2.90558 -0.60935 1.32107

H 4.22252 -0.21720 -0.70036

H 2.45549 1.12172 -1.97850

H 1.78000 1.68539 -0.40747

H -0.61420 1.23221 0.67374

H -1.35568 -0.39162 0.92184

*

$new_job

! PModel RKS BP86 RI SemiDirect SV(P) def2/J TightSCF NRSCF

* xyz 0 1

... etc, coordinates repeated

*

The first job converges as follows:

ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp

0 -1441.4978981358 0.000000000000 0.40179217 0.00763633 0.2989113 0.7000

***Turning on DIIS***

1 -1441.7605061369 -0.262608001152 0.88234063 0.01388441 0.0944375 0.0000

2 -1441.4732415586 0.287264578307 0.11142170 0.00283563 0.2353949 0.7000

3 -1441.7133405526 -0.240098993967 0.13296844 0.00300970 0.1969393 0.7000

4 -1441.8756771704 -0.162336617820 0.12684567 0.00251575 0.1502491 0.7000

5 -1441.9617903323 -0.086113161899 0.09818570 0.00195646 0.1031261 0.7000

6 -1442.0049616788 -0.043171346504 0.26817199 0.00537057 0.0669699 0.0000

7 -1442.0598897762 -0.054928097428 0.04412999 0.00080076 0.0423744 0.0000

8 -1442.0665608972 -0.006671121001 0.04285625 0.00064591 0.0175566 0.0000

9 -1442.0686166076 -0.002055710323 0.02519628 0.00048681 0.0045225 0.0000

10 -1442.0690784815 -0.000461873967 0.00652186 0.00017711 0.0024081 0.0000

11 -1442.0691994344 -0.000120952896 0.00318862 0.00009817 0.0013287 0.0000

12 -1442.0692370986 -0.000037664145 0.00289703 0.00006658 0.0010036 0.0000

13 -1442.0692557561 -0.000018657537 0.00872807 0.00026481 0.0006098 0.0000

14 -1442.0692790592 -0.000023303114 0.00136738 0.00001713 0.0019054 0.0000

15 -1442.0692841649 -0.000005105642 0.00194277 0.00004165 0.0007584 0.0000

16 -1442.0692857367 -0.000001571858 0.00043978 0.00001226 0.0002705 0.0000
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17 -1442.0692859394 -0.000000202716 0.00028171 0.00000515 0.0001447 0.0000

18 -1442.0692859977 -0.000000058216 0.00014881 0.00000277 0.0000886 0.0000

**** Energy Check signals convergence ****

Thus, the job converges almost monotonically but it does so somewhat slowly towards the end. The second

job, however:

ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp

*** Starting incremental Fock matrix formation ***

0 -1441.4978981358 0.000000000000 0.40179217 0.00763633 0.2989113 0.7000

***Turning on DIIS***

1 -1441.7605061369 -0.262608001152 0.88234063 0.01388441 0.0944375 0.0000

2 -1441.4732415586 0.287264578307 0.11142170 0.00283563 0.2353949 0.7000

3 -1441.7133405526 -0.240098993967 0.13296844 0.00300970 0.1969393 0.7000

4 -1441.8756771704 -0.162336617820 0.12684567 0.00251575 0.1502491 0.7000

5 -1441.9617903323 -0.086113161899 0.09818570 0.00195646 0.1031261 0.7000

6 -1442.0049616788 -0.043171346504 0.26817199 0.00537057 0.0669699 0.0000

7 -1442.0598897762 -0.054928097428 0.04412999 0.00080076 0.0423744 0.0000

8 -1442.0665608972 -0.006671121001 0.04285625 0.00064591 0.0175566 0.0000

*** Initiating the Newton-Raphson procedure ***

*** Shutting down DIIS ***

*** Removing any level shift ***

ITER Energy Delta-E Grad Rot Max-DP RMS-DP

9 -1442.06861661 -0.0020557103 0.002665 0.000000 0.025196 0.000487

CP-SCF ITERATION 0:

CP-SCF ITERATION 1: 0.000033353

CP-SCF ITERATION 2: 0.000001802

CP-SCF ITERATION 3: 0.000000887

CP-SCF ITERATION 4: 0.000000014

10 -1442.06907848 -0.0004618740 0.008069 0.035908 0.017951 0.000570

CP-SCF ITERATION 0:

CP-SCF ITERATION 1: 0.000000367

CP-SCF ITERATION 2: 0.000000013

11 -1442.06928354 -0.0002050609 0.000678 0.004293 0.002640 0.000063

CP-SCF ITERATION 0:

CP-SCF ITERATION 1: 0.000000001

12 -1442.06928602 -0.0000024726 0.000066 0.000109 0.000051 0.000002

<<< The NR Solver signals convergence >>>

Thus, after reaching the threshold for initiating the Newton-Raphson procedure after nine iterations, the job

takes only three more iterations to converge to the correct solution. Since each micro-iteration in the CP-SCF

procedure roughly corresponds to the formation of one Fock-matrix the second job is still somewhat more

expensive. You cannot always expect the Newton-Raphson procedure to converge9 and it will not converge

at all if your SCF solution is not stable (i.e. if the orbital Hessian has negative eigenvalues) – still, it is a

powerfull technique to try if other alternatives do not do well. It is important, however, to bring the SCF

into the radius of convergence of the Newton-Raphson procedure for it to be efficient.

The implementation covers closed-shell and spin-unrestricted Hartree-Fock and DFT calculations.

9 For example try %scf nrstart 0.1 end end to turn on the NRSCF after two iterations in the example above – it
will run into trouble.
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8.1.6 Counterpoise Correction

In calculating weak molecular interactions the nasty subject of the basis set superposition error (BSSE) arises.

It consists of the fact that if one describes a dimer, the basis functions on A help to lower the energy of

fragment B and vice versa. Thus, one obtains an energy that is biased towards the dimer formation due to

basis set effects. Since this is unwanted, the Boys and Bernardi procedure aims to correct for this deficiency

by estimating what the energies of the monomers would be if they had been calculated with the dimer basis

set. This will stabilize the monomers relative to the dimers. The effect can be a quite sizeable fraction of the

interaction energy and should therefore be taken into account. The original Boys and Bernardi formula for

the interaction energy between fragments A and B is:

∆E = EABAB (AB)− EAA(A)− EBB (B)−
[
EABA (AB)− EABA (A) + EABB (AB)− EABB (B)

]
(8.10)

Here EYX (Z) is the energy of fragment X calculated at the optimized geometry of fragment Y with the basis

set of fragment Z. Thus, you need to do a total the following series of calculations: (1) optimize the geometry

of the dimer and the monomers with some basis set Z. This gives you EABAB (AB), EAA (A) and EBB (B) (2)

delete fragment A (B) from the optimized structure of the dimer and re-run the single point calculation

with basis set Z. This gives you EABB (B) and EABA (A). (3) Now, the final calculation consists of calculating

the energies of A and B at the dimer geometry but with the dimer basis set. This gives you EABA (AB) and

EABB (AB).

In order to achieve the last step efficiently, a special notation was put into ORCA which allows you to delete

the electrons and nuclear charges that come with certain atoms but retain the assigned basis set. This trick

consists of putting a “:” after the symbol of the atom. Here is an example of how to run such a calculation of

the water dimer at the MP2 level (with frozen core):

#

# BSSE test

#

# --------------------------------------------

# First the monomer. It is a waste of course

# to run the monomer twice ...

# --------------------------------------------

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel

%id "monomer"

* xyz 0 1

O 7.405639 6.725069 7.710504

H 7.029206 6.234628 8.442160

H 8.247948 6.296600 7.554030

*

$new_job

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel

%id "monomer"

* xyz 0 1

O 7.405639 6.725069 7.710504

H 7.029206 6.234628 8.442160

H 8.247948 6.296600 7.554030

*
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# --------------------------------------------

# now the dimer

# --------------------------------------------

$new_job

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel

%id "dimer"

* xyz 0 1

O 7.439917 6.726792 7.762120

O 5.752050 6.489306 5.407671

H 7.025510 6.226170 8.467436

H 8.274883 6.280259 7.609894

H 6.313507 6.644667 6.176902

H 5.522285 7.367132 5.103852

*

# --------------------------------------------

# Now the calculations of the monomer at the

# dimer geometry

# --------------------------------------------

$new_job

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel

%id "monomer_1"

* xyz 0 1

O 7.439917 6.726792 7.762120

H 7.025510 6.226170 8.467436

H 8.274883 6.280259 7.609894

*

$new_job

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel

%id "monomer_1"

* xyz 0 1

O 5.752050 6.489306 5.407671

H 6.313507 6.644667 6.176902

H 5.522285 7.367132 5.103852

*

# --------------------------------------------

# Now the calculation of the monomer at the

# dimer geometry but with the dimer basis set

# --------------------------------------------

$new_job

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel

%id "monomer_2"

* xyz 0 1

O 7.439917 6.726792 7.762120

O : 5.752050 6.489306 5.407671

H 7.025510 6.226170 8.467436

H 8.274883 6.280259 7.609894

H : 6.313507 6.644667 6.176902

H : 5.522285 7.367132 5.103852

*

$new_job

! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
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%id "monomer_2"

* xyz 0 1

O : 7.439917 6.726792 7.762120

O 5.752050 6.489306 5.407671

H : 7.025510 6.226170 8.467436

H : 8.274883 6.280259 7.609894

H 6.313507 6.644667 6.176902

H 5.522285 7.367132 5.103852

*

You obtain the energies:

Monomer : -152.647062118 Eh

Dimer : -152.655623625 Eh -5.372 kcal/mol

Monomer at dimer geometry: -152.647006948 Eh 0.035 kcal/mol

Same with AB Basis set : -152.648364970 Eh -0.818 kcal/mol

Thus, the corrected interaction energy is:

-5.372 kcal/mol - (-0.818-0.035)=-4.52 kcal/mol

8.1.7 Complete Active Space Self-Consistent Field Method

8.1.7.1 Introduction

There are several situations where a complete-active space self-consistent field (CASSCF) treatment is a good

idea:

• Wavefunctions with significant multireference character arising from several nearly degenerate configu-

rations (static correlation)

• Wavefunctions which require a multideterminantal treatment (for example multiplets of atoms, ions,

transition metal complexes, . . . )

• Situations in which bonds are broken or partially broken.

• Generation of orbitals which are a compromise between the requirements for several states.

• Generation of start orbitals for multireference methods covering dynamic correlation (NEVPT2, MRCI,

MREOM,...)

• Generation of genuine spin eigenfunctions for multideterminantal/multireference wavefunctions.

In all of these cases the single-determinantal Hartree-Fock method fails badly and in most of these cases DFT

methods will also fail. In these cases a CASSCF method is a good starting point. CASSCF is a special case of

multiconfigurational SCF (MCSCF) methods which specialize to the situation where the orbitals are divided

into three-subspaces: (a) the internal orbitals which are doubly occupied in all configuration state functions

(CSFs), (b) partially occupied (active) orbitals and (c) virtual (external) orbitals which are empty in all CSFs.

A fixed number of electrons is assigned to the internal subspace and the active subspace. If N-electrons are
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“active” in M orbitals one speaks of a CASSCF(N,M) wavefunctions. All spin-eigenfunctions for N-electrons in

M orbitals are included in the configuration interaction step and the energy is made stationary with respect

to variations in the MO and the CI coefficients. Any number of roots of any number of different multiplicities

can be calculated and the CASSCF energy may be optimized with respect to a user defined average of these

states.

The CASSCF method has the nice advantage that it is fully variational which renders the calculation of

analytical gradients relatively easy. Thus, the CASSCF method may be used for geometry optimizations and

numerical frequency calculations.

The price to pay for this strongly enhanced flexibility relative to the single-determinantal HF method is that

the CASSCF method requires more computational ressources and also more insight and planning from the

user side. The technical details are explained in section 9.13. Here we explain the use of the CASSCF method

by examples. In addition to the description in the manual, there is a separate tutorial for CASSCF with

many more examples in the field of coordination chemistry. The tutorial covers the design of the calculation,

practical tips on convergence as well as the computation of properties.

A number of properties are available in ORCA (g-tensor, ZFS splitting, CD, MCD, susceptibility, dipoles,

...). The majority of CASSCF properties such as EPR parameters are computed in the framework of the

quasi-degenerate perturbation theory. Some properties such as ZFS splittings can also be computed via

perturbation theory or rigorously extracted from an effective Hamiltonian. For a detailed description of the

available properties and options see section 9.13.2. All the aforementioned properties are computed within

the CASSCF module. An exception are Mössbauer parameters, which are computed with the usual keywords

using the EPRNMR module (8.15.9).

8.1.7.2 A simple Example

One standard example of a multireference system is the Be atom. Let us run two calculations, a standard

closed-shell calculation (1s22s2) and a CASSCF(2,4) calculation which also includes the (1s22s12p1) and

(1s22s02p2) configurations.

! TZVPP TightSCF

* xyz 0 1

Be 0 0 0

*

This standard closed-shell calculation yields the energy -14.56213241 Eh. The CASSCF calculation

! TZVPP TightSCF

%casscf nel 2

norb 4

end

* xyz 0 1
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Be 0 0 0

*

yields the energy -14.605381525 Eh. Thus, the inclusion of the 2p shell results in an energy lowering of 43

mEh which is considerable. The CASSCF program also prints the composition of the wavefunction:

---------------------------------------------

CAS-SCF STATES FOR BLOCK 1 MULT= 1 NROOTS= 1

---------------------------------------------

ROOT 0: E= -14.6053815294 Eh

0.90060 [ 0]: 2000

0.03313 [ 4]: 0200

0.03313 [ 9]: 0002

0.03313 [ 7]: 0020

This information is to be read as follows: The lowest state is composed of 90% of the configuration which has

the active space occupation pattern 2000 which means that the first active orbital is doubly occupied in this

configuration while the other three are empty. The MO vector composition tells us what these orbitals are

(ORCA uses natural orbitals to canonicalize the active space).

0 1 2 3 4 5

-4.70502 -0.27270 0.11579 0.11579 0.11579 0.16796

2.00000 1.80121 0.06626 0.06626 0.06626 0.00000

-------- -------- -------- -------- -------- --------

0 Be s 100.0 100.0 0.0 0.0 0.0 100.0

0 Be pz 0.0 0.0 13.6 6.1 80.4 0.0

0 Be px 0.0 0.0 1.5 93.8 4.6 0.0

0 Be py 0.0 0.0 84.9 0.1 15.0 0.0

Thus, the first active space orbital has occupion number 1.80121 and is the Be-2s orbital. The other three

orbitals are 2p in character and all have the same occupation number 0.06626. Since they are degenerate

in occupation number space, they are arbitrary mixtures of the three 2p orbitals. It is then clear that the

other components of the wavefunction (each with 3.31%) are those in which one of the 2p orbitals is doubly

occupied.

How did we know how to put the 2s and 2p orbitals in the active space? The answer is – WE DID NOT

KNOW! In this case it was “good luck” that the initial guess produced the orbitals in such an order that we

had the 2s and 2p orbitals active. IN GENERAL IT IS YOUR RESPONSIBILITY THAT THE

ORBITALS ARE ORDERED SUCH THAT THE ORBITALS THAT YOU WANT IN THE

ACTIVE SPACE COME IN THE DESIRED ORDER. In many cases this will require re-ordering

and CAREFUL INSPECTION of the starting orbitals.
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ATTENTION:

• If you include orbitals in the active space that are nearly empty or nearly doubly occupied, convegence

problems are likely. The SuperCI(PT) [133] and Newton-Raphson method are less prone to these

problems.

8.1.7.3 Starting Orbitals

TIP

• In many cases natural orbitals of a simple correlated calculation of some kind provide a good starting

point for CASSCF.

Let us illustrate this principle with a calculation on the Benzene molecule where we want to include all six

π-orbitals in the active space. After doing a RHF calculation:

! RHF SV(P)

* int 0 1

C 0 0 0 0.000000 0.000 0.000

C 1 0 0 1.389437 0.000 0.000

C 2 1 0 1.389437 120.000 0.000

C 3 2 1 1.389437 120.000 0.000

C 4 3 2 1.389437 120.000 0.000

C 5 4 3 1.389437 120.000 0.000

H 1 2 3 1.082921 120.000 180.000

H 2 1 3 1.082921 120.000 180.000

H 3 2 1 1.082921 120.000 180.000

H 4 3 2 1.082921 120.000 180.000

H 5 4 3 1.082921 120.000 180.000

H 6 5 4 1.082921 120.000 180.000

*

%Output

Print[P_ReducedOrbPopMO_L] 1

End

We can look at the orbitals around the HOMO/LUMO gap:

12 13 14 15 16 17

-0.63810 -0.62613 -0.59153 -0.59153 -0.50570 -0.49833

2.00000 2.00000 2.00000 2.00000 2.00000 2.00000

-------- -------- -------- -------- -------- --------

0 C s 2.9 0.0 0.3 0.1 0.0 0.0

0 C pz 0.0 0.0 0.0 0.0 16.5 0.0

0 C px 1.4 12.4 5.9 0.3 0.0 11.2

0 C py 4.2 4.1 10.1 5.9 0.0 0.1



8.1 Single Point Energies and Gradients 111

0 C dyz 0.0 0.0 0.0 0.0 0.1 0.0

0 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5

0 C dxy 0.4 0.0 0.0 0.2 0.0 0.0

1 C s 2.9 0.0 0.3 0.1 0.0 0.0

1 C pz 0.0 0.0 0.0 0.0 16.5 0.0

1 C px 1.4 12.4 5.9 0.3 0.0 11.2

1 C py 4.2 4.1 10.1 5.9 0.0 0.1

1 C dyz 0.0 0.0 0.0 0.0 0.1 0.0

1 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5

1 C dxy 0.4 0.0 0.0 0.2 0.0 0.0

2 C s 2.9 0.0 0.0 0.4 0.0 0.1

2 C pz 0.0 0.0 0.0 0.0 16.5 0.0

2 C px 5.7 0.0 0.0 20.9 0.0 10.1

2 C py 0.0 16.5 1.3 0.0 0.0 0.0

2 C dxz 0.0 0.0 0.0 0.0 0.1 0.0

2 C dx2y2 0.6 0.0 0.0 0.2 0.0 1.2

2 C dxy 0.0 0.1 0.5 0.0 0.0 0.0

3 C s 2.9 0.0 0.3 0.1 0.0 0.0

3 C pz 0.0 0.0 0.0 0.0 16.5 0.0

3 C px 1.4 12.4 5.9 0.3 0.0 11.2

3 C py 4.2 4.1 10.1 5.9 0.0 0.1

3 C dyz 0.0 0.0 0.0 0.0 0.1 0.0

3 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5

3 C dxy 0.4 0.0 0.0 0.2 0.0 0.0

4 C s 2.9 0.0 0.3 0.1 0.0 0.0

4 C pz 0.0 0.0 0.0 0.0 16.5 0.0

4 C px 1.4 12.4 5.9 0.3 0.0 11.2

4 C py 4.2 4.1 10.1 5.9 0.0 0.1

4 C dyz 0.0 0.0 0.0 0.0 0.1 0.0

4 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5

4 C dxy 0.4 0.0 0.0 0.2 0.0 0.0

5 C s 2.9 0.0 0.0 0.4 0.0 0.1

5 C pz 0.0 0.0 0.0 0.0 16.5 0.0

5 C px 5.7 0.0 0.0 20.9 0.0 10.1

5 C py 0.0 16.5 1.3 0.0 0.0 0.0

5 C dxz 0.0 0.0 0.0 0.0 0.1 0.0

5 C dx2y2 0.6 0.0 0.0 0.2 0.0 1.2

5 C dxy 0.0 0.1 0.5 0.0 0.0 0.0

6 H s 7.5 0.0 7.5 2.5 0.0 2.5

7 H s 7.5 0.0 7.5 2.5 0.0 2.5

8 H s 7.5 0.0 0.0 10.0 0.0 9.9

9 H s 7.5 0.0 7.5 2.5 0.0 2.5

10 H s 7.5 0.0 7.5 2.5 0.0 2.5

11 H s 7.5 0.0 0.0 10.0 0.0 9.9

18 19 20 21 22 23

-0.49833 -0.33937 -0.33937 0.13472 0.13472 0.18198

2.00000 2.00000 2.00000 0.00000 0.00000 0.00000

-------- -------- -------- -------- -------- --------

0 C s 0.1 0.0 0.0 0.0 0.0 2.2

0 C pz 0.0 8.1 24.4 7.8 23.4 0.0

0 C px 0.1 0.0 0.0 0.0 0.0 0.6

0 C py 10.4 0.0 0.0 0.0 0.0 1.7

0 C dxz 0.0 0.4 0.2 0.7 0.7 0.0

0 C dyz 0.0 0.2 0.0 0.7 0.0 0.0

0 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2
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0 C dxy 1.0 0.0 0.0 0.0 0.0 0.5

1 C s 0.1 0.0 0.0 0.0 0.0 2.2

1 C pz 0.0 8.1 24.4 7.8 23.4 0.0

1 C px 0.1 0.0 0.0 0.0 0.0 0.6

1 C py 10.4 0.0 0.0 0.0 0.0 1.7

1 C dxz 0.0 0.4 0.2 0.7 0.7 0.0

1 C dyz 0.0 0.2 0.0 0.7 0.0 0.0

1 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2

1 C dxy 1.0 0.0 0.0 0.0 0.0 0.5

2 C s 0.0 0.0 0.0 0.0 0.0 2.2

2 C pz 0.0 32.5 0.0 31.2 0.0 0.0

2 C px 0.0 0.0 0.0 0.0 0.0 2.2

2 C py 11.6 0.0 0.0 0.0 0.0 0.0

2 C dxz 0.0 0.1 0.0 0.3 0.0 0.0

2 C dyz 0.0 0.0 0.8 0.0 1.8 0.0

2 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.7

2 C dxy 0.4 0.0 0.0 0.0 0.0 0.0

3 C s 0.1 0.0 0.0 0.0 0.0 2.2

3 C pz 0.0 8.1 24.4 7.8 23.4 0.0

3 C px 0.1 0.0 0.0 0.0 0.0 0.6

3 C py 10.4 0.0 0.0 0.0 0.0 1.7

3 C dxz 0.0 0.4 0.2 0.7 0.7 0.0

3 C dyz 0.0 0.2 0.0 0.7 0.0 0.0

3 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2

3 C dxy 1.0 0.0 0.0 0.0 0.0 0.5

4 C s 0.1 0.0 0.0 0.0 0.0 2.2

4 C pz 0.0 8.1 24.4 7.8 23.4 0.0

4 C px 0.1 0.0 0.0 0.0 0.0 0.6

4 C py 10.4 0.0 0.0 0.0 0.0 1.7

4 C dxz 0.0 0.4 0.2 0.7 0.7 0.0

4 C dyz 0.0 0.2 0.0 0.7 0.0 0.0

4 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2

4 C dxy 1.0 0.0 0.0 0.0 0.0 0.5

5 C s 0.0 0.0 0.0 0.0 0.0 2.2

5 C pz 0.0 32.5 0.0 31.2 0.0 0.0

5 C px 0.0 0.0 0.0 0.0 0.0 2.2

5 C py 11.6 0.0 0.0 0.0 0.0 0.0

5 C dxz 0.0 0.1 0.0 0.3 0.0 0.0

5 C dyz 0.0 0.0 0.8 0.0 1.8 0.0

5 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.7

5 C dxy 0.4 0.0 0.0 0.0 0.0 0.0

6 H s 7.4 0.0 0.0 0.0 0.0 11.5

7 H s 7.4 0.0 0.0 0.0 0.0 11.5

8 H s 0.0 0.0 0.0 0.0 0.0 11.5

9 H s 7.4 0.0 0.0 0.0 0.0 11.5

10 H s 7.4 0.0 0.0 0.0 0.0 11.5

11 H s 0.0 0.0 0.0 0.0 0.0 11.5

We see that the occupied π-orbitals number 16, 19, 20 and the unoccupied ones start with 21 and 22. However,

the sixth high-lying π∗-orbital cannot easily be found. Thus, let us run a simple selected CEPA/2 calculation

and look at the natural orbitals.

! RHF SV(P)

! moread
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%moinp "Test-CASSCF-Benzene-1.gbw"

%mrci citype cepa2

tsel 1e-5

natorbiters 1

newblock 1 *

nroots 1

refs cas(0,0) end

end

end

# ...etc, input of coordinates

The calculation prints the occupation numbers:

N[ 6] = 1.98784765

N[ 7] = 1.98513069

N[ 8] = 1.98508633

N[ 9] = 1.97963799

N[ 10] = 1.97957039

N[ 11] = 1.97737886

N[ 12] = 1.97509724

N[ 13] = 1.97370616

N[ 14] = 1.97360821

N[ 15] = 1.96960145

N[ 16] = 1.96958645

N[ 17] = 1.96958581

N[ 18] = 1.95478929

N[ 19] = 1.91751184

N[ 20] = 1.91747498

N[ 21] = 0.07186879

N[ 22] = 0.07181758

N[ 23] = 0.03203528

N[ 24] = 0.01766832

N[ 25] = 0.01757735

N[ 26] = 0.01708578

N[ 27] = 0.01707675

N[ 28] = 0.01671912

N[ 29] = 0.01526139

N[ 30] = 0.01424982

From these occupation number it becomes evident that there are several natural orbitals which are not quite

doubly occupied MOs. Those with an occupation number of 1.95 and less should certainly be taken as active.

In addition the rather strongly occupied virtual MOs 21-23 should also be active leading to CASSCF(6,6).

Let us see what these orbitals are before starting CASSCF:
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! RHF SV(P)

! moread noiter

%moinp "Test-CASSCF-Benzene-2.mrci.nat"

Leading to:

18 19 20 21 22 23

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

1.95479 1.91751 1.91747 0.07187 0.07182 0.03204

-------- -------- -------- -------- -------- --------

0 C pz 16.5 8.1 24.4 23.4 7.8 16.1

0 C dxz 0.0 0.4 0.2 0.6 0.9 0.1

0 C dyz 0.1 0.2 0.0 0.0 0.6 0.4

1 C pz 16.5 8.1 24.4 23.5 7.8 16.1

1 C dxz 0.0 0.4 0.2 0.6 0.9 0.1

1 C dyz 0.1 0.2 0.0 0.0 0.6 0.4

2 C pz 16.5 32.5 0.0 0.0 31.3 16.3

2 C dxz 0.1 0.1 0.0 0.0 0.2 0.5

2 C dyz 0.0 0.0 0.8 1.9 0.0 0.0

3 C pz 16.5 8.1 24.4 23.4 7.8 16.1

3 C dxz 0.0 0.4 0.2 0.6 0.9 0.1

3 C dyz 0.1 0.2 0.0 0.0 0.6 0.4

4 C pz 16.5 8.1 24.4 23.5 7.8 16.1

4 C dxz 0.0 0.4 0.2 0.6 0.9 0.1

4 C dyz 0.1 0.2 0.0 0.0 0.6 0.4

5 C pz 16.5 32.5 0.0 0.0 31.3 16.3

5 C dxz 0.1 0.1 0.0 0.0 0.2 0.5

5 C dyz 0.0 0.0 0.8 1.9 0.0 0.0

This shows us that these six orbitals are precisely the π/π∗ orbitals that we wanted to have active (you can

also plot them to get even more insight).

Now we know that the desired orbitals are in the correct order, we can do CASSCF:

! SV(P)

! moread

%moinp "Test-CASSCF-Benzene-2.mrci.nat"

%casscf nel 6

norb 6

nroots 1

mult 1

switchstep nr # For illustration purpose

end

To highlight the feature SwitchStep of the CASSCF program, we employ the the Newton-Raphson method

(NR) after a certain convergence has been reached (SwitchStep NR statement). In general, it is not

recommended to change the default convergence settings! The output of the CASSCF program is:
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------------------

CAS-SCF ITERATIONS

------------------

MACRO-ITERATION 1:

--- Inactive Energy E0 = -224.09726054 Eh

CI-ITERATION 0:

-230.5848801034 0.000000000000 ( 0.001) CI-PROBLEM SOLVED

DENSITIES MADE

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>

BLOCK 1 MULT= 1 NROOTS= 1

ROOT 0: E= -230.5848801035 Eh

0.90883 [ 0]: 222000

0.02462 [ 14]: 211110

0.01674 [ 729]: 22020 0.01674971 [ 264]: 2202200

0.01041 [ 5265]: 11011 0.01041170 [ 6350]: 1121101

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>

E(CAS)= -230.5848801034 E DE= 0.000000000

--- Canonicalize Internal Space

--- Canonicalize External Space

--- Energy gap subspaces: Ext-Act = -0.281 Act-Int = -0.001

--- current l-shift: Up(Ext-Act) = 1.88 Dn(Act-Int) = 1.60

N(occ)= 1.96763 1.92238 1.92238 0.07909 0.07909 0.02942

||g|| = 0.109239796 Max(G)= -0.049527078 Rot=45,20

--- Orbital Update [SuperCI(PT)]

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.151253839 Max(X)(48,23) = -0.070381658

--- SFit(Active Orbitals)

MACRO-ITERATION 2:

--- Inactive Energy E0 = -224.09030043 Eh

CI-ITERATION 0:

-230.590027459 0.000000000000 ( 0.001) CI-PROBLEM SOLVED

DENSITIES MADE

E(CAS)= -230.590027459 Eh DE= -0.005147355

--- Canonicalize Internal Space

--- Canonicalize External Space

--- Energy gap subspaces: Ext-Act = -0.252 Act-Int = -0.001

--- current l-shift: Up(Ext-Act) = 1.35 Dn(Act-Int) = 1.10

N(occ)= 1.96232 1.90547 1.9054763.09593498 0593490 0.03

||g|| = 0.032960383 Max(G)= -0.008631611 Rot=40,18

--- Orbital Update [SuperCI(PT)]

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.028051030 Max(X)(48,23) = -0.016849440

--- SFit(Active Orbitals)

MACRO-ITERATION 3:

--- Inactive Energy E0 = -224.07713574 Eh

CI-ITERATION 0:

-230.590266456 0.000000000000 ( 0.001) CI-PROBLEM SOLVED

DENSITIES MADE

E(CAS)= -230.590266456 Eh DE= -0.000238998

--- Canonicalize Internal Space
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--- Canonicalize External Space

--- Energy gap subspaces: Ext-Act = -0.242 Act-Int = -0.002

--- current l-shift: Up(Ext-Act) = 1.18 Dn(Act-Int) = 0.94

N(occ)= 1.96144 1.90281 1.9028146509852670 0852666 0.03

||g|| = 0.006907681 Max(G)= 0.003101930 Rot=404,18 --- Orbital Update [ SuperCI(PT)]

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.001982580 Max(X)(83,23) = -0.000919157

--- SFit(Active Orbitals)

MACRO-ITERATION 4:

===>>> Convergence to 3.0e-02 achieved - switching to Step=NR

--- Inactive Energy E0 = -224.07930018 Eh

CI-ITERATION 0:

-230.590270666 0.000000000000 ( 0.001) CI-PROBLEM SOLVED

DENSITIES MADE

E(CAS)= -230.590270666 Eh DE= -0.000004209

--- Energy gap subspaces: Ext-Act = 0.244 Act-Int = 0.056

--- current l-shift: Up(Ext-Act) = 0.36 Dn(Act-Int) = 0.54

N(occ)= 1.96136 1.90268 1.9026837.09865761 0865759 0.03

||g|| = 0.003412624 Max(G)= 0.000966040 Rot=31,13

--- Orbital Update [ NR]

AUGHESS-ITER 0: E= -0.000000953 <r|r>= 0.000004426

AUGHESS-ITER 1: E= -0.000001593 <r|r>= 0.000000616

AUGHESS-ITER 2: E= -0.000001707 <r|r>= 0.000000095

AUGHESS-ITER 3: E= -0.000001721 <r|r>= 0.000000018

AUGHESS-ITER 4: E= -0.000001725 <r|r>= 0.000000003 => CONVERGED

DE(predicted)= -0.000000862 First Element= 0.999999751

<X(rot)|X(rot)>= 0.000000498

--- SFit(Active Orbitals)

MACRO-ITERATION 5:

--- Inactive Energy E0 = -224.07767304 Eh

CI-ITERATION 0:

-230.590271531 0.000000000000 ( 0.001) CI-PROBLEM SOLVED

DENSITIES MADE

E(CAS)= -230.590271531 Eh DE= -0.000000865

--- Energy gap subspaces: Ext-Act = 0.244 Act-Int = 0.056

--- current l-shift: Up(Ext-Act) = 0.36 Dn(Act-Int) = 0.54

N(occ)= 1.96135 1.90266 1.9026670.098671 0098670 0.0599

||g|| = 0.000057975 Max(G)= 0.0000151393329989,16

---- THE CAS-SCF GRADIENT HAS CONVERGED ----

--- FINALIZING ORBITALS ---

---- DOING ONE FINAL ITERATION FOR PRINTING ----

--- Forming Natural Orbitals

--- Canonicalize Internal Space

--- Canonicalize External Space

MACRO-ITERATION 6:

--- Inactive Energy E0 = -224.07767304 Eh

--- All densities will be recomputed

CI-ITERATION 0:

-230.590271527 0.000000000000 ( 0.001) CI-PROBLEM SOLVED

DENSITIES MADE

E(CAS)= -230.590271527 Eh DE= 0.000000004

--- Energy gap subspaces: Ext-Act = -0.242 Act-Int = -0.002

--- current l-shift: Up(Ext-Act) = 0.84 Dn(Act-Int) = 0.60

N(occ)= 1.96135 1.90266 1.9026670.098671 0098670 0.0599
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||g|| = 0.000057984 Max(G)= 0.000014776 Rot=87,44--------------

CASSCF RESULTS

--------------

Final CASSCF energy : -230.590271527 Eh -6274.6803 eV

First of all you can see how the program cycles between CI-vector optimization and orbital optimization steps

(so-called unfolded two-step procedure). After 4 iterations, the program switches to the Newton-Raphson

solver which then converges very rapidly. Orbital optimization with the Newton-Raphson solver is somewhat

to the size of the molecules, as the program produces lengthy integrals and Hessian files. In the majority of

situations the default converger (SuperCI(PT)) is the preferred choice. [133]

8.1.7.4 CASSCF and Symmetry

The CASSCF program can make some use of symmetry. Thus, it is possible to do the CI calculations

separated by irreducible representations. This allows one to calculate electronic states in a more controlled

fashion.

Let us look at a simple example: C2H4. We first generate symmetry adapated MP2 natural orbitals. Since

we opt for initial guess orbitals, the computationally cheaper unrelaxed density suffices:

! def2-TZVP def2-TZVP/C UseSym RI-MP2 conv # conventional is faster for small molecules

%mp2

density unrelaxed

natorbs true

end

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 1.35 0 0

H 1 2 0 1.1 120 0

H 1 2 3 1.1 120 180

H 2 1 3 1.1 120 0

H 2 1 3 1.1 120 180

*

The program does the following. It first identifies the group correctly as D2h and sets up its irreducible repre-

sentations. The process detects symmetry within SymThresh (10−4) and purifies the geometry thereafter:

------------------

SYMMETRY DETECTION

------------------

Preparing Data ... done

Detection Threshold: SymThresh ... 1.0000e-04
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Point Group will now be determined:

Moving molecule to center of mass ... done

POINT GROUP ... D2h

The coordinates will now be cleaned:

Moving to standard coord frame ... done

(Changed the main axis to z and one of the C2’s to x)

Structure cleanup requested ... yes

Selected point group ... D2h

Cleaning Tolerance SymThresh ... 1.0000e-04

Some missing point group data is constructed:

Constructing symmetry operations ... done

Creating atom transfer table ... done

Creating asymmetric unit ... done

Cleaning coordinates ... done

-----------------------------------------------

SYMMETRY-PERFECTED CARTESIAN COORDINATES (A.U.)

-----------------------------------------------

0 C 1.27556514 0.00000000 0.00000000

1 C -1.27556514 0.00000000 0.00000000

2 H 2.31491451 1.80020592 0.00000000

3 H 2.31491451 -1.80020592 0.00000000

4 H -2.31491451 1.80020592 0.00000000

5 H -2.31491451 -1.80020592 0.00000000

------------------

SYMMETRY REDUCTION

------------------

ORCA supports only abelian point groups.

It is now checked, if the determined point group is supported:

Point Group ( D2h ) is ... supported

(Re)building abelian point group:

Creating Character Table ... done

Making direct product table ... done

----------------------

ASYMMETRIC UNIT IN D2h

----------------------

# AT MASS COORDS (A.U.) BAS

0 C 12.0110 1.27556514 0.00000000 0.00000000 0

2 H 1.0080 2.31491451 1.80020592 0.00000000 0

----------------------

SYMMETRY ADOPTED BASIS

----------------------

The coefficients for the symmetry adopted linear combinations (SALCS)

of basis functions will now be computed:

Number of basis functions ... 86

Preparing memory ... done

Constructing Gamma(red) ... done

Reducing Gamma(red) ... done
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Constructing SALCs ... done

Checking SALC integrity ... nothing suspicious

Normalizing SALCs ... done

Storing the symmetry object:

Symmetry file ... Test-SYM-CAS-C2H4-1.sym.tmp

Writing symmetry information ... done

It then performs the SCF calculation and keeps the symmetry in the molecular orbitals.

NO OCC E(Eh) E(eV) Irrep

0 2.0000 -11.236728 -305.7669 1-Ag

1 2.0000 -11.235157 -305.7242 1-B3u

2 2.0000 -1.027144 -27.9500 2-Ag

3 2.0000 -0.784021 -21.3343 2-B3u

4 2.0000 -0.641566 -17.4579 1-B2u

5 2.0000 -0.575842 -15.6694 3-Ag

6 2.0000 -0.508313 -13.8319 1-B1g

7 2.0000 -0.373406 -10.1609 1-B1u

8 0.0000 0.139580 3.7982 1-B2g

9 0.0000 0.171982 4.6799 4-Ag

10 0.0000 0.195186 5.3113 3-B3u

11 0.0000 0.196786 5.3548 2-B2u

12 0.0000 0.242832 6.6078 2-B1g

13 0.0000 0.300191 8.1686 5-Ag

14 0.0000 0.326339 8.8801 4-B3u

... etc

The MP2 module does not take any advantage of this information but produces natural orbitals that are

symmetry adapted:

N[ 0](B3u) = 2.00000360

N[ 1]( Ag) = 2.00000219

N[ 2]( Ag) = 1.98056435

N[ 3](B3u) = 1.97195041

N[ 4](B2u) = 1.96746753

N[ 5](B1g) = 1.96578954

N[ 6]( Ag) = 1.95864726

N[ 7](B1u) = 1.93107098

N[ 8](B2g) = 0.04702701

N[ 9](B3u) = 0.02071784

N[ 10](B2u) = 0.01727252

N[ 11]( Ag) = 0.01651489

N[ 12](B1g) = 0.01602695

N[ 13](B3u) = 0.01443373

N[ 14](B1u) = 0.01164204

N[ 15]( Ag) = 0.01008617

N[ 16](B2u) = 0.00999302

N[ 17]( Ag) = 0.00840326

N[ 18](B3g) = 0.00795053

N[ 19](B3u) = 0.00532044

N[ 20]( Au) = 0.00450556

etc.
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From this information and visual inspection you will know what orbitals you will have in the active space:

These natural orbitals can then be fed into the CASSCF calculation. We perform a simple calculation in

which we keep the ground state singlet (A1g symmetry, irrep=0) and the first excited triplet state (B3u

symmetry, irrep=7). In general the ordering of irreps follows standard conventions and in case of doubt you

will find the relevant number for each irrep in the output.

For example, here (using LargePrint):

----------------------------

CHARACTER TABLE OF GROUP D2h

----------------------------

GAMMA O1 O2 O3 O4 O5 O6 O7 O8

Ag : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B1g: 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0

B2g: 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0

B3g: 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0

Au : 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

B1u: 1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0

B2u: 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0

B3u: 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0

---------------------------------

DIRECT PRODUCT TABLE OF GROUP D2h

---------------------------------

** Ag B1g B2g B3g Au B1u B2u B3u

Ag Ag B1g B2g B3g Au B1u B2u B3u

B1g B1g Ag B3g B2g B1u Au B3u B2u

B2g B2g B3g Ag B1g B2u B3u Au B1u

B3g B3g B2g B1g Ag B3u B2u B1u Au

Au Au B1u B2u B3u Ag B1g B2g B3g

B1u B1u Au B3u B2u B1g Ag B3g B2g

B2u B2u B3u Au B1u B2g B3g Ag B1g

B3u B3u B2u B1u Au B3g B2g B1g Ag

We use the following input for CASSCF, where we tightened the integral cut-offs and the the convergence

criteria using !VeryTightSCF.

! def2-TZVP Conv NormalPrint UseSym

! moread

%moinp "Test-SYM-CAS-C2H4-1.mp2nat"

%casscf nel 4

norb 4

# This is only here to show that NR can also be used from

# the start with orbstep

orbstep nr

switchstep nr

# the lowest singet and triplet states. The new feature

# is the array "irrep" that lets you give the irrep for

# a given block. Thus, now you can have several blocks of
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# the same multiplicity but different spatial symmetry

irrep 0,7

mult 1,3

nroots 1,1

end

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 1.35 0 0

H 1 2 0 1.1 120 0

H 1 2 3 1.1 120 180

H 2 1 3 1.1 120 0

H 2 1 3 1.1 120 180

*

And gives:

------------

SCF SETTINGS

------------

Hamiltonian:

Ab initio Hamiltonian Method .... Hartree-Fock(GTOs)

General Settings:

Integral files IntName .... Test-SYM-CAS-C2H4-1

Hartree-Fock type HFTyp .... CASSCF

Total Charge Charge .... 0

Multiplicity Mult .... 1

Number of Electrons NEL .... 16

Basis Dimension Dim .... 86

Nuclear Repulsion ENuc .... 32.9609050695 Eh

Symmetry handling UseSym .... ON

Point group .... D2h

Used point group .... D2h

Number of irreps .... 8

Irrep Ag has 19 symmetry adapted basis functions (ofs= 0)

Irrep B1g has 12 symmetry adapted basis functions (ofs= 19)

Irrep B2g has 8 symmetry adapted basis functions (ofs= 31)

Irrep B3g has 4 symmetry adapted basis functions (ofs= 39)

Irrep Au has 4 symmetry adapted basis functions (ofs= 43)

Irrep B1u has 8 symmetry adapted basis functions (ofs= 47)

Irrep B2u has 12 symmetry adapted basis functions (ofs= 55)

Irrep B3u has 19 symmetry adapted basis functions (ofs= 67)

And further in the CASCSF program:
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Symmetry handling UseSym ... ON

Point group ... D2h

Used point group ... D2h

Number of irreps ... 8

Irrep Ag has 19 SALCs (ofs= 0) #(closed)= 2 #(active)= 1

Irrep B1g has 12 SALCs (ofs= 19) #(closed)= 1 #(active)= 0

Irrep B2g has 8 SALCs (ofs= 31) #(closed)= 0 #(active)= 1

Irrep B3g has 4 SALCs (ofs= 39) #(closed)= 0 #(active)= 0

Irrep Au has 4 SALCs (ofs= 43) #(closed)= 0 #(active)= 0

Irrep B1u has 8 SALCs (ofs= 47) #(closed)= 0 #(active)= 1

Irrep B2u has 12 SALCs (ofs= 55) #(closed)= 1 #(active)= 0

Irrep B3u has 19 SALCs (ofs= 67) #(closed)= 2 #(active)= 1

Symmetries of active orbitals:

MO = 6 IRREP= 0 (Ag)

MO = 7 IRREP= 5 (B1u)

MO = 8 IRREP= 2 (B2g)

MO = 9 IRREP= 7 (B3u)

Setting up the integral package ... done

Building the CAS space ... done (7 configurations for Mult=1 Irrep=0)

Building the CAS space ... done (4 configurations for Mult=3 Irrep=7)

Note that the irrep occupations and active space irreps will be frozen to what they are upon entering the

CASSCF program. This helps to setup the CI problem.

After which it smoothly converges to give:

6: 1.986258 -0.753012 -20.4905 3-Ag

7: 1.457849 -0.291201 -7.9240 1-B1u

8: 0.541977 0.100890 2.7454 1-B2g

9: 0.013915 0.964186 26.2368 3-B3u

As well as:

-----------------------------

SA-CASSCF TRANSITION ENERGIES

------------------------------

LOWEST ROOT = -78.110314788 Eh -2125.490 eV

STATE ROOT MULT IRREP DE/a.u. DE/eV DE/cm**-1

1: 0 3 B3u 0.163741 4.456 35937.1

8.1.7.5 RI, RIJCOSX and RIJK approximations for CASSCF

A significant speedup of CASSCF calculations on larger molecules can be achieved with the RI, RI-JK and

RIJCOSX approximations. [133] There are two independent integral generation and transformation steps in

a CASSCF procedure. In addition to the usual Fock matrix construction, that is central to HF and DFT

approaches, more integrals appear in the construction of the orbital gradient and Hessian. The latter are

approximated using the keyword trafostep RI, where an auxiliary basis (/C or the more accurate /JK
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auxiliary basis) is required. Note that auxiliary basis sets of the type /J are not sufficient to fit these integrals.

If no suitable auxiliary basis set is available, the AutoAux feature might be useful (see comment in the input

below). [134] We note passing, with ORCA 4.1 there are in principle three distinguished auxiliary basis slots,

that can be individually assigned in the %basis block (section 9.4). As an example, we recompute the bezene

ground state example from section 8.1.7.3 with a CAS(6,6).

! SV(P) def2-svp/C

! moread

%moinp "Test-CASSCF-Benzene-2.mrci.nat"

# Commented out: Detailed settings of the auxiliary basis in the %basis block,

# where the AuxC slot is relevant for the option TrafoStep RI.

# %basis

# auxC "def2-svp/C" # "AutoAux" or "def2/JK"

# end

%casscf nel 6

norb 6

nroots 1

mult 1

trafostep ri

end

The energy of this calculation is -230.590328 Eh compared to the previous result -230.590271 Eh. Thus,

the RI error is only 0.06 mEh which is certainly negligible for all intents and purposes. With the larger /JK

auxiliary basis the error is typically much smaller (0.02 mEh in this example). Even if more accurate results

are necessary, it is a good idea to pre-converge the CASSCF with RI. The resulting orbitals should be a much

better guess for the subsequent calculation without RI and thus save computation time.

The TrafoStep RI only affects the integral transformation in CASSCF calculations while the Fock operators

are still calculated in the standard way using four index integrals. In order to fully avoid any four-index

integral evaluation, you can significantly speed up the time needed in each iteration by specifying !RIJCOSX.

The keyword implies TrafoStep RI. The COSX approximation is used for the construction of the Fock

matrices. In this case, an additional auxiliary basis (/J auxiliary basis) is mandatory.

! SV(P) def2-svp/C RIJCOSX def2/J

! moread

%moinp "Test-CASSCF-Benzene-2.mrci.nat"

# Commented out: Detailed settings of the auxiliary basis in the %basis block,

# where the AuxJ and AuxC slot are mandatory.

# %basis

# auxJ "def2/J" # "AutoAux"

# auxC "def2-svp/C" # "AutoAux", "def2/JK"

# end
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%casscf nel 6

norb 6

nroots 1

mult 1

end

The speedup and accuracy is similar to what is observed in RHF and UHF calculations. In this example

the RIJCOSX leads to an error of 1 mEh. The methodology performs better for the computation of energy

differences, where it profits from error cancellation. The RIJCOSX is ideally suited to converge large-scale

systems. Note that for large calculations the integral cut-offs and numerical grids should be tightened. See

section 9.3.2.7 for details. With a floppy numerical grid setting the accuracy as well as the convergence

behavior of CASSCF deteriorate. For systems that are large but still feasible for a conventional calculation it

is recommended to use the RIJK approximations instead (!RIJK conv). To exploit the conventional nature,

a single auxiliary basis must be provided that is sufficiently larger to approximate the Fock matrices

as well the gradient/Hessian integrals.

! SV(P) RIJK conv def2/JK

# Commented out: Detailed settings of the auxiliary basis in the %basis block,

# where only the auxJK slot must be set.

# %basis

# auxJK "def2/JK" # or "AutoAux"

# end

The RIJK methodology is more accurate and robust for CASSCF e.g. here the error is just 0.5 mEH.

Organic molecules with nearly double occupied orbitals can be challenge for the orbital optimization

process. We compare calculations done with/without the NR solver:

! SV(P)

! moread

%moinp "Test-CASSCF-Benzene-2.mrci.nat"

%casscf nel 6

norb 6

nroots 1

mult 1

# overwriting default settings with NR close to convergence

switchstep NR

end

The NR variant takes 5 cylces to converge, whereas the default (SuperCI PT) requires 8 cycles. In general,

first order methods, take more iterations compared to the NR method. However, first order methods are
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much cheaper than the NR and therefore it may pay off to do a few iterations more rather than switching

to the expensive second order methods. Moreoever, second order methods are less robust and may diverge

in certain circumstances (too far from convergence). When playing with the convergence settings, there is

always a trade-off between speed versus robustness. The default settings are chosen carefully. [133] Facing

convergence problems, it can be useful to use an alternative scheme (orbstep SuperCI and switchstep

DIIS) in conjunction with a level-shifts (ShiftUp, ShiftDn). Alternatively, changing the guess orbitals may

avoid convergence problems as well.

8.1.7.6 Breaking Chemical Bonds

Let us turn to the breaking of chemical bonds. As a first example we study the dissociation of the H2 molecule.

Scanning a bond, we have two potential setups for the calculation: a) scan from the inside to the outside or

b) from the outside to inside. Of course both setups yield identical results, but they differ in practical aspects

i.e. convergence properties. In general, scanning from the outside to the inside is the recommended

procedure. Using the default guess (PModel), starting orbitals are much easier indentified than at shorter

distances, where the antibonding orbitals are probably ‘impure’ and hence would require some additional

preparation. To ensure a smooth potential energy surface, in all subsequent geometry steps, ORCA reads the

converged CASSCF orbitals from the previous geometry step. In the following, TightSCF is used to tighten

the convergence settings of CASSCF.

# Starting from default guess= PModel

!SVP TightSCF

%casscf nel 2

norb 2

mult 1

nroots 1

end

# Scanning from the outside to the inside

%paras R [4.1 3.8 3.5 3.2 2.9 2.6 2.4 2.2

2 1.7 1.5 1.3 1.1 1 0.9 0.8

0.75 0.7 0.65 0.6]

end

* xyz 0 1

h 0 0 0

h 0 0 {R}

*

The resulting potential energy surface (PES) is depicted in 8.10 together with PESs obtained from RHF and

broken-symmetry UHF calculations (input below).
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! RHF SVP TightSCF

# etc...

And

! UHF SVP TightSCF

%scf FlipSpin 1 FinalMs 0.0

end

Figure 8.10: Potential Energy Surface of the H2 molecule from RHF, UHF and CASSCF(2,2) cal-
culations (SVP basis).

It is obvious, that the CASSCF surface is concise and yields the correct dissociation behavior. The RHF

surface is roughly parallel to the CASSCF surface in the vicinity of the minimum but then starts to fail badly

as the H-H bond starts to break. The broken-symmetry UHF solution is identical to RHF in the vicinity of

the minimum and dissociates correctly. It is, however, of rather mediocre quality in the intermediate region

where it follows the RHF surface too long too closely.

A more challenging case is to dissociate the N-N bond of the N2 molecule correctly. Using CASSCF with the

six p-orbitals we get a nice potential energy curve (The depth of the minimum is still too shallow compared

to experiment by some 1 eV or so. A good dissociation energy requires a dynamic correlation treatment on

top of CASSCF and a larger basis set).

One can use the H2 example to illustrate the state-averaging feature. Since we have two active electrons we

have two singlets and one triplet. Let us average the orbitals over these three states (we take equal weights

for all multiplicity blocks):

!SVP TightSCF

%casscf nel 2
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Figure 8.11: Potential Energy Surface of the N2 molecule from CASSCF(6,6) calculations (SVP
basis).

norb 2

mult 1,3

nroots 2,1

# weighting below corresponds the program default

# and does not need to be specified explicitly

bweight = 1,1 #equal weights per multiplicity blocks.

weights[0] = 1,1 #equal weights within a given multiplicity block

weights[1] = 1

end

which gives:
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Figure 8.12: State averaged CASSCF(2,2) calculations on H2 (two singlets, one triplet; SVP basis).
The grey curve is the ground state CASSCF(2,2) curve

One observes, that the singlet and triplet ground states become degenerate for large distances (as required)

while the second singlet becomes the ionic singlet state which is high in energy. If one compares the lowest

root of the state-averaged calculation (in green) with the dedicated ground state calculation (in grey) one

gets an idea of the energetic penalty that is associated with averaged as opposed to dedicated orbitals.

A more involved example is the rotation around the double bond in C2H4. Here, the π-bond is broken as one

twists the molecule. The means the proper active space consists of two active electron in two orbitals.

The input is (for fun, we average over the lowest two singlets and the triplet):

!def2-SV(P) def2-SVP/C SmallPrint NoPop NoMOPrint

%casscf nel = 2

norb = 2

mult = 1,3

nroots = 2,1

bweight = 2,1

weights[0] = 1,1

weights[1] = 1

TrafoStep RI

end

%paras R= 1.3385

Alpha=0,180,37

end

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 {R} 0 0
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H 1 2 0 1.07 120 0

H 1 2 3 1.07 120 180

H 2 1 3 1.07 120 {Alpha}

H 2 1 3 1.07 120 {Alpha+180}

*

Figure 8.13: State averaged CASSCF(2,2) calculations on C2H4 (two singlets, one triplet; SV(P)
basis). The grey curve is the state averaged energy and the purple curve corresponds
to RHF.

We can see from this plot, that the CASSCF method produces a nice ground state surface with the correct

periodicity and degeneracy at the end points, which represent the planar ethylene molecule. At 90◦ one has

a weakly coupled diradical and the singlet and triplet states become nearly degenerate, again as expected.

Calculations with larger basis sets and inclusion of dynamic correlation would give nice quantitative results.

We have also plotted the RHF energy (in purple) which gives a qualitatively wrong surface and does not

return to the correct solution for planar ethylene. It is evident that even high quality dynamic correlation

treatments like CC or CI would hardly be able to repair the shortcomings of the poor RHF reference state.

In all these cases, CASSCF is the proper starting point for higher accuracy.

8.1.7.7 Excited States

As a final example, we do a state-average calculation on H2CO in order to illustrate excited state treatments.

We expect from the ground state (basically closed-shell) a n → π∗ and a π → π∗ excited state which we want

to describe. For the n→ π∗ we also want to calculate the triplet since it is well known experimentally. First

we take DFT orbitals as starting guess, which in this example produces the desired active space (n,π and

π∗ orbitals) without further modification (e.g. swaping orbitals). In general it is adviced to verify the final

converged orbitals.
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! BP86 ma-def2-SVP TightSCF

%base "1"

*int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

$new_job

! ma-def2-SVP TightSCF

! moread

%moinp "1.gbw"

%base "Test-CASSCF.H2CO-1"

%casscf nel 4

norb 3

mult 1,3

nroots 3,1

end

*int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

We get:

-----------------------------

SA-CASSCF TRANSITION ENERGIES

------------------------------

LOWEST ROOT (ROOT 0 ,MULT 1) = -113.805194041 Eh -3096.797 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1

1: 0 3 0.129029 3.511 28318.5

2: 1 1 0.141507 3.851 31057.3

3: 2 1 0.453905 12.351 99620.7

The triplet n → π∗ states is spot on with the experiment excitation energy of 3.5 eV. [135] Similarly,

the singlet n → π∗ excited state is well reproduced compared to 3.79 eV and 4.07 eV reported in the

litterature. [135,136] Only the singlet π → π∗ excited state stands out compared to the theoretical estimate
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of 9.84 eV computed with MR-AQCC. [137]. The good results are very fortuitous given the small basis set,

the minimal active space and the complete neglect of dynamical correlation.

The state-average procedure might not do justice to the different nature of the states (n → π∗ versus

π → π∗). The agreement should be better with the orbitals optimized for each state. In ORCA, state-

speficic optimization are realized adjusting the weights i.e. for the second singlet excited root:

Second-Singlet:

%casscf nel 4

norb 3

mult 1

nroots 3

weights[0] = 0,0,1 # weights for the roots in the first mult block (singlet)

end

Note, that state-specific orbital optimization are challenging to converge and often prone to root-flipping. [138]

In our particular case, no problems occur repeating the calculation for each state. Gathering the results from

the four independent calculations, we can manually compute the excitation energy:

Ground State : -113.8190890919 Eh

Mult=1 Root=1: -4.13 eV # n->pi*

Mult=1 Root=2: -11.28 eV # pi->pi*

Mult=2 Root=0: -3.76 eV # n->pi*

While the n → π∗ excitation energies remain in good agreement, there is a palpable improvement for the

π → π∗ excitation state. From here, it is easy to enlarge the basis set and account for dynamical correlation

(e.g. NEVPT2) to further improve the excitation energies.

8.1.7.8 CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations

Consider the possibility that you are not sure about the orbital occupancy of your system. Hence you

carry out some CASSCF calculation for various states of the system in an effort to decide on the ground

state. You can of course follow the CASSCF by MR-MP2 or MR-ACPF or SORCI calculations to get a true

multireference result for the state ordering. Yet, in some cases you may also want to obtain a coupled-cluster

estimate for the state energy difference. Converging coupled-cluster calculation on alternative states in

a controlled manner is anything but trivial. Here a feature of ORCA might be helpful. The best single

configuration that resembles a given CASSCF state is built from the natural orbitals of this state. These

orbitals are also ordered in the right way to be input into the MDCI program. The convergence to excited

states is, of course, not without pitfalls and limitations as will become evident in the two examples below.

As a negative example consider first the following interesting dicarbene.

For this molecule we expect that we should use four active orbitals and four active electrons and that singlet,

triplet and quintet states might be accessible. We start with a simple CASSCF(4,4) optimization on the

lowest singlet state.



132 8 Running Typical Calculations

! SV(P) Conv TightSCF Opt

%casscf nel 4 norb 4 end

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 1.45 0 0

C 2 1 0 1.45 109.4712 0

H 1 2 3 1.1 109.4712 0

H 3 2 1 1.1 109.4712 0

H 2 1 3 1.1 109.4712 240

H 2 1 3 1.1 109.4712 120

*

Of course, one should also do optimizations on the the other two spin states (and with larger basis sets) but

for the sake of the argument, we stick to the singlet structure. Next, the natural orbitals for each state are

generated with the help of the MRCI module. To this end we run a state averaged CASSCF for the lowest

four singlet, two triplets and the quintet and pass that information on to the MRCI module that does a

CASCI only (e.g. no excitations):

! ano-pVDZ Conv TightSCF MRCI

%casscf nel 4

norb 4

mult 1,3,5

nroots 4,2,1

end

%mrci tsel 0

tpre 0

donatorbs 2

densities 5,1

newblock 1 * nroots 4 excitations none refs cas(4,4) end end

newblock 3 * nroots 2 excitations none refs cas(4,4) end end

newblock 5 * nroots 1 excitations none refs cas(4,4) end end

end

* int 0 1

C 0 0 0 0.000000000000 0.00000000 0.00000000

C 1 0 0 1.494834528132 0.00000000 0.00000000

C 2 1 0 1.494834528211 105.15548921 0.00000000

H 1 2 3 1.083843964350 129.42964540 0.00000000

H 3 2 1 1.083843964327 129.42964555 0.00000000

H 2 1 3 1.094075308221 111.18220523 239.57277074

H 2 1 3 1.094075308221 111.18220523 120.42722926

*
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This produces the files: BaseName.bm sn.nat where “m” is the number of the block (m=0,1,2 correspond to

singlet, triplet and quintet respectively) and “n” stands for the relevant state (n=0,1,2,3 for singlet, n=0,1

for triplet and n=0 for quintet).

These natural orbitals are then fed into unrestricted QCISD(T) calculations:

! UHF ano-pVDZ Conv TightSCF AOX-QCISD(T)

! moread noiter

%moinp "C05S01_101.b0_s0.nat"

* int 0 1

C 0 0 0 0.000000000000 0.00000000 0.00000000

C 1 0 0 1.494834528132 0.00000000 0.00000000

C 2 1 0 1.494834528211 105.15548921 0.00000000

H 1 2 3 1.083843964350 129.42964540 0.00000000

H 3 2 1 1.083843964327 129.42964555 0.00000000

H 2 1 3 1.094075308221 111.18220523 239.57277074

H 2 1 3 1.094075308221 111.18220523 120.42722926

*

This produces the energies:

State Energy (Eh) Relative Energy (cm−1)

S0 -116.190768 0

S1 -116.067138 27133.0

S2 -116.067138 27133.0

S3 -116.067138 27133.0

T0 -116.155421 7757.6

T1 -116.113969 16855.1

Q0 -116.134575 12332.6

It is found that the calculations indeed converge to different states. The excited singlets all fall down to the

same state that is approximately 27,000 cm−1 above the lowest solution. The triplets are distinct and the

quintet is unique anyways. Inspection of the coupled-cluster wavefunctions indicate that the singlet converged

to the closed-shell solution and the first doubly excited state respectively.

These energies can be compared with the genuine multireference calculation obtained from the SORCI

method:

! ano-pVDZ Conv TightSCF SORCI

%casscf nel 4

norb 4

mult 1,3,5

nroots 4,2,1
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end

* int 0 1

C 0 0 0 0.000000000000 0.00000000 0.00000000

C 1 0 0 1.494834528132 0.00000000 0.00000000

C 2 1 0 1.494834528211 105.15548921 0.00000000

H 1 2 3 1.083843964350 129.42964540 0.00000000

H 3 2 1 1.083843964327 129.42964555 0.00000000

H 2 1 3 1.094075308221 111.18220523 239.57277074

H 2 1 3 1.094075308221 111.18220523 120.42722926

*

Which produces:

State Mult Irrep Root Block mEh eV 1/cm

0 1 -1 0 2 0.000 0.000 0.0

1 3 -1 0 1 1.355 0.037 297.3

2 5 -1 0 0 26.113 0.711 5731.1

3 3 -1 1 1 41.126 1.119 9026.1

4 1 -1 2 2 79.540 2.164 17457.0

5 1 -1 1 2 84.407 2.297 18525.3

6 1 -1 3 2 86.175 2.345 18913.3

With the description of the wavefunctions:

Singlets:

STATE 0: Energy= -115.944916420 Eh RefWeight= 0.9224 0.00 eV 0.0 cm**-1

0.3547 : h---h---[2020]

0.3298 : h---h---[2002]

0.1034 : h---h---[1111]

0.0681 : h---h---[0220]

0.0663 : h---h---[0202]

STATE 1: Energy= -115.860508938 Eh RefWeight= 0.9140 2.30 eV 18525.3 cm**-1

0.6769 : h---h---[2200]

0.0638 : h---h---[2020]

0.0710 : h---h---[2002]

0.0877 : h---h---[1111]

0.0039 : h---h---[0220]

0.0051 : h---h---[0202]

0.0055 : h---h---[0022]

STATE 2: Energy= -115.865376460 Eh RefWeight= 0.8969 2.16 eV 17457.0 cm**-1

0.7789 : h---h---[2110]

0.0920 : h---h---[1201]

0.0149 : h---h---[1021]

0.0112 : h---h---[0112]

0.0038 : h---h 6[2120]

0.0049 : h---h---[2100]p14

0.0036 : h---h---[1110]p13

STATE 3: Energy= -115.858741082 Eh RefWeight= 0.8988 2.34 eV 18913.3 cm**-1

0.7580 : h---h---[2101]

0.1089 : h---h---[1210]

0.0221 : h---h---[1012]
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0.0098 : h---h---[0121]

0.0064 : h---h 6[2111]

0.0037 : h---h---[1101]p13

Triplets:

STATE 0: Energy= -115.943561881 Eh RefWeight= 0.9210 0.00 eV 0.0 cm**-1

0.6638 : h---h---[2011]

0.0675 : h---h---[1120]

0.0651 : h---h---[1102]

0.1246 : h---h---[0211]

STATE 1: Energy= -115.903790291 Eh RefWeight= 0.9171 1.08 eV 8728.9 cm**-1

0.6861 : h---h---[2110]

0.1914 : h---h---[1201]

0.0244 : h---h---[1021]

0.0152 : h---h---[0112]

Quintets:

STATE 0: Energy= -115.918803447 Eh RefWeight= 0.9263 0.00 eV 0.0 cm**-1

0.9263 : h---h---[1111]

Thus, the singlet ground state is heavily multiconfigurational, the lowest triplet state is moderately multicon-

figurational and the lowest quintet state is of course a single configuration. Interstingly, the lowest singlet,

triplet and quintet do not form a regular spin ladder which might have been expected if one considers the

system of being composed of two interacting S=1 systems. Rather, the lowest singlet and triplet states are

close in energy while the lowest quintet is far away.

The energies are completely different from the QCISD(T) results. However, this is not unexpected based on

the composition of these wavefunctions. These are the limitations of single reference methods. Nevertheless,

this shows how such results can be obtained in principle.

As a more positive example, consider some ionized states of the water cation:

First the natural orbital generation:

! ano-pVDZ Conv TightSCF

%casscf nel 7

norb 6

nroots 3

end

%mrci tsel 0

tpre 0

donatorbs 2

densities 5,1

newblock 2 *

nroots 3

excitations none

refs cas(7,6)end

end

end
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* int 1 2

O 0 0 0 0.000000 0.000 0.000

H 1 0 0 1.012277 0.000 0.000

H 1 2 0 1.012177 109.288 0.000

*

Then the SORCI reference calculation:

! ano-pVDZ Conv TightSCF SORCI

%casscf nel 7

norb 6

nroots 3

end

* int 1 2

O 0 0 0 0.000000 0.000 0.000

H 1 0 0 1.012277 0.000 0.000

H 1 2 0 1.012177 109.288 0.000

*

Then the three QCISD(T) calculations

! UHF ano-pVDZ Conv TightSCF QCISD(T)

! moread noiter

%moinp "H2O+-02.b0_s0.nat"

* int 1 2

O 0 0 0 0.000000 0.000 0.000

H 1 0 0 1.012277 0.000 0.000

H 1 2 0 1.012177 109.288 0.000

*

we obtain the transition energies:

SORCI QCISD(T) (in cm-1)

D0 0 0.0

D1 16269 18283

D2 50403 50509
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Thus, in this example the agreement between single- and multireference methods is good and the unrestricted

QCISD(T) method is able to describe these excited doublet states. The natural orbitals have been a reliable

way to guide the CC equations into the desired solutions. This will work in many cases.

8.1.7.9 Large Scale CAS-SCF calculations using ICE-CI

The CASSCF procedure can be used for the calculation of spin-state energetics of molecules showing a

multi-reference character via the state-averaged CASSCF protocol as described in the CASSCF section 9.13.

The main obstacle in getting qualitatively accurate spin-state energetics for molecules with many transition

metal centers is the proper treatment of the static-correlation effects between the large number of open-shell

electrons. In this section, we describe how one can effectively perform CASSCF calculations on such systems

containing a large number of high-spin open-shell transition metal atoms.

As an example, consider the Iron-Sulfur dimer [Fe(III)2SR2]2- molecule. In this system, the Fe(III) centers can

be seen as being made up mostly of S=5/2 local spin states (lower spin states such as 3/2 and 1/2 will have

small contributions due to Hunds’ rule.) The main hurdle while using the CASSCF protocol on such systems

(with increasing number of metal atoms) is the exponential growth of the Hilbert space although the physics

can be effectively seen as occuring in a very small set of configuration state functions (CSFs). Therefore, in

order to obtain qualitatively correct spin-state energetics, one need not perform a Full-CI on such molecules

but rather a CIPSI like procedure using the ICE-CI solver should give chemically accurate results. In the

case of the Fe(III) dimer, one can imagine that the ground singlet state is composed almost entirely of the

CSF where the two Fe(III) centers are coupled antiferromagnetically. Such a CSF is represented as follows:

∣∣ΨS=0
0

〉
= [1, 1, 1, 1, 1,−1,−1,−1,−1,−1] (8.11)

In order to make sense of this CSF representation, one needs to clarify a few points which are as follows:

• First, in the above basis the 10 orbitals are localized to 5 on each Fe center (following a high-spin

UHF/UKS calculation.)

• Second, the orbitals are ordered (as automatically done in ORCA LOC) such that the first five orbitals

lie on one Fe(III) center and the last five orbitals on the second Fe(III) center.

Using this ordering, one can read the CSF shown above in the following way: The first five 1 represent the

five electrons on the first Fe(III) coupled in a parallel fashion to give a S=5/2 spin. The next five -1 represent

two points:

• First, the five consecutive -1 signify the presence of five ferromagnetically coupled electrons on the

second Fe(III) center resulting in a local S=5/2 spin state.

• Second, the second set of spins are coupled to the first 1 via anti-parallel coupling as signified by the

-ve sign of the last five -1 s.

Therefore, we can see that using the CSF representation, one can obtain an extremely compact representation

of the wavefunction for molecules consisting of open-shell transition metal atoms. This protocol of using

localized orbitals in a specified order to form compact CSF representations for transition metal systems can

be systematically extended for large molecules.
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We will use the example of the Iron-Sulfur dimer [Fe(III)2SR2]2- to demonstrate how to prepare a reference

CSF and perfom spin-state energetics using the state-averaged CASSCF protocol. In such systems, often one

can obtain an estimate of the energy gap between the singlet-state and the high-spin states from experiment.

Ab initio values for this gap be obtained using the state-averaged CASSCF protocol using the input shown

below.

! def2-SVP

! MOREAD

%moinp "88_97_blockf.gbw"

%casscf nel 10

norb 10

mult 11,1

nroots 1,1

refs # reference for multiplicity 11

{ 1 1 1 1 1 1 1 1 1 1}

end

refs # reference for multiplicity 1

{ 1 1 1 1 1 -1 -1 -1 -1 -1}

end

cistep ice

ci

icetype 1

end

actorbs unchanged

end

* xyz -2 11

Fe 0.000000000 0.000000000 -1.343567812

Fe 0.000000000 0.000000000 1.343567812

S 1.071733501 1.373366082 0.000000000

S 1.346714284 -1.345901486 -2.651621449

S -1.346714284 1.345901486 -2.651621449

S -1.071733501 -1.373366082 0.000000000

S -1.346714284 1.345901486 2.651621449

S 1.346714284 -1.345901486 2.651621449

C -2.485663304 0.362543393 -3.600795276

H -3.319937516 0.596731755 -3.505882795

H -2.347446507 0.388292903 -4.463380590

H -2.472404709 -0.485711203 -3.404167343

C 2.485663304 -0.362543393 -3.600795276

H 3.319937516 -0.596731755 -3.505882795

H 2.347446507 -0.388292903 -4.463380590

H 2.472404709 0.485711203 -3.404167343

C 2.485663304 -0.362543393 3.600795276

H 2.347446507 -0.388292903 4.463380590

H 3.319937516 -0.596731755 3.505882795
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H 2.472404709 0.485711203 3.404167343

C -2.485663304 0.362543393 3.600795276

H -3.319937516 0.596731755 3.505882795

H -2.472404709 -0.485711203 3.404167343

H -2.347446507 0.388292903 4.463380590

*

The main keyword that needs to be used here (unlike in other CAS-SCF calculations) is the actorbs keyword.

Since we are using a local basis with a specific ordering of the orbitals, in order to represent our wavefunction

it is imperetive to preseve the local nature of the orbitals as well as the orbital ordering. Therefore, we do not

calculate natural orbitals at the end of the CASSCF calculation (as is traditionally done) instead we impose

the orbitals to be as similar to the input orbitals as possible. This is automatically enabled for intermediate

CASSCF macroiterations. The resulting CASSCF calculation provides a chemically intuitive and simple

wavefunction and transition energy as shown below:

---------------------------------------------

CAS-SCF STATES FOR BLOCK 1 MULT=11 NROOTS= 1

---------------------------------------------

STATE 0 MULT=11: E= -5066.8462457411 Eh W= 0.5000 DE= 0.000 eV 0.0 cm**-1

1.00000 ( 1.000000000) CSF = 1+1+1+1+1+1+1+1+1+1+

---------------------------------------------

CAS-SCF STATES FOR BLOCK 2 MULT= 1 NROOTS= 1

---------------------------------------------

STATE 0 MULT= 1: E= -5066.8548894831 Eh W= 0.5000 DE= 0.000 eV 0.0 cm**-1

0.98159 (-0.990753235) CSF = 1+1+1+1+1+1-1-1-1-1-

-----------------------------

SA-CASSCF TRANSITION ENERGIES

------------------------------

LOWEST ROOT (ROOT 0 ,MULT 1) = -5066.854889483 Eh -137876.131 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1

1: 0 11 0.008644 0.235 1897.1

As we can see from the output above, 98% of the wavefunction for the singlet-state is given by a single CSF

which we gave as a reference CSF. This CSF has a very simple chemical interpretation representing the

anti-parallel coupling between the two high-spin Fe(III) centers. Since Iron-Sulfur molecules show a strong

anti-ferromagnetic coupling, we expect the singlet state to be lower in energy than the high-spin (S=5) state.

The CASCSCF transition energies show essentially this fact. The transition energy is about 2000 cm-1 which

is what one expects from a CASSCF calculation on such sulfide bridged transition-metal molecules.
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8.1.8 N-Electron Valence State Perturbation Theory (NEVPT2)

NEVPT2 is an internally contracted multireference perturbation theory, which applies to CASSCF type

wavefunctions. The NEVPT2 method as described in the original papers of Angeli et al comes in two

flavor the strongly contracted NEVPT2 (SC-NEVPT2) and the so called partially contracted NEVPT2

(PC-NEVPT2). [139–141] In fact, the latter employs a fully internally contracted wavefunction and should

more appropriately called FIC-NEVPT2. Both methods produces energies of similar quality as the CASPT2

approach. [142,143]

The SC-NEVPT2 and FIC-NEVPT2 are implemented in ORCA together with a number of approximations

that makes the methodology very attractive for large scale applications. In conjunction with the RI

approximation systems with active space of to 16 active orbitals and 2000 basis functions can be computed.

With the newly developed DLPNO version of the FIC-NEVPT2 the size of the molecules does not matter

anymore. [144] For a more complete list of keywords and features, we refer to detailed documation section

9.14.

Besides corrections to the correlation energy, ORCA features UV, IR, CD and MCD spectra as well as

EPR parameters for NEVPT2. These properties are computed using the “quasi-degenerate perturbation

theory” that is described in section 9.13.2. The NEVPT2 corrections enter as “improved diagonal energies”

in this formalism. ORCA also features the multi-state extension (QD-NEVPT2) for the strongly contracted

NEVPT2 variant. [145] Here, the reference wavefunction is revised in the presence of dyanmical correlation.

For systems, where such reference relaxation is important, the computed spectroscopic properties will improve.

As a simple example for NEVPT2, consider the ground state of the nitrogen molecule N2 . After defining the

computational details of our CASSCF calculation, we insert “!NEVPT2” as simple input or specify “PTMethod

SC NEVPT2” in the %casscf block. The SC-NEVPT2 has been the workhorse of our own group for a long

time and is thus the program default. There are more optional settings, which are described in section 9.14

of this manual.

!def2-svp nofrozencore PAtom

%casscf nel 6

norb 6

mult 1

PTMethod SC_NEVPT2 # SC NEVPT2 for strongly contracted NEVPT2

# FIC NEVPT2 for the fully internally contracted NEVPT2

# DLPNO NEVPT2 for the FIC-NEVPT2 with DLPNO

# DLPNO requires: trafostep RI and an aux basis

end

* xyz 0 1

N 0.0 0.0 0.0

N 0.0 0.0 1.09768

*
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For better control of the program flow it is advised to split the calculation into two parts. First converge

the CASSCF calculation and then in a second step read the converged orbitals and execute the actual

NEVPT2.

---------------------------------------------------------------

ORCA-CASSCF

---------------------------------------------------------------

...

PT2-SETTINGS:

A PT2 calculation will be performed on top of the CASSCF wave function (PT2 = SC-NEVPT2)

...

---------------------------------------------------------------

< NEVPT2 >

---------------------------------------------------------------

...

===============================================================

NEVPT2 Results

===============================================================

*********************

MULT 1, ROOT 0

*********************

Class V0_ijab : dE = -0.017748

Class Vm1_iab : dE = -0.023171

Class Vm2_ab : dE = -0.042194

Class V1_ija : dE = -0.006806

Class V2_ij : dE = -0.005056

Class V0_ia : dE = -0.054000

Class Vm1_a : dE = -0.007091

Class V1_i : dE = -0.001963

---------------------------------------------------------------

Total Energy Correction : dE = -0.15802909

---------------------------------------------------------------

Zero Order Energy : E0 = -108.98888640

---------------------------------------------------------------

Total Energy (E0+dE) : E = -109.14691549

---------------------------------------------------------------

Introducing dynamic correlation with NEVPT2 lowers the energy by 150 mEh. ORCA also prints the

contribution of each “excitation class V” to the NEVPT2 correction. We note that in the case of a single

reference wavefunction the V0 ij,ab excitation class produces the exact MP2 correlation energy. Different

from the ORCA 3.0, the default setting of NEVPT2 calculation uses the frozen core approximation. If one

need to reproduce the NEVPT2 energies of ORCA 3.0 calculation, the keyword ”nofrozencore” should be
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added. In our opinion, the frozen core should be avoided. The savings in computation time are fairly small

and do not justify the loss in accuracy.

In chapter 8.1.7.6 the dissociation of the N2 molecule has been investigated with the CASSCF method.

Inserting PTMethod SC NEVPT2 into the %casscf block we obtain the NEVPT2 correction as additional

information.

def2-svp nofrozencore

%casscf nel 6

norb 6

mult 1

PTMethod SC_NEVPT2

end

# scanning from the outside to the inside

%paras

R = 2.5,0.7, 30

end

*xyz 0 1

N 0.0 0.0 0.0

N 0.0 0.0 {R}

*
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Figure 8.14: Potential Energy Surface of the N2 molecule from CASSCF(6,6) and NEVPT2 calcu-
lations (def2-SVP).

All of the options available in CASSCF can in principle be applied to NEVPT2. Since NEVPT2 is implemented

as a submodule of CASSCF, it will inherit all settings from CASSCF (!tightscf, !UseSym, !RIJCOSX,

. . . ).
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NOTE

• NEVPT2 analytic gradients are not available, but numerical gradients are!

8.1.9 Complete Active Space Peturbation Theory (CASPT2)

The fully internally contracted CASPT2 (FIC-CASPT2) approach shares its wave function ansatz with the

FIC-NEVPT2 approach mentioned in the previous section. [146] The two approach differ in the definition of

the zero’th order Hamiltonian. The CASPT2 approach employs the generalized Fock-operator, which may

result in intruder states problems (singularities in the perturbation expression). Real and imaginary level

shifting techniques are introduced to avoid intruder states. [147, 148] Note that both level shifts are mutually

exclusive. Since level shifts in general affect the total energies, they should be avoided or chosen as small as

possible.

The CASPT2 methodology is called in complete analogy to the NEVPT2 branch in ORCA and can be

combined with the resolution of identity (RI) approximation.

%casscf

...

PTMethod FIC_CASPT2 # fully internally contracted CASPT2

# Optional settings

PTSettings

CASPT2_rshift 0.0 # (default) real level shift

CASPT2_ishift 0.0 # (default) imaginary level shift

CASPT2_IPEAshift 0.0 # (default) IPEA shift

end

end

The RI approximated results are comparable to the CD-CASPT2 approach presented elswhere. [149] For

a general discussion of the RI and CD approximation, we refer to the litterature. [150] Many of the input

parameter are shared with the FIC-NEVPT2 approach. A list with the available options is presented in

section 9.15. We note passing, that the ORCA implementation is validated against OpenMOLCAS. [151]

The ORCA version differs in the implementation of the IPEA shifts and thus yields different results. [152].

The IPEA shift, λ, is added to the matrix elements of the internally contracted CSFs Φpr
qs = EpqE

r
s |Ψ0 >

with the generalized Fock operator

< Φp
′r′

q′s′ |F̂ |Φprqs > + =< Φp
′r′

q′s′ |Φprqs > ·
λ

2
· (4 + γpp − γqq + γrr − γss),

where γpq =< Ψ0|Epq |Ψ0 > is the expectation value of the spin-traced excitation operator. [153] The labels

p,q,r,s refer to general molecular orbitals (inactive, active and virtual). Irrespective of ORCA implementation,

the validity of the IPEA shift in general remains questionable and is thus by default disabled. [154]

In this short section, we add the CASPT2 results to the previously computed NEVPT2 potential energy

surface of the N2 molecule.
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def2-svp nofrozencore

%casscf nel 6

norb 6

mult 1

PTMethod FIC_CASPT2 # fully internally contracted CASPT2

end

# scanning from the outside to the inside

%paras

R = 2.5,0.7, 30

end

*xyz 0 1

N 0.0 0.0 0.0

N 0.0 0.0 {R}

*

The CASPT2 output repeats the settings prior computation. The printed reference weights should be checked.

Small reference weights are indicate intruder states. Along the lines, the program also prints the smallest

denominators in the perturbation expression (highlighted in the snippet below). Small denominator may

lead to intruder states.

---------------------------------------------------------------

ORCA-CASSCF

---------------------------------------------------------------

...

PT2-SETTINGS:

A PT2 calculation will be performed on top of the CASSCF wave function (PT2 = CASPT2)

CASPT2 Real Levelshift ... 0.00e+00

CASPT2 Im. Levelshift ... 0.00e+00

CASPT2 IPEA Levelshift ... 0.00e+00

...

---------------------------------------------------------------

< CASPT2 >

---------------------------------------------------------------

...

-----------------------------------

CASPT2-D Energy = -0.171833019

-----------------------------------

Class V0_ijab: dE= -0.013892518

Class Vm1_iab: dE= -0.034571004



8.1 Single Point Energies and Gradients 145

Class Vm2_ab : dE= -0.040983476

Class V1_ija : dE= -0.003512657

Class V2_ij : dE= -0.000580046

Class V0_ia : dE= -0.075169942

Class Vm1_a : dE= -0.002918533

Class V1_i : dE= -0.000204843

smallest energy denominator IJAB = 3.237550466

smallest energy denominator ITAB = 2.500328013

smallest energy denominator IJTA = 2.339883193

smallest energy denominator TUAB = 1.664349429

smallest energy denominator IJTU = 1.342410522

smallest energy denominator ITAU = 1.496008154

smallest energy denominator TUVA = 0.706232600

smallest energy denominator ITUV = 0.545267543

...

Iter EPT2 EHylleraas residual norm Time

1 -0.17183302 -0.17056795 0.03246173 0.0

2 -0.17056795 -0.17119121 0.00616398 0.0

3 -0.17116693 -0.17120810 0.00086383 0.0

4 -0.17120381 -0.17120879 0.00013268 0.0

5 -0.17120872 -0.17120880 0.00000988 0.0

6 -0.17120881 -0.17120880 0.00000158 0.0

7 -0.17120880 -0.17120880 0.00000020 0.0

CASPT2 calculation converged in 7 iterations

...

===============================================================

CASPT2 Results

===============================================================

*********************

MULT 1, ROOT 0

*********************

Class V0_ijab : dE = -0.013832239732

Class Vm1_iab : dE = -0.034124386144

Class Vm2_ab : dE = -0.041333330252

Class V1_ija : dE = -0.003447545033

Class V2_ij : dE = -0.000585042944

Class V0_ia : dE = -0.074680828031

Class Vm1_a : dE = -0.002964767770

Class V1_i : dE = -0.000240664832
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---------------------------------------------------------------

Total Energy Correction : dE = -0.17120880473828

---------------------------------------------------------------

Zero Order Energy : E0 = -108.66619986627214

Reference Weight : W0 = 0.94765308549694

---------------------------------------------------------------

Total Energy (E0+dE) : E = -108.83740867101042

---------------------------------------------------------------

Note that program prints the CASPT2-D results prior entering the CASPT2 iterations. In case of intruder

states, the residual equation may not converge. The program will not abort. Hence, it is important to check

convergence for every CASPT2 run.
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Figure 8.15: Potential Energy Surface of the N2 molecule from CASSCF(6,6) and CASPT2 calcu-
lations (def2-SVP).

The potential energy surface in Figure 8.1.9 is indeed very similar to the FIC-NEVPT2 approach, which is

more efficient (no iterations) and robust (absence of intruder states). Despite its flaws, the CASPT2 method

is of historical importance and remains a popular methodology. In the future we might consider further

extension such as the (X)MS-CASPT2. [155]

8.1.10 2nd order Dynamic Correlation Dressed Complete Active Space method

(DCD-CAS(2))

Nondegenerate multireference perturbation theory (MRPT) methods like NEVPT2 have the 0th order part

of the wavefunction fixed by a preceding CASSCF calculation, which can be a problem if the CASSCF states

are biased towards a wrong state composition in terms of electron configurations. DCD-CAS(2) constructs a

dressed CASCI matrix whose diagonalization yields correlated energies and 0th order states that are remixed
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in the CASCI space under the effect of dynamic correlation. [156] The basic usage is very simple: One just

needs a %casscf block and the simple input keyword !DCD-CAS(2). The following example is a calculation

on the LiF molecule. It possesses two singlet states that can be qualitatively described as ionic (Li+ and F−)

and covalent (neutral Li with electron in 2s orbital and neutral F with hole in 2pz orbital). At distances

close to the equilibrium geometry, the ground state is ionic, while in the dissociation limit the ground state is

neutral. Somewhere in between, there is an avoided crossing of the adiabatic potential energy curves where

the character of the two states quickly changes (see figure 9.5 for potential energy curves for this system at

the (QD)NEVPT2 level). At the CASSCF level, the neutral state is better described than the ionic one, with

the result that the latter is too high in energy and the avoided crossing occurs at a too small interatomic

distance. In the region where the avoided crossing actually takes place, the CASSCF states are then purely

neutral or purely ionic. DCD-CAS(2) allows for a remixing of the states in the CASCI space under the effect

of dynamic correlation, which will lower the ionic state more in energy than the neutral one. The input file is

as follows:

! def2-TZVP DCD-CAS(2)

!moread

%moinp "casorbs.gbw"

%casscf

nel 2

norb 2

mult 1

nroots 2

actorbs locorbs

end

*xyz 0 1

Li 0.0 0.0 0.0

F 0.0 0.0 5.5

*

Since none of the standard guesses (!PAtom, !PModel, etc.) produces the correct active orbitals (Li 2s and

F 2pz), we read them from the file casorbs.gbw. We also use the actorbs locorbs option to preserve the

atomic character of the active orbitals and make it easier to interpret the states in terms of neutral and ionic

components. The following is the state composition for the above example (5.5 angstrom distance) at the

CASSCF level and at the DCD-CAS(2) level.

---------------------------------------------

CAS-SCF STATES FOR BLOCK 1 MULT= 1 NROOTS= 2

---------------------------------------------

ROOT 0: E= -106.8043436395 Eh

0.99395 [ 1]: 11
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0.00605 [ 2]: 02

ROOT 1: E= -106.7485949011 Eh 1.517 eV 12235.4 cm**-1

0.99395 [ 2]: 02

0.00605 [ 1]: 11

---------------------------------------

DCD-CAS(2) STATES

---------------------------------------

ROOT 0: E= -107.0917542568 Eh

0.60501 [ 2]: 02

0.39498 [ 1]: 11

ROOT 1: E= -107.0837631158 Eh 0.217 eV 1753.9 cm**-1

0.60501 [ 1]: 11

0.39499 [ 2]: 02

One can clearly see that while the CASSCF states are purely neutral (dominated by CFG 11) or purely ionic

(dominated by CFG 02), the DCD-CAS(2) states are mixtures of neutral and ionic contributions, indicating

that we performed the calculation for an interatomic distance that is in the avoided crossing region. We

should note that the energies that are printed together with the DCD-CAS(2) state composition are the

ones that are obtained from diagonalization of the DCD-CAS(2) dressed Hamiltonian. For excited states,

these energies suffer from what we call ground state bias (see the original paper for a discussion [156]). A

perturbative correction has been devised to overcome this problem. Our standard choice is first-order bias

correction. The corrected energies are also printed in the output file and those energies should be used in

production use of the DCD-CAS(2) method:

---------------------------------------------------------

BIAS-CORRECTED (ORDER 1) STATE AND TRANSITION ENERGIES

=========================================================

ROOT Energy/a.u. DE/a.u. DE/eV DE/cm**-1

=========================================================

0: -107.093214435 0.000000 0.000 0.0

1: -107.084988306 0.008226 0.224 1805.4

Last but not least, spin orbit coupling (SOC) and spin spin coupling (SSC) are implemented in conjunction

with the DCD-CAS(2) method in a QDPT-like procedure and a variety of different magnetic and spectroscopic

properties can be calculated. We refer to the detailed documentation (section 9.16) for further information.

WARNING: Note that the computational cost of a DCD-CAS(2) calculation scales as roughly

the 3rd power of the size of the CASCI space. This makes calculations with active spaces

containing more than a few hundred CSFs very expensive!
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8.1.11 Full Configuration Interaction Energies and Properties

The MRCI and CASSCF modules may be used to produce energies and properties (g-tensors, zero-field

splitting, etc) at the level of full configuration interaction (FCI). Larger molcular system naturally require

more computational resources and time. For the CASSCF module, the limit of still feasible calculations is

around 14 electrons in 14 orbitals using configuration state functions (CSF) for the CI expansion. Larger

active spaces may be computed in the framework of the Density Matrix Renormalization Group (DMRG),

which may be selected by CIStep in the CASSCF module. Similarly, the iteractive configuration expansion

CI (ICE-CI) can be selected as CIStep in CASSCF or called directly using the ICE block as described in

9.19. The ICE-CI offers a more traditional approach to get approximate full CI results. These options and

modules have their own sections in the manual with a detailed documentation on their usage and the available

properties.

Moreover, ORCA interfaces a determinant-based FCI toy-code, which is described here. Besides energies, the

program can compute dipole moments, g-tensors, hyperfine and quadrupole splittings in the framework of

linear response theory. For response properties, it is assumed that the basis set does not depend on the given

perturbation. To call the program prepare a simple SCF input and add the keyword !FCI on top.

!def2-svp extremescf nofrozencore FCI

*xyz 0 2

Li 0 0 0

*

By default, energies and properties are computed for the ground state. For the g-tensor computation, the

origin is chosen as the center of electronic charge, while for dipoles it is the center of mass. The default

settings may be edited in the FCI block:

ETol 1e-10 # Energy convergence threshold

RTol 1e-8 # Residual convergence threshold

RespTol 1e-8 # Convergence threshold for the response equations

NRoots 1 # Number of states to be computed

DoGTensor true

SOCG true # SOC contribution to the g-tensor

DoHFC true

SOCHFC false # SOC contribution to the HFS

DoQuad true

DoDipole true

PrintLevel 3 # PrintLevel

ORIGIN CenterOfElCharge # (see EPRMR-module)

The input and output resembles the ORCA standard format from the EPRNMR module and should thus be

familiar. However, it is much more limited in the number of available options and the size of molecules that
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can be treated. Currently it can only be used in serial mode and in combination with the nofrozencore

option.

8.1.12 Scalar Relativistic SCF

Scalar relativistic all-electron calculations can be performed with a variety of relativistic approximations.

However, these need to be combined with a suitable basis set since relativity changes the shapes of orbitals

considerably. We have defined scalar relativistic contracted versions of the QZV, TZV and SV basis sets up

to Hg for HF and DFT computations (but not yet for RI-MP2). They are requested by putting ”DKH-” or

”ZORA-” in front of the usual basis set name. For other basis sets you have to take care of the recontraction

yourself but note that this is an expert issue. All scalar relativistic models can be used for geometry

optimization as well.

CAUTION:

• For geometry optimizations we apply a one-center relativistic correction. This slightly

changes the energies – so DO NOT MIX single-point calculations without the one-center

approximation with geometry optimization energies that DO make use of this feature.

The impact of the one-center approximation on the geometries is very small.

8.1.12.1 Douglas-Kroll-Hess

ORCA has implemented the standard second-order DKH procedure that is normally satisfactory for all

intents and purposes. The scalar relativistic DKH treatment is compatible with any of the SCF methods and

will also be transferred over to the correlation treatments.

We rather strongly recommend the use of the SV, TZV and QZV basis sets with or without “def2” and

appropriate polarization functions. For these basis sets we have developed segmented relativistic all electron

basis sets for almost the entire periodic table. The basis sets are tested and perform very well in an acceptably

economic fashion.

The use of the code is very simple:

! UHF DKH-TZV DKH

NOTE: You should have the basis set and ZORA or DKH commands in the same input line!

8.1.12.2 ZORA and IORA

In addition to the DKH method the 0th order regular approximation (ZORA; pioneered by van Lenthe

et al., see Ref. [157] and many follow up papers by the Amsterdam group) is implemented into ORCA in

an approximate way (section 9.18) which facilitates the calculation of analytical gradients. Our ZORA

implementation essentially follows van Wüllen [158] and solves the ZORA equations with a suitable model

potential which is derived from accurate atomic ZORA calculations. At this point the elements up to atomic

number 86 are available with more to come. The ZORA method is highly dependent on numerical integration
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and it is very important to pay attention to the subject of radial integration accuracy (vide infra)! If the

relevant precautions are taken, the use of the ZORA or IORA methods is as easy as in the DKH case. For

example:

! UHF ZORA-TZVP ZORA

# for more detail use

%rel method ZORA # or IORA

modelpot 1,1,1,1

modeldens rhoZORA

velit 137.0359895 # speed of light used

end

ATTENTION

• The scalar relativistic module has many options which allow you to considerably finetune the calculations.

Details are in section 9.18.

• The scalar relativistic treatment requires flexible basis sets, in particular in the core region. Only SV,

TZV and QZV basis sets have been recontracted in the ZORA and DKH models (and the attached

polarization functions of course). Alternatively, one choice that you have is to uncontract your basis

set using the Decontract keyword but it is likely that you also need additional steep primitives.

• Scalar relativistic calculations may need larger integration grids in the radial part. Consider to use

a higher IntAcc parameter or at least to increase the radial integration accuracy around the heavy

atoms using SpecialGridAtoms and SpecialGridIntAcc.

• The calculation of properties in relativistic treatments is not straightforward since the influence of the

“small component” in the Dirac equation is neglected in the calcuation of expectation values. ORCA
takes these “picture change” effects to some extent into account. Please refer to individual sections.

8.1.13 Efficient Calculations with Atomic Natural Orbitals

Atomic natural orbitals are a special class of basis sets. They are represented by the orthonormal set of

orbitals that diagonalizes a spherically symmetric, correlated atomic density. The idea is to put as much

information as possible into each basis functions such that one obtains the best possible result with the given

number of basis functions. This is particularly important for correlated calculations where the number of

primitives is less an issue than the number of basis functions.

Usually, ANO basis sets are “generally contracted” which means that for any given angular momentum all

primitives contribute to all basis functions. Since the concept of ANOs only makes sense if the underlying set

of primitives is large, the calculations readily become very expensive unless special precaution is taken in the

integral evaluation algorithms. ORCA features special algorithms for ANO basis sets together with accurate

ANO basis sets for non-relativistic calculations. However, even then the integral evaluation is so expensive

that efficiency can only be realized if all integrals are stored on disk and are re-used as needed.
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In the first implementation, the use of ANOs is restricted to the built-in ANO basis sets (ano-pVnZ, saug-

ano-pVnZ, aug-ano-pVnZ, n = D, T, Q, 5). These are built upon the cc-pV6Z primitives and hence, the

calculations take significant time.

NOTE:

• Geometry optimizations with ANOs are discouraged; they will be very inefficient.

The use of ANOs is recommended in the following way:

! ano-pVTZ Conv TightSCF CCSD(T)

%maxcore 2000

* int 0 1

C 0 0 0 0 0 0

O 1 0 0 1.2 0 0

H 1 2 0 1.1 120 0

H 1 2 3 1.1 120 180

*

This yieds:

ano-pVTZ:

E(SCF) = -113.920388785

E(corr)= -0.427730189

Compare to the cc-pVTZ value of:

cc-pVTZ:

E(SCF) = -113.911870901

E(corr)= -0.421354947

Thus, the ANO-based SCF energy is ca. 8–9 mEh lower and the correlation energy almost 2 mEh lower than

with the cc-basis set of the same size. Usually, the ANO results are much closer to the basis set limit than

the cc-results. Also, ANO values extrapolate very well (see section 8.1.3.5)

Importantly, the integrals are all stored in this job. Depending on your system and your patience, this

may be possible up to 300–500 basis functions. The ORCA correlation modules have been rewritten such

that they deal efficiently with these stored integrals. Thus, we might as well have used ! MO-CCSD(T) or

! AO-CCSD(T), both of which would perform well.

Yet, the burden of generating and storing all four-index integrals quickly becomes rather heavy. Hence,

the combination of ANO basis sets with the RI-JK technique is particularly powerful and efficient. For

example:
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! ano-pVTZ cc-pVTZ/JK RI-JK Conv TightSCF RI-CCSD(T)

For the SCF, this works very well and allows for much larger ANO based calculations to be done efficiently.

Also, RI-MP2 can be done very efficiently in this way. However, for higher order correlation methods such

as CCSD(T) the logical choice would be RI-CCSD(T) which is distinctly less efficient than the AO or MO

based CCSD(T) (roughly a factor of two slower). Hence, ORCA implements a hybrid method where the RI

approximation is used to generate all four index integrals. This is done via the “RI-AO” keyword:

! ano-pVTZ cc-pVTZ/JK RI-AO Conv TightSCF AO-CCSD(T)

In this case either AO-CCSD(T) or MO-CCSD(T) would both work well. This does not solve the storage

bottleneck with respect to the four index integrals of course. If this becomes a real issue, then RI-CCSD(T)

is mandatory. The error in the total energy is less than 0.1 mEh in the present example.

NOTE:

• With conventional RI calculations the use of a second fit basis set is not possible and

inconsistent results will be obtained. Hence, stick to one auxiliary basis!

8.1.14 Local-SCF Method

The Local-SCF (LSCF) method developed by X. Assfeld and J.-L. Rivail ( [159]) allows to optimize a single

determinant wave function under the constraint of keeping frozen (i.e. unmodified) a subset of orbitals. Also,

optimized orbitals fulfill the condition of orthogonality with the frozen ones. The LSCF method can be

applied to restricted/unrestricted Hartree-Fock or DFT Kohn-Sham wavefunctions. An example of the use of

the LSCF method can be found in the 8.15.11 with the decomposition of the magnetic exchange coupling.

To use the LSCF method, one chooses the spin-up and spin-down frozen orbitals with the ”LSCFalpha” and

”LSCFbeta” keywords, respectively. Frozen orbitals are specified using intervals of orbital indexes. In the

following example, the selection ”0,4,5,6,10,10” for the alpha frozen orbitals means that the orbitals ranging

from 0 to 4 (0,4,5,6,10,10), 5 and 6 (0,4,5,6,10,10) and the orbital 10 (0,4,5,6,10,10) will be frozen. In the

case of the beta orbitals, the orbitals with indexes 0, 1, 2, 3 and 5 will be frozen. Up to 5 intervals (2*5

numbers) are allowed.

#

# Example of LSCF Calculation

#

! UKS B3LYP/G SVP TightSCF Grid4 NoFinalGrid

%scf

LSCFalpha 0,4,5,6,10,10

LSCFbeta 0,3,5,5

end
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For the sake of user-friendliness, two other keywords are available within the LSCF method. They can be

used to modify the orbital first guess, as read from the gbw file with the same name or another gbw file with

the ”MOInp” keyword.

The ”LSCFCopyOrbs” keyword allows to copy one orbital into another one. The input works by intervals

like the LSCFalpha/LSCFbeta selections. However, be aware that spin-up orbital indexes range from 0 to

M-1 (where M is the size of the basis set), while spin-down orbital indexes range from M to 2M-1. In the

following example, with M=11, the user copies the fifth spin-up orbital in the fifth spin-down orbital.

%scf

LSCFalpha 0,4,5,6,10,10

LSCFbeta 0,3,5,5

LSCFCopyOrbs 4,15

end

The second keyword is ”LSCFSwapOrbs” and allows to swap the indexes of subsets made of two orbitals.

In the following example, still with M=11, the user swaps the fifth spin-up orbital with the fifth spin-down

orbital.

%scf

LSCFalpha 0,4,5,6,10,10

LSCFbeta 0,3,5,5

LSCFSwapOrbs 4,15

end

CAUTION: During the LSCF procedure, frozen occupied orbitals energies are fixed at -1000

Hartrees and frozen virtual orbitals energies at 1000 Hartrees. This means that the frozen

occupied orbitals and the frozen virtual orbitals are placed respectively at the beginning and

at the end of the indexation.

8.2 Geometry Optimizations, Surface Scans, Transition States,

MECPs, Conical Intersections, IRC, NEB

The usage of analytic gradients is necessary for efficient geometry optimization. In ORCA4.2, the following

methods provide analytic first derivatives

• Hartree-Fock (HF) and DFT (including the RI, RIJK and RIJCOSX approximations)

• MP2, RI-MP2 and DLPNO-MP2

• TD-DFT for excited states

• CAS-SCF
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When the analytic gradients are not available, it is possible to evaluate the first derivatives numerically by

finite displacements. This is available for all methods.

The coordinate system chosen for geometry optimization affects the convergence rate, with redundant internal

coordinates being usually the best choice.

Some methods for locating transition states (TS) require second derivative matrices (Hessian), implemented

analytically for HF, DFT and MP2. Additionally, several approaches to construct an initial approximate

Hessian for TS optimization are available. A very useful feature for locating complicated TSs is the Nudged-

Elastic Band method in combination with the TS finding algorithm (NEB-TS, ZOOM-NEB-TS). An essential

feature for chemical processes involving excited states is the conical intersection optimizer. Another interesting

feature are MECP (Minimum Energy Crossing Point) optimizations.

For very large systems ORCA provides a very efficient L-BFGS optimizer, which makes use of the orca md

module. It can also be invoked via simple keywords described at the end of this section.

8.2.1 Geometry Optimizations

Optimizations are fairly easy as in the following example:

! RKS B3LYP/G SV(P) TightSCF Opt

* int 0 1

C 0 0 0 0.0000 0.000 0.00

O 1 0 0 1.2029 0.000 0.00

H 1 2 0 1.1075 122.016 0.00

H 1 2 3 1.1075 122.016 180.00

*

An optimization with the RI method (the BP functional is recommend) would simply look like:

! RKS BP RI SV(P) def2/J TightSCF Opt

* int 0 1

C 0 0 0 0.0000 0.000 0.00

O 1 0 0 1.2029 0.000 0.00

H 1 2 0 1.1075 122.016 0.00

H 1 2 3 1.1075 122.016 180.00

*

An optimization of the first excited state of ethylene:



156 8 Running Typical Calculations

! BLYP SVP OPT

%tddft

IRoot 1

end

* xyz 0 1

C 0.000000 0.000000 0.666723

C 0.000000 0.000000 -0.666723

H 0.000000 -0.928802 1.141480

H -0.804366 -0.464401 -1.341480

H 0.000000 0.928802 1.241480

H 0.804366 0.464401 -1.241480

*

8.2.2 Numerical Gradients

If the analytic gradient is not available, the numerical gradient can simply be requested via:

! NumGrad

as in the following example:

!RHF CCSD(T) TZVPP

!Opt NumGrad

* int 0 1

C 0 0 0 0 0 0

O 1 0 0 1.2 0 0

H 1 2 0 1.1 120 0

H 1 2 3 1.1 120 180

*

NOTE

• Be aware that the numerical gradient is quite expensive. The time for one gradient calculation is equal

to 6 × (number of atoms) × (time for one single point calculation).

• The numerical gradient can be calculated in a multi-process run, using a maximum of three times the

number of atoms (see section 5.2).

More details on various options, geometry convergence criteria and the like are found in section 9.21.
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8.2.3 Some Notes and Tricks

NOTE

• TightSCF in the SCF part is set as default to avoid the buildup of too much numerical noise in the

gradients.

TIP

• If you want to be on the safe side with DFT it is probably advisable to use the settings ! Grid4

NoFinalGrid although the defaults should also be o.k.

• In rare cases the redundant internal coordinate optimization fails. In this case, you may try to use

COPT (optimization in Cartesian coordinates). If this optimization does not converge, you may try the

desperate choice to use ZOPT, GDIIS-COPT or GDIIS-ZOPT. This will likely take many more steps to

converge but should be stable.

• For optimizations in Cartesian coordinates the initial guess Hessian is constructed in internal coordinates

and thus these optimizations should converge only slightly slower than those in internal coordinates.

Nevertheless, if you observe a slow convergence behaviour, it may be a good idea to compute a Hessian

initially (perhaps at a lower level of theory) and use InHess read in order to improve convergence.

• At the beginning of a TS optimization more information on the curvature of the PES is needed than

a model Hessian can give. The best choice is analytic Hessian, avialable for HF, DFT and MP2. In

other cases (e.g. CAS-SCF), the numerical evaluation is necessary. Nevertheless you do not need to

calculate the full Hessian when starting such a calculation. With ORCA we have good experience

with approximations to the exact Hessian. Here it is recommended to either directly combine the

TS optimization with the results of a relaxed surface scan or to use the Hybrid Hessian as the initial

Hessian, depending on the nature of the TS mode. Note that these approximate Hessians do never

replace the exact Hessian at the end of the optimization, which is always needed to verify the minimum

or first order saddle point nature of the obtained structure.

8.2.4 Initial Hessian for Minimization

The convergence of a geometry optimization crucially depends on the quality of the initial Hessian. In the

simplest case it is taken as a unit matrix (in redundant internal coordinates we use 0.5 for bonds, 0.2 for

angles and 0.1 for dihedrals and improper torsions). However, simple model force-fields like the ones proposed

by Schlegel, Lindh, Swart or Almlöf are available and lead to much better convergence. The different guess

Hessians can be set via the InHess option which can be either unit, Almloef, Lindh, Swart or Schlegel in

redundant internal coordinates. Since version 2.5.30, these model force-fields (built up in internal coordinates)

can also be used in optimizations in Cartesian coordinates.

For minimizations we recommend the Almloef Hessian, which is the default for minimizations. The Lindh

and Schlegel Hessian yield a similar convergence behaviour. From version 4.1?, there is also the option

for the Swart model hessian, which is less parametrized and should improve for weakly interacting and/or

unusual structures. Of course the best Hessian is the exact one. Read may be used to input an exact Hessian

or one that has been calculated at a lower level of theory (or a “faster” level of theory). From version 2.5.30

on this option is also available in redundant internal coordinates. But we have to point out that the use
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of the exact Hessian as initial one is only of little help, since in these cases the convergence is usually only

slightly faster, while at the same time much more time is spent in the calculation of the initial Hessian.

To sum it up: we advise to use one of the simple model force-fields for minimizations.

8.2.5 Coordinate Systems for Optimizations

The coordinate system for the optimization can be chosen by the coordsys variable that can be set to

cartesian, or redundant new, or redundant, or redundant old) %geom block. The default is the redundant

internal coordinate system. (redundant old is the coordinate set that was used as default redundant internal

coordinates before version 2.4.30). If the optimization with redundant fails, redundant old can still be used

as an alternative, and in cases where the internal coordinate systems lead to problems, you can still try

cartesian. If the optimization is then carried out in Cartesian displacement coordinates with a simple model

force-field Hessian, the convergence will be only slightly slower. With a unit matrix initial Hessian very slow

convergence will result.

A job that starts from a semi-empirical Hessian is shown below:

# ---------------------------------------------------

# First calculate the frequencies at the input

# geometry which is deliberately chosen poorly

# ---------------------------------------------------

! RHF AM1 NumFreq

%base "FirstJob"

* int 0 1

C 0 0 0 0 0 0

O 1 0 0 1.3 0 0

H 1 2 0 1.1 110 0

H 1 2 3 1.1 110 180

*

$new_job

# --------------------------------------------------------

# Now the real job

# --------------------------------------------------------

! B3LYP SVP TightSCF PModel

! Opt

%base "SecondJob"

%geom GDIISMaxEq 20

UseGDIIS false

InHess Read

InHessName "FirstJob.hess"

# this file must be either a .hess file from a

# frequency run or a .opt file left over from a

# previous geometry optimization

end

* int 0 1
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C 0 0 0 0 0 0

O 1 0 0 1.3 0 0

H 1 2 0 1.1 110 0

H 1 2 3 1.1 110 180

*

NOTE:

• The guess PModel is chosen for the second job since DFT or HF calculations cannot be started from

semi-empirical orbitals

• GDIIS has been turned off and the number of gradients used in the quasi-Newton method has been

enhanced. This is advisable if a good starting Hessian is available.

TIP

• For transition metal complexes MNDO, AM1 or PM3 Hessians are not available. You can use ZINDO/1

or NDDO/1 Hessians instead. They are of lower quality than MNDO, AM1 or PM3 for organic

molecules but they are still far better than the standard unit matrix choice.

• If the quality of the initial semi-empirical Hessian is not sufficient you may use a “quick” RI-DFT job

(e.g. BP Def-1 NoFinalGrid)

• In semi-empirical geometry optimizations on larger molecules or in general when the molecules become

larger the redundant internal space may become large and the relaxation step may take a significant

fraction of the total computing time.

For condensed molecular systems and folded molecules (e.g. a U-shaped carbon chain) atoms can get very close

in space, while they are distant in terms of number of bonds connecting them. As damping of optimization

steps in internal coordinates might not work well for these cases, convergence can slow down. ORCA’s

automatic internal coordinate generation takes care of this problem by assigning bonds to atom pairs that

are close in real space, but distant in terms of number of bonds connecting them.

%geom

AddExtraBonds true # switch on/off assigning bonds to atom pairs that are

# connected by more than <Max_Length> bonds and are less

# than <MaxDist> Ang. apart (default true)

AddExtraBonds_MaxLength 10 # cutoff for number of bonds connecting the two

# atoms (default 10)

AddExtraBonds_MaxDist 5 # cutoff for distance between two atoms (default 5 Ang.)

end

For solid systems modeled as embedded solids the automatically generated set of internal coordinates might

become very large, rendering the computing time spent in the optimization routine unnecessarily large.

Usually, in such calculations the cartesian positions of outer atoms, coreless ECPs and point charges are

constrained during the optimization - thus most of their internal coordinates are not needed. By requesting:
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%geom

ReduceRedInts true

end

only the required needed internal coordinates (of the constrained atoms) are generated.

8.2.6 Constrained Optimizations

You can perform constrained optimizations which can, at times, be extremely helpful. This works as shown

in the following example:

! RKS B3LYP/G SV(P) TightSCF Opt

%geom Constraints

{ B 0 1 1.25 C }

{ A 2 0 3 120.0 C }

end

end

* int 0 1

C 0 0 0 0.0000 0.000 0.00

O 1 0 0 1.2500 0.000 0.00

H 1 2 0 1.1075 122.016 0.00

H 1 2 3 1.1075 122.016 180.00

*

Constraining bond distances : { B N1 N2 value C }
Constraining bond angles : { A N1 N2 N1 value C }
Constraining dihedral angles : { D N1 N2 N3 N4 value C }
Constraining cartesian coordinates : { C N1 C }

NOTE:

• Like for normal optimizations you can use numerical gradients (see 8.2.2.) for constrained optimizations.

In this case the numerical gradient will be evaluated only for non-constrained coordinates, saving a lot

of computational effort, if a large part of the structure is constrained.

• “value” in the constraint input is optional. If you do not give a value, the present value in the structure

is constrained. For cartesian constraints you can’t give a value, but always the initial position is

constrained.

• It is recommended to use a value not too far away from your initial structure.

• It is possible to constrain whole sets of coordinates:
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all bond lengths where N1 is involved : { B N1 * C}
all bond lengths : { B * * C}
all bond angles where N2 is the central atom: { A * N2 * C }
all bond angles : { A * * * C }
all dihedral angles with central bond N2-N3 : { D * N2 N3 * C }
all dihedral angles : { D * * * * C }

• For Cartesian constraints entire lists of atoms can be defined:

a list of atoms with Cartesian constraints : { C 0 2 10:17 39 55:88 102 C}

• If there are only a few coordinates that have to be optimized you can use the invertConstraints option:

%geom Constraints

{ B 0 1 C }
end

invertConstraints true # only the C-O distance is optimized

# does not affect Cartesian coordinates

end

• In some cases it is advantageous to optimize only the positions of the hydrogen atoms and let the

remaining molecule skeleton fixed:

%geom optimizehydrogens true

end

NOTE:

• In the special case of a fragment optimization (see next point) the optimizehydrogens keyword does

not fix the heteroatoms, but ensures that all hydrogen positions are relaxed.

8.2.7 Constrained Optimizations for Molecular Clusters (Fragment Optimization)

If you want to study systems, which consist of several molecules (e.g. the active site of a protein) with

constraints, then you can either use cartesian constraints (see above) or use ORCA’s fragment constraint

option. ORCA allows the user to define fragments in the system. For each fragment one can then choose

separately whether it should be optimized or constrained. Furthermore it is possible to choose fragment pairs

whose distance and orientation with respect to each other should be constrained. Here, the user can either

define the atoms which make up the connection between the fragments, or the program chooses the atom pair

automatically via a closest distance criterion. ORCA then chooses the respective constrained coordinates

automatically. An example for this procedure is shown below.

The coordinates are taken from a crystal structure [PDB-code 2FRJ]. In our gas phase model we choose only

a small part of the protein, which is important for its spectroscopic properties. Our selection consists of a

heme-group (fragment 1), important residues around the reaction site (lysine (fragment 2) and histidine

(fragment 3)), an important water molecule (fragment 4), the NO-ligand (fragment 5) and part of a histidine
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(fragment 6) coordinated to the heme-iron. In this constrained optimization we want to maintain the position

of the heteroatoms of the heme group. Since the protein backbone is missing, we have to constrain the

orientation of lysine and histidine (fragments 2 and 3) side chains to the heme group. All other fragments

(the ones which are directly bound to the heme-iron and the water molecule) are fully optimized internally

and with respect to the other fragments. Since the crystal structure does not reliably resolve the hydrogen

positions, we relax also the hydrogen positions of the heme group.

# !! If you want to run this optimization: be aware

# !! that it will take some time!

! UKS BP86 RI SV(P) Opt TightSCF Grid4 NoFinalGrid

%geom

ConstrainFragments { 1 } end # constrain all internal

# coordinates of fragment 1

ConnectFragments

{1 2 C 12 28} # connect the fragments via the atom pair 12/28 and 15/28 and

{1 3 C 15 28} # constrain the internal coordinates connecting

# fragments 1/2 and 1/3

{1 5 O}

{1 6 O}

{2 4 O}

{3 4 O}

end

optimizeHydrogens true # do not constrain any hydrogen position

end

* xyz 1 2

Fe(1) -0.847213 -1.548312 -1.216237 newgto "TZVP" end

N(5) -0.712253 -2.291076 0.352054 newgto "TZVP" end

O(5) -0.521243 -3.342329 0.855804 newgto "TZVP" end

N(6) -0.953604 -0.686422 -3.215231 newgto "TZVP" end

N(3) -0.338154 -0.678533 3.030265 newgto "TZVP" end

N(3) -0.868050 0.768738 4.605152 newgto "TZVP" end

N(6) -1.770675 0.099480 -5.112455 newgto "TZVP" end

N(1) -2.216029 -0.133298 -0.614782 newgto "TZVP" end
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N(1) -2.371465 -2.775999 -1.706931 newgto "TZVP" end

N(1) 0.489683 -2.865714 -1.944343 newgto "TZVP" end

N(1) 0.690468 -0.243375 -0.860813 newgto "TZVP" end

N(2) 1.284320 3.558259 6.254287

C(2) 5.049207 2.620412 6.377683

C(2) 3.776069 3.471320 6.499073

C(2) 2.526618 2.691959 6.084652

C(3) -0.599599 -0.564699 6.760567

C(3) -0.526122 -0.400630 5.274274

C(3) -0.194880 -1.277967 4.253789

C(3) -0.746348 0.566081 3.234394

C(6) 0.292699 0.510431 -6.539061

C(6) -0.388964 0.079551 -5.279555

C(6) 0.092848 -0.416283 -4.078708

C(6) -2.067764 -0.368729 -3.863111

C(1) -0.663232 1.693332 -0.100834

C(1) -4.293109 -1.414165 -0.956846

C(1) -1.066190 -4.647587 -2.644424

C(1) 2.597468 -1.667470 -1.451465

C(1) -1.953033 1.169088 -0.235289

C(1) -3.187993 1.886468 0.015415

C(1) -4.209406 0.988964 -0.187584

C(1) -3.589675 -0.259849 -0.590758

C(1) -3.721903 -2.580894 -1.476315

C(1) -4.480120 -3.742821 -1.900939

C(1) -3.573258 -4.645939 -2.395341

C(1) -2.264047 -4.035699 -2.263491

C(1) 0.211734 -4.103525 -2.488426

C(1) 1.439292 -4.787113 -2.850669

C(1) 2.470808 -3.954284 -2.499593

C(1) 1.869913 -2.761303 -1.932055

C(1) 2.037681 -0.489452 -0.943105

C(1) 2.779195 0.652885 -0.459645

C(1) 1.856237 1.597800 -0.084165

C(1) 0.535175 1.024425 -0.348298

O(4) -1.208602 2.657534 6.962748

H(3) -0.347830 -1.611062 7.033565

H(3) -1.627274 -0.387020 7.166806

H(3) 0.121698 0.079621 7.324626

H(3) 0.134234 -2.323398 4.336203

H(3) -1.286646 1.590976 5.066768

H(3) -0.990234 1.312025 2.466155

H(4) -2.043444 3.171674 7.047572

H(2) 1.364935 4.120133 7.126900

H(2) 0.354760 3.035674 6.348933

H(2) 1.194590 4.240746 5.475280

H(2) 2.545448 2.356268 5.027434

H(2) 2.371622 1.797317 6.723020
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H(2) 3.874443 4.385720 5.867972

H(2) 3.657837 3.815973 7.554224

H(2) 5.217429 2.283681 5.331496

H(2) 5.001815 1.718797 7.026903

H(6) -3.086380 -0.461543 -3.469767

H(6) -2.456569 0.406212 -5.813597

H(6) 1.132150 -0.595619 -3.782287

H(6) 0.040799 1.559730 -6.816417

H(6) 0.026444 -0.139572 -7.404408

H(6) 1.392925 0.454387 -6.407850

H(1) 2.033677 2.608809 0.310182

H(1) 3.875944 0.716790 -0.424466

H(1) 3.695978 -1.736841 -1.485681

H(1) 3.551716 -4.118236 -2.608239

H(1) 1.487995 -5.784645 -3.308145

H(1) -1.133703 -5.654603 -3.084826

H(1) -3.758074 -5.644867 -2.813441

H(1) -5.572112 -3.838210 -1.826943

H(1) -0.580615 2.741869 0.231737

H(1) -3.255623 2.942818 0.312508

H(1) -5.292444 1.151326 -0.096157

H(1) -5.390011 -1.391441 -0.858996

H(4) -1.370815 1.780473 7.384747

H(2) 5.936602 3.211249 6.686961

*

NOTE:

• You have to connect the fragments in such a way that the whole system is connected.

• You can divide a molecule into several fragments.

• Since the initial Hessian for the optimization is based upon the internal coordinates: Connect the

fragments in a way that their real interaction is reflected.

• This option can be combined with the definition of constraints, scan coordinates and the optimizeHy-

drogens option (but: its meaning in this context is different to its meaning in a normal optimization

run, relatively straightforward see section 9.21).

• Can be helpful in the location of complicated transition states (with relaxed surface scans).

8.2.8 Relaxed Surface Scans

A final thing that comes in really handy are relaxed surface scans, i.e. you can scan through one variable

while all others are relaxed. It works as shown in the following example:
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! RKS B3LYP/G SV(P) TightSCF Opt

%geom Scan

B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned

end

end

* int 0 1

C 0 0 0 0.0000 0.000 0.00

O 1 0 0 1.3500 0.000 0.00

H 1 2 0 1.1075 122.016 0.00

H 1 2 3 1.1075 122.016 180.00

*

In the example above the value of the bond length between C and O will be changed in 12 equidistant steps

from 1.35 down to 1.10 Ångströms and at each point a constrained geometry optimization will be carried

out.

NOTE:

• If you want to perform a geometry optimization at a series of values with non-equidistant steps you

can give this series in square brackets, [ ]. The general syntax is as follows:

B N1 N2 = initial-value, final-value, NSteps

or:

B N1 N2 [value1 value2 value3 ... valueN]

• In addition to bond lengths you can also scan bond angles and dihedral angles:

B N1 N2 = ... # bond length

A N1 N2 N3 = ... # bond angle

D N1 N2 N3 N4 = ... # dihedral angle

TIP

• As in constrained geometry optimization it is possible to start the relaxed surface scan with a different

scan parameter than the value present in your molecule. But keep in mind that this value should not

be too far away from your initial structure.

A more challenging example is shown below. Here, the H-atom abstraction step from CH4 to OH-radical is

computed with a relaxed surface scan (vide supra). The job was run as follows:
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! UKS B3LYP SV(P) TightSCF Opt SlowConv

%geom scan B 1 0 = 2.0, 1.0, 15 end end

* int 0 2

C 0 0 0 0.000000 0.000 0.000

H 1 0 0 1.999962 0.000 0.000

H 1 2 0 1.095870 100.445 0.000

H 1 2 3 1.095971 90.180 119.467

H 1 2 3 1.095530 95.161 238.880

O 2 1 3 0.984205 164.404 27.073

H 6 2 1 0.972562 103.807 10.843

*

It is obvious that the reaction is exothermic and passes through an early transition state in which the

hydrogen jumps from the carbon to the oxygen. The structure at the maximum of the curve is probably a

very good guess for the true transition state that might be located by a transition state finder.

You will probably find that such relaxed surface scans are incredibly useful but also time consuming. Even

the simple job shown below required several hundred single point and gradient evaluations (convergence

problems appear for the SCF close to the transition state and for the geometry once the reaction partners

actually dissociate – this is to be expected). Yet, when you search for a transition state or you want to get

insight into the shapes of the potential energy surfaces involved in a reaction it might be a good idea to

use this feature. One possibility to ease the burden somewhat is to perform the relaxed surface scan with a

“fast” method and a smaller basis set and then do single point calculations on all optimized geometries with

a larger basis set and/or higher level of theory. At least you can hope that this should give a reasonable

approximation to the desired surface at the higher level of theory – this is the case if the geometries at the

lower level are reasonable.

Figure 8.16: Relaxed surface scan for the H-atom abstraction from CH4 by OH-radical
(B3LYP/SV(P)).
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8.2.8.1 Multidimensional Scans

After several requests from our users ORCA now allows up to three coordinates to be scanned within one

calculation.

! RKS B3LYP/G SV(P) TightSCF Opt

%geom Scan

B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned

B 0 2 = 1.20, 1.00, 5 # C-H distance that will be scanned

A 2 0 1 = 140, 100, 5 # H-C-O angle that will be scanned

end

end

* int 0 1

C 0 0 0 0.0000 0.000 0.00

O 1 0 0 1.3500 0.000 0.00

H 1 2 0 1.1075 122.016 0.00

H 1 2 3 1.1075 122.016 180.00

*

NOTE:

• For finding transition state structures of more complicated reaction paths ORCA now offers its very

efficient NEB-TS implementation (see section 9.22.2).

• 2-dimensional or even 3-dimensional relaxed surface scans can become very expensive - e.g. requesting

10 steps per scan, ORCA has to carry out 1000 constrained optimizations for a 3-D scan.

• The results can depend on the direction of the individual scans and the ordering of the scans.

8.2.9 Multiple XYZ File Scans

A different type of scan is implemented in ORCA in conjunction with relaxed surface scans. Such scans

produce a series of structures that are typically calculated using some ground state method. Afterwards

one may want to do additional or different calculations along the generated pathway such as excited state

calculations or special property calculations. In this instance, the “multiple XYZ scan” feature is useful. If

you request reading from a XYZ file via:

* xyzfile Charge Multiplicity FileName

this file could contain a number of structures. The format of the file is:
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Number of atoms M

Comment line

AtomName1 X Y Z

AtomName2 X Y Z

...

AtomNameM X Y Z

>

Number of atoms M

Comment line

AtomName1 X Y Z

...

Thus, the structures are simply of the standard XYZ format, separated by a “>” sign. After the last structure

no “>” should be given but a blank line instead. The program then automatically recognizes that a multiple

XYZ scan run is to be performed. Thus, single point calculations are performed on each structure in sequence

and the results are collected at the end of the run in the same kind of trajectory.dat files as produced from

trajectory calculations.

In order to aid in using this feature, the relaxed surface scans produce a file called MyJob.allxyz that is of

the correct format to be re-read in a subsequent run.

8.2.10 Transition States

8.2.10.1 Introduction to Transition State Searches

If you provide a good estimate for the structure of the transition state (TS) structure, then you can find the

respective transition state with the following keywords (in this example we take the structure with highest

energy of the above relaxed surface scan):

! UKS B3LYP SV(P) TightSCF SlowConv OptTS

# performs a TS optimization with the EF-algorithm

# Transition state: H-atom abstraction from CH4 to OH-radical

%geom

Calc_Hess true # calculation of the exact Hessian

# before the first optimization step

end

* int 0 2

C 0 0 0 0.000000 0.000 0.000

H 1 0 0 1.285714 0.000 0.000

H 1 2 0 1.100174 107.375 0.000

H 1 2 3 1.100975 103.353 119.612
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H 1 2 3 1.100756 105.481 238.889

O 2 1 3 1.244156 169.257 17.024

H 6 2 1 0.980342 100.836 10.515

*

NOTE:

• You need a good guess of the TS structure. Relaxed surface scans can help in almost all cases (see also

example above).

• For TS optimization (in contrast to geometry optimization) an exact Hessian, a Hybrid Hessian or a

modification of selected second derivatives is necessary.

• Analytic Hessian evaluation is available for HF and SCF methods, including the RI and RIJCOSX

approximations and canonical MP2.

• Check the eigenmodes of the optimized structure for the eigenmode with a single imaginary frequency.

You can also visualize this eigenmode with orca pltvib (section 8.15.3.5) or any other visualization

program that reads ORCA output files.

• If the Hessian is calculated during the TS optimization, it is stored as basename.001.hess, if it is

recalculated several times, then the subsequently calculated Hessians are stored as basename.002.hess,

basename.003.hess, . . .

• If you are using the Hybrid Hessian, then you have to check carefully at the beginning of the TS

optimization (after the first three to five cycles) whether the algorithm is following the correct mode

(see TIP below). If this is not the case you can use the same Hybrid Hessian again via the inhess read

keyword and try to target a different mode (via the TS Mode keyword, see below).

In the example above the TS mode is of local nature. In such a case you can directly combine the relaxed

surface scan with the TS optimization with the

! ScanTS

command, as used in the following example:

! UKS B3LYP SV(P) TightSCF SlowConv

! ScanTS # perform a relaxed surface scan and TS optimization

# in one calculation

%geom scan B 1 0 = 2.0, 1.0, 15 end end

* int 0 2

C 0 0 0 0.000000 0.000 0.000

H 1 0 0 1.999962 0.000 0.000

H 1 2 0 1.095870 100.445 0.000

H 1 2 3 1.095971 90.180 119.467
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H 1 2 3 1.095530 95.161 238.880

O 2 1 3 0.984205 164.404 27.073

H 6 2 1 0.972562 103.807 10.843

*

NOTE:

• The algorithm performs the relaxed surface scan, aborts the Scan after the maximum is surmounted,

chooses the optimized structure with highest energy, calculates the second derivative of the scanned

coordinate and finally performs a TS optimization.

• If you do not want the scan to be aborted after the highest point has been reached but be carried out

up to the last point, then you have to type:

%geom

fullScan true # do not abort the scan with !ScanTS

end

As transition state finder we implemented the quasi-Newton like hessian mode following algorithm. [160–168]

This algorithm maximizes the energy with respect to one (usually the lowest) eigenmode and minimizes with

respect to the remaining 3N − 7(6) eigenmodes of the Hessian.

TIP

• You can check at an early stage if the optimization will lead to the “correct” transition state. After

the first optimization step you find the following output for the redundant internal coordinates:

---------------------------------------------------------------------------

Redundant Internal Coordinates

(Angstroem and degrees)

Definition Value dE/dq Step New-Value frac.(TS mode)

----------------------------------------------------------------------------

1. B(H 1,C 0) 1.2857 0.013136 0.0286 1.3143 0.58

2. B(H 2,C 0) 1.1002 0.014201 -0.0220 1.0782

3. B(H 3,C 0) 1.1010 0.014753 -0.0230 1.0779

4. B(H 4,C 0) 1.1008 0.014842 -0.0229 1.0779

5. B(O 5,H 1) 1.2442 -0.015421 -0.0488 1.1954 0.80

6. B(H 6,O 5) 0.9803 0.025828 -0.0289 0.9514

7. A(H 1,C 0,H 2) 107.38 -0.001418 -0.88 106.49

8. A(H 1,C 0,H 4) 105.48 -0.002209 -0.46 105.02

9. A(H 1,C 0,H 3) 103.35 -0.003406 0.08 103.43

10. A(H 2,C 0,H 4) 113.30 0.001833 0.35 113.65

11. A(H 3,C 0,H 4) 113.38 0.002116 0.26 113.64

12. A(H 2,C 0,H 3) 112.95 0.001923 0.45 113.40

13. A(C 0,H 1,O 5) 169.26 -0.002089 4.30 173.56

14. A(H 1,O 5,H 6) 100.84 0.003097 -1.41 99.43

15. D(O 5,H 1,C 0,H 2) 17.02 0.000135 0.24 17.26

16. D(O 5,H 1,C 0,H 4) -104.09 -0.000100 0.52 -103.57



8.2 Geometry Optimizations, Surface Scans, Transition States, MECPs, Conical Intersections, IRC, NEB171

17. D(O 5,H 1,C 0,H 3) 136.64 0.000004 0.39 137.03

18. D(H 6,O 5,H 1,C 0) 10.52 0.000078 -0.72 9.79

----------------------------------------------------------------------------

Every Hessian eigenmode can be represented by a linear combination of the redundant internal coordinates.

In the last column of this list the internal coordinates, that represent a big part of the mode which is followed

uphill, are labelled. The numbers reflect their magnitude in the TS eigenvector (fraction of this internal

coordinate in the linear combination of the eigenvector of the TS mode). Thus at this point you can already

check whether your TS optimization is following the right mode (which is the case in our example, since we

are interested in the abstraction of H1 from C0 by O5.

• If you want the algorithm to follow a different mode than the one with lowest eigenvalue, you can

either choose the number of the mode:

%geom

TS_Mode {M 1} # {M 1} mode with second lowest eigenvalue

end # (default: {M 0}, mode with lowest eigenvalue)

end

or you can give an internal coordinate that should be strongly involved in this mode:

%geom

TS_Mode {B 1 5} # bond between atoms 1 and 5,

end # you can also choose an angle: {A N1 N2 N1}
# or a dihedral: {D N1 N2 N3 N4}

end

TIP

• If you look for a TS of a breaking bond the respective internal coordinate might not be included in the

list of redundant internal coordinates due to the bond distance being slightly too large, leading to slow

or even no convergence at all. In order to prevent that behavior a region of atoms that are active in the

TS search can be defined, consisting of e.g. the two atoms of the breaking bond. During the automatic

generation of the internal coordinates the bond radii of these atoms (and their neighbouring atoms) are

increased, making it more probable that breaking or forming bonds in the TS are detected as bonds.

%geom

TS_Active_Atoms { 1 2 3 } # atoms that are involved in TS, e.g. for proton transfer

end # the proton, its acceptor and its donor

TS_Active_Atoms_Factor 1.5 # factor by which the cutoff for bonds is increased for

# the above defined atoms. (Default 1.5, i.e. increased by 50%)

end
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8.2.10.2 Hessians for Transition State Calculations

For transition state (TS) optimization a simple initial Hessian, which is used for minimization, is not sufficient.

In a TS optimization we are looking for a first order saddle point, and thus for a point on the PES where the

curvature is negative in the direction of the TS mode (the TS mode is also called transition state vector, the

only eigenvector of the Hessian at the TS geometry with a negative eigenvalue). Starting from an initial

guess structure the algorithm used in the ORCA TS optimization has to climb uphill with respect to the TS

mode, which means that the starting structure has to be near the TS and the initial Hessian has to account

for the negative curvature of the PES at that point. The simple force-field Hessians cannot account for this,

since they only know harmonic potentials and thus positive curvature.

The most straightforward option in this case would be (after having looked for a promising initial guess

structure with the help of a relaxed surface scan) to calculate the exact Hessian before starting the TS

optimization. With this Hessian (depending on the quality of the initial guess structure) we know the TS

eigenvector with its negative eigenvalue and we have also calculated the exact force constants for all other

eigenmodes (which should have positive force constants). For the HF, DFT methods and MP2, the analytic

Hessian evaluation is available and is the best choice, for details see section Frequencies (8.3).

When only the gradients are available (most notably the CASSCF), the numerical calculation of the exact

Hessian is very time consuming, and one could ask if it is really necessary to calculate the full exact Hessian

since the only special thing (compared to the simple force-field Hessians) that we need is the TS mode with a

negative eigenvalue.

Here ORCA provides two different possibilities to speed up the Hessian calculation, depending on the nature

of the TS mode: the Hybrid Hessian and the calculation of the Hessian value of an internal coordinate. For

both possibilities the initial Hessian is based on a force-field Hessian and only parts of it are calculated

exactly. If the TS mode is of very local nature, which would be the case when e.g. cleaving or forming a bond,

then the exactly calculated part of the Hessian can be the second derivative of only one internal coordinate,

the one which is supposed to make up the TS mode (the formed or cleaved bond). If the TS mode is more

complicated and more delocalized, as e.g. in a concerted proton transfer reaction, then the hybrid Hessian,

a Hessian matrix in which the numerical second derivatives are calculated only for those atoms, which are

involved in the TS mode (for more details, see section 9.21), should be sufficient. If you are dealing with

more complicated cases where these two approaches do not succeed, then you still have the possibility to

start the TS optimization with a full exact Hessian.

Numerical Frequency calculations are quite expensive. You can first calculate the Hessian at a lower level of

theory or with a smaller basis set and use this Hessian as input for a subsequent TS optimization:

%geom inhess Read # this command comes with:

InHessName "yourHessian.hess" # filename of Hessian input file

end

Another possibility to save computational time is to calculate exact Hessian values only for those atoms which

are crucial for the TS optimization and to use approximate Hessian values for the rest. This option is very

useful for big systems, where only a small part of the molecule changes its geometry during the transition and

hence the information of the full exact Hessian is not necessary. With this option the coupling of the selected

atoms are calculated exactly and the remaining Hessian matrix is filled up with a model initial Hessian:
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%geom Calc_Hess true

Hybrid_Hess {0 1 5 6} end # calculates a Hybrid Hessian with

end # exact calculation for atoms 0, 1, 5 and 6

For some molecules the PES near the TS can be very far from ideal for a Newton-Raphson step. In such a

case ORCA can recalculate the Hessian after a number of steps:

%geom

Recalc_Hess 5 # calculate the Hessian at the beginning

end # and recalculate it after 5,10,15,... steps

Another solution in that case is to switch on the trust radius update, which reduces the step size if the

Newton-Raphson steps behave unexpected and ensures bigger step size if the PES seems to be quite

quadratic:

%geom

Trust 0.3 # Trust <0 - use fixed trust radius (default: -0.3 au)

# Trust >0 - use trust radius update, i.e. 0.3 means:

# start with trust radius 0.3 and use trust radius update

end

8.2.10.3 Special Coordinates for Transition State Optimizations

• If you look for a TS of a breaking bond the respective internal coordinate might not be included in

the list of redundant internal coordinates (but this would accelerate the convergence). In such a case

(and of course in others) you can add coordinates to or remove them from the set of autogenerated

redundant internal coordinates (alternatively check the TS Active Atoms keyword):

# add ( A ) or remove ( R ) internal coordinates

%geom

modify_internal

{ B 10 0 A } # add a bond between atoms 0 and 10

{ A 8 9 10 R } # remove the angle defined

# by atoms 8, 9 and 10

{ D 7 8 9 10 R } # remove the dihedral angle defined

end # by atoms 7, 8, 9 and 10

end
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8.2.11 MECP Optimization

There are reactions where the analysis of only one spin state of a system is not sufficient, but where the

reactivity is determined by two or more different spin states (Two- or Multi-state reactivity). The analysis of

such reactions reveals that the different PESs cross each other while moving from one stationary point to the

other. In such a case you might want to use the ORCA optimizer to locate the point of lowest energy of the

crossing surfaces (called the minimum energy crossing point, MECP).

As an example for such an analysis we show the MECP optimization of the quartet and sextet state of

[FeO]+.

!B3LYP TZVP Opt SurfCrossOpt SlowConv

%mecp

Mult 4

end

* xyz +1 6

Fe 0.000000 0.000000 1.000000

O 0.000000 0.000000 1.670000

*

• For further options for the MECP calculation, see section 9.21.3.

TIP: You can often use a minimum or TS structure of one of the two spin states as initial guess for your

MECP-optimization. If this doesn’t work, you might try a scan to get a better initial guess.

The results of the MECP optimization are given in the following output. The distance where both surfaces

cross is at 1.994 Å. In this simple example there is only one degree of freedom and we can also locate the

MECP via a parameter scan. The results of the scan are given in Figure for comparison. Here we see that

the crossing occurs at a Fe-O-distance of around 2 Å.

For systems with more than two atoms a scan is not sufficient any more and you have to use the MECP

optimization.

***********************HURRAY********************

*** THE OPTIMIZATION HAS CONVERGED ***

*************************************************

-------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal

-------------------------------------------------------------------

1. B(O 1,Fe 0) 1.9942 -0.000001 0.0000 1.9942

-------------------------------------------------------------------

*******************************************************

*** FINAL ENERGY EVALUATION AT THE STATIONARY POINT ***
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Figure 8.17: Parameter scan for the quartet and sextet state of [FeO]+ (B3LYP/SV(P)).

*** (AFTER 8 CYCLES) ***

*******************************************************

------------------------------------- ----------------

Energy difference between both states -0.000002398

------------------------------------- ----------------

A more realistic example with more than one degree of freedom is the MECP optimization of a structure

along the reaction path of the CH3O ↔ CH2OH isomerization.

!B3LYP SV SurfCrossOpt SurfCrossNumFreq

%mecp Mult 1

end

*xyz 1 3

C 0.000000 0.000000 0.000000

H 0.000000 0.000000 1.300000

H 1.026719 0.000000 -0.363000

O -0.879955 0.000000 -1.088889

H -0.119662 -0.866667 0.961546

*

NOTE:
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• To verify that a stationary point in a MECP optimization is a minimum, you have to use an adapted

frequency analysis, called by SurfCrossNumFreq (see section 9.21.3).

8.2.12 Conical Intersection Optimization

A conical intersection (CI) is the molecular geometry at which two (or more) potential energy surfaces are

degenerate and the non-adiabatic couplings between these states are non-vanishing. Locating these geometries

is essential for chemical processes that are governed by non-adiabatic events, as e.g. photoisomerization,

photostability - similar to locating transition states for chemical reactions.

As an example for such an analysis we show the conical intersection optimization of the ground and first

excited state of singlet ethylene.

!B3LYP def2-SVP def2/J

!CI-Opt

%conical

tddft_NRoots 2

tddft_IRoot 1

end

* xyz 0 1

C 0.595560237 -0.010483480 -0.000284187

C -0.831313750 0.167231832 0.001482505

H -1.381857976 0.227877089 0.963419721

H 1.265119434 0.874806815 0.006897459

H -1.382258208 0.243775568 -0.959090898

H 1.027489724 -1.032962768 -0.008829646

*

• For further options for the conical intersection calculation, see section 9.21.4.

TIP: You can often use a structure between the optimized structures of both states for your CI-optimization.

If this doesn’t work, you might try a scan to get a better initial guess.

The results of the CI-optimization are given in the following output. The energy difference between the

ground and excited state is printed as E diff. (CI), being reasonabley close for a conical intersection. For a

description of the calculation of the non-adiabatic couplings at this geometry, see sections 8.4.7 and 8.4.8.

.--------------------.

----------------------|Geometry convergence|-------------------------

Item value Tolerance Converged

---------------------------------------------------------------------

Energy change -0.0015350321 0.0000050000 NO

E diff. (CI) -0.0000352046 0.0001000000 YES

RMS gradient 0.0000483290 0.0001000000 YES

MAX gradient 0.0000865589 0.0003000000 YES

RMS step 0.0001303666 0.0020000000 YES

MAX step 0.0002364786 0.0040000000 YES
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........................................................

Max(Bonds) 0.0000 Max(Angles) 0.01

Max(Dihed) 0.01 Max(Improp) 0.00

---------------------------------------------------------------------

Everything but the energy has converged. However, the energy

appears to be close enough to convergence to make sure that the

final evaluation at the new geometry represents the equilibrium energy.

Convergence will therefore be signaled now

***********************HURRAY********************

*** THE OPTIMIZATION HAS CONVERGED ***

*************************************************

---------------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal

----------------------------------------------------------------------------

1. B(C 1,C 0) 1.3253 -0.000067 0.0000 1.3253

2. B(H 2,C 1) 1.1258 -0.000086 0.0000 1.1258

3. B(H 3,C 0) 1.1285 0.000084 -0.0000 1.1285

4. B(H 4,C 1) 1.1259 -0.000085 0.0000 1.1259

5. B(H 5,C 0) 1.1285 0.000087 -0.0000 1.1285

6. A(H 3,C 0,H 5) 105.88 0.000026 -0.01 105.87

7. A(C 1,C 0,H 5) 127.11 -0.000008 0.01 127.11

8. A(C 1,C 0,H 3) 127.01 -0.000018 0.01 127.02

9. A(C 0,C 1,H 4) 126.92 0.000009 -0.01 126.91

10. A(H 2,C 1,H 4) 106.15 -0.000008 0.01 106.15

11. A(C 0,C 1,H 2) 126.94 -0.000001 -0.00 126.94

12. D(H 2,C 1,C 0,H 5) 106.90 0.000005 -0.01 106.89

13. D(H 4,C 1,C 0,H 3) 106.86 0.000000 -0.01 106.85

14. D(H 4,C 1,C 0,H 5) -73.36 0.000003 -0.01 -73.37

15. D(H 2,C 1,C 0,H 3) -72.88 0.000003 -0.01 -72.90

----------------------------------------------------------------------------

*******************************************************

*** FINAL ENERGY EVALUATION AT THE STATIONARY POINT ***

*** (AFTER 15 CYCLES) ***

*******************************************************

NOTE

• The first state (ground or excited) is defined via the general ORCA input (multiplicity; tddft or casscf

blocks for excited states).

• The second state (again ground or excited, same or different multiplicity as the first state) is defined

via the conical block.
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• From our experience best performance is obtained for CI optimizations of ground and excited state,

but other combinations are possible as well (excited state and excited state; for same or different

multiplicities). For more information on the available options see section 9.21.4.

8.2.13 Constant External Force - Mechanochemistry

Constant external force can be applied on the molecule within the EFEI formalism [169] by pulling on the

two defined atoms. To apply the external force, use the POTENTIALS in the geom block. The potential

type is C for Constant force, indexes of two atoms (zero-based) and the value of force in nN.

! def2-svp OPT

%geom

POTENTIALS

{ C 2 3 4.0 }

end

end

* xyz 0 1

O 0.73020 -0.07940 -0.00000

O -0.73020 0.07940 -0.00000

H 1.21670 0.75630 0.00000

H -1.21670 -0.75630 0.00000

*

The results are seen in the output of the SCF procedure, where the total energy already contains the force

term.

----------------

TOTAL SCF ENERGY

----------------

Total Energy : -150.89704913 Eh -4106.11746 eV

Components:

Nuclear Repulsion : 36.90074715 Eh 1004.12038 eV

External potential : -0.25613618 Eh -6.96982 eV

Electronic Energy : -187.54166010 Eh -5103.26802 eV

8.2.14 Intrinsic Reaction Coordinate

The Intrinsic Reaction Coordinate (IRC) is a special form of a minimum energy path, connecting a transition

state (TS) with its downhill-nearest intermediates. A method determining the IRC is thus useful to determine

whether a transition state is directly connected to a given reactant and/or a product.

ORCA features its own implementation of Morokuma and coworkers’ popular method. [170] The IRC method

can be simply invoked by adding the IRC keyword as in the following example.
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! UKS B3LYP SV(P) TightSCF KDIIS SOSCF Freq IRC

* xyz 0 2

C -0.000 0.001 -0.000

H 1.290 0.005 -0.006

H -0.330 1.050 -0.002

H -0.252 -0.532 -0.929

H -0.286 -0.545 0.911

O 2.499 0.220 0.065

H 2.509 1.085 0.525

*

For more information and further options see section 9.22.1.

NOTE

• The same method and basis set as used for optimization and frequency calculation should be used for

the IRC run.

• The IRC keyword can be requested without, but also together with OptTS, ScanTS, NEB-TS, AnFreq

and NumFreq keywords.

• In its default settings the IRC code checks whether a Hessian was computed before the IRC run. If

that is not the case, and if no Hessian is defined via the %irc block, a new Hessian is computed at the

beginning of the IRC run.

• A final trajectory ( IRC Full trj.xyz) is generated which contains both directions, forward and backward,

by starting from one endpoint and going to the other endpoint, visualizing the entire IRC. Forward

( IRC F trj.xyz and IRC F.xyz) and backward ( IRC B trj.xyz and IRC B.xyz) trajectories and xyz

files contain the IRC and the last geometry of that respective run.

8.2.15 Printing Hessian in Internal Coordinates

When a Hessian is available, it can be printed out in redundant internal coordinates as in the following

example:

! opt

%geom inhess read

inhessname "h2o.hess"

PrintInternalHess true

end

*xyz 0 1

O 0.000000 0.000000 0.000000

H 0.968700 0.000000 0.000000

H -0.233013 0.940258 0.000000

*
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NOTE

• The Hessian in internal coordinates is (for the input printHess.inp) stored in the file printHess internal.hess

.

• The corresponding lists of redundant internals is stored in printHess.opt .

• Although the !Opt keyword is necessary, an optimization is not carried out. ORCA exits after storing

the Hessian in internal coordinates.

8.2.16 Geometry Optimizations using the L-BFGS optimizer

Optimizations using the L-BFGS optimizer are done in Cartesian coordinates. They can be invoked quite

simple as in the following example:

! L-Opt

! MM

%mm

ORCAFFFILENAME "CHMH.ORCAFF.prms"

end

*pdbfile 0 1 CHMH.pdb

Using this optimizer systems with 100s of thousands of atoms can be optimized. Of course, the energy and

gradient calculations should not become the bottleneck for such calculations, thus MM or QM/MM methods

should be used for such large systems.

Only the hydrogen positions can be optimized with the following command:

! L-OptH

But also other elements can be exclusively optimized with the following command:

! L-OptH

%geom

OptElement F # optimize fluorine only when L-OptH is invoked.

# Does not work with the regular optimizer.

end

When fragments are defined for the system, each fragment can be optimized differently (similar to the

fragment optimization described above). The following options are available:

FixFrags Freeze the coordinates of all atoms of the specified fragments.

RelaxHFrags Relax the hydrogen atoms of the specified fragments. Default for all atoms if !L-OptH is

defined.
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RelaxFrags Relax all atoms of the specified fragments. Default for all atoms if !L-Opt is defined.

RigidFrags Treat each specified fragment as a rigid body, but relax the position and orientation of these

rigid bodies.

NOTE:

• The fragments have to be defined after the coordinate input.

A more complex example is depicted in the following:

! L-OptH

%mm

ORCAFFFILENAME "CHMH.ORCAFF.prms"

end

*pdbfile 0 1 CHMH.pdb

%geom

Frags

2 {8168:8614} end # First the fragments need to be defined

3 {8615:8699} end # Note that all other atoms belong to

4 {8700:8772} end # fragment 1 by default

5 {8773:8791} end #

RelaxFrags {2} end # Fragment 2 is fully relaxed

RigidFrags {3 4 5} end # Fragments 3, 4 and 5 are treated as rigid bodies each.

end

8.2.17 Nudged Elastic Band Method

The Nudged Elastic Band (NEB) method is used to find a minimum energy path (MEP) connecting given

reactant and product state minima on the energy surface. An initial path is generated and represented by a

discrete set of configurations of the atoms, referred to as images of the system. The number of images is

specified by the user and has to be large enough to obtain sufficient resolution of the path. The implementation

in ORCA is described in detail in the article by Ásgeirsson et. al. [171] and in section 9.22.2 along with

the input options. The most common use of the NEB method is to find the highest energy saddle point

on the potential energy surface specifying the transition state for a given initial and final state. Rigorous

convergence to a first order saddle point can be obtained with the climbing image NEB (CI-NEB), where

the highest energy image is pushed uphill in energy along the tangent to the path while relaxing downhill

in orthogonal directions. Another method for finding a first order saddle point is the NEB-TS which uses

the CI-NEB method with a loose tolerance to begin with and then switches over to the OptTS method to

converge on the saddle point. This combination can be a good choice for calculations of complex reactions

where the ScanTS method fails or where 2D relaxed surface scans are necessary to find a good initial guess

structure for the OptTS method. The zoomNEB variants are a good choice in case of very complex transition

states with long tails. For more and detailed information on the various NEB variants implemented in ORCA

please consult section 9.22.2.
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In their simplest form NEB, NEB-CI and NEB-TS only require the reactant and product state configurations

(one via the xyz block, and the other one via the keyword neb end xyzfile):

!NEB-TS # or !NEB or !NEB-CI or !ZOOM-NEB-TS or !ZOOM-NEB-CI

%neb

neb_end_xyzfile "final.xyz"

end

Below is an example of an NEB-TS run involving an intramolecular proton transfer within acetic acid. The

simplest input is

!XTB NEB-TS

%neb

neb_end_xyzfile "final.xyz"

end

*xyz 0 1

C 0.416168 0.038758 -0.014077

C 0.041816 0.011798 1.439610

O 1.524458 0.176600 -0.453888

O -0.654209 -0.127881 -0.803857

H -0.391037 -0.126036 -1.737478

H -0.913438 0.507022 1.585301

H -0.057787 -1.026455 1.750845

H 0.819515 0.485425 2.030252

*

Where the final.xyz structure contains the corresponding structure with the proton on the other oxygen.

The initial path is reasonable and the CI calculation can be switched on after five NEB iterations.

Starting iterations:

Optim. Iteration HEI E(HEI)-E(0) max(|Fp|) RMS(Fp) dS

Switch-on CI threshold 0.020000

LBFGS 0 4 0.081017 0.073897 0.018915 3.2882

LBFGS 1 5 0.070244 0.056668 0.013913 3.2770

LBFGS 2 5 0.062934 0.038972 0.008763 3.3376

LBFGS 3 5 0.057358 0.032076 0.006535 3.3950

LBFGS 4 4 0.053260 0.019015 0.003599 3.4826

Image 4 will be converted to a climbing image in the next iteration (max(|Fp|) < 0.0200)

Optim. Iteration CI E(CI)-E(0) max(|Fp|) RMS(Fp) dS max(|FCI|) RMS(FCI)

Convergence thresholds 0.020000 0.010000 0.002000 0.001000

The CI run converges after another couple of iterations:
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*********************H U R R A Y*********************

*** THE NEB OPTIMIZATION HAS CONVERGED ***

*****************************************************

Subsequently a summary of the MEP is printed:

---------------------------------------------------------------

PATH SUMMARY

---------------------------------------------------------------

All forces in Eh/Bohr.

Image Dist.(Ang.) E(Eh) dE(kcal/mol) max(|Fp|) RMS(Fp)

0 0.000 -14.45993 0.00 0.00011 0.00004

1 0.426 -14.44891 6.91 0.00092 0.00033

2 0.652 -14.42864 19.63 0.00084 0.00038

3 0.805 -14.41132 30.50 0.00075 0.00027

4 0.932 -14.40562 34.08 0.00057 0.00018 <= CI

5 1.044 -14.41047 31.03 0.00057 0.00024

6 1.153 -14.42200 23.80 0.00103 0.00034

7 1.280 -14.43666 14.60 0.00098 0.00037

8 1.476 -14.45106 5.56 0.00106 0.00033

9 1.869 -14.45988 0.03 0.00013 0.00006

Additionally, detailed information on the highest energy image (or the CI) is printed:

---------------------------------------------------------------

INFORMATION ABOUT SADDLE POINT

---------------------------------------------------------------

Climbing image .... 4

Energy .... -14.40561577 Eh

Max. abs. force .... 9.5976e-04 Eh/Bohr

-----------------------------------------

SADDLE POINT (ANGSTROEM)

-----------------------------------------

C 0.040867 0.007347 -0.497635

C -0.075595 0.017879 0.979075

O 1.122340 0.126074 -1.145534

O -0.928470 -0.137946 -1.298318

H 0.165808 -0.021676 -2.055704

H -0.996979 0.514720 1.271668

H -0.116377 -1.013504 1.327873

H 0.788406 0.507105 1.418575

-----------------------------------------

FORCES (Eh/Bohr)

-----------------------------------------

C -0.000646 -0.000111 0.000086

...

-----------------------------------------

UNIT TANGENT



184 8 Running Typical Calculations

-----------------------------------------

C -0.246569 -0.031821 -0.019359

...

=> Unit tangent is an approximation to the TS mode at the saddle point

Next a TS optimization is performed on the CI from the NEB run.

Finally, a TS optimization is started, after which the MEP information is updated by including the TS

structure:

---------------------------------------------------------------

PATH SUMMARY FOR NEB-TS

---------------------------------------------------------------

All forces in Eh/Bohr. Global forces for TS.

Image E(Eh) dE(kcal/mol) max(|Fp|) RMS(Fp)

0 -14.45993 0.00 0.00011 0.00004

1 -14.44891 6.91 0.00092 0.00033

2 -14.42864 19.63 0.00084 0.00038

3 -14.41132 30.50 0.00075 0.00027

4 -14.40562 34.08 0.00057 0.00018 <= CI

TS -14.40562 34.08 0.00033 0.00013 <= TS

5 -14.41047 31.03 0.00057 0.00024

6 -14.42200 23.80 0.00103 0.00034

7 -14.43666 14.60 0.00098 0.00037

8 -14.45106 5.56 0.00106 0.00033

9 -14.45988 0.03 0.00013 0.00006

Note that here both TS and CI are printed for comparison.

8.3 Vibrational Frequencies

Vibrational frequency calculations are available through analytical differentiation of the SCF energy as well

as one- or two-sided numerical differentiation of analytical gradients, i.e. for Hartree-Fock and DFT models.

For methods without analytical gradient a numerically calculated gradient can be used (keyword NumGrad)

for numerical frequencies. Please note, that this will be a very time consuming calculation.

The use of vibrational frequency calculations is fairly simple:

# any Hartree-Fock or DFT model can be used here

! RKS BP def2-TZVP RI def2/J

# Tight SCF convergence and larger integration grids are advisable

# in order to minimize the numerical noise in the frequencies.

! TightSCF Grid5 NoFinalGrid
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# perform a geometry optimization first

! Opt

# Run an analytical or numerical frequency calculation afterwards

! AnFreq # or just ‘‘! Freq’’

# numerical:

! NumFreq

# details of the analytical frequency calculation

%freq Hess2ElFlags 1,2,2,1 # use the RIJCOSX approximation

# (this is the new default for RIJCOSX Hessian)

end

# details of the numerical frequency calculation

%freq CentralDiff true # use central-differences (this is the default)

Increment 0.005 # increment in bohr for the

# differentiation (default 0.005)

end

! bohrs

* xyz 0 1

O -1.396288 -0.075107 0.052125

O 1.396289 -0.016261 -0.089970

H -1.775703 1.309756 -1.111179

H 1.775687 0.140443 1.711854

*

The user has full controll over approximations involved in the Hessian calculation. Hess2ElFlags(i1, i2,

i3, i4), where ik (ik = 0 to 2) adjust the use of the RI and COSX approximations. In case ik = 0 no

approximation in the 2-electron integrals is introduced. ik = 1 means the RI approximation in the Coulomb

part is in use. ik = 2 corresponds to COSX algorithm in the HF exchange. i1 corresponds to explicit Fock

matrix derivatives, i2 - Fock matrix depended on pseudo density, i3 - solution of the CP-SCF equations, i4 -

explicit integral second derivative.

In the introduced notation the RIJDX default flags are (1, 1, 1, 1), the RIJCOSX are (1, 2, 2, 1). Analytical

frequency calculations are also implemented at MP2 level. Please note, that the Hess2ElFlags are ignored

by the MP2 module. Furthermore, MP2 frequency calculations are very time-consuming and need a lot of

disk space.

At the end of the frequency job you get an output like this:

-----------------------

VIBRATIONAL FREQUENCIES

-----------------------

0: 0.00 cm**-1
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1: 0.00 cm**-1

2: 0.00 cm**-1

3: 0.00 cm**-1

4: 0.00 cm**-1

5: 0.00 cm**-1

6: 311.78 cm**-1

7: 887.65 cm**-1

8: 1225.38 cm**-1

9: 1394.81 cm**-1

10: 3624.88 cm**-1

11: 3635.73 cm**-1

This output consists of the calculated vibrational frequencies, the vibrational modes and the thermochemical

properties at 298.15 K. In the example above there are six frequencies which are identically zero. These

frequencies correspond to the rotations and translations of the molecule. They have been projected out of

the Hessian before the calculation of the frequencies and thus, the zero values do not tell you anything about

the quality of the Hessian that has been diagonalized. The reliability of the calculated frequencies has to

be judged by comparison of calculations with different convergence criteria, increments, integration grids

etc. The numerical error in the frequencies may reach 50 cm−1 but should be considerably smaller in most

cases. Significant negative frequencies indicate saddle points of the energy hypersurface and prove that the

optimization has not resulted in an energy minimum.

Mass dependencies: Of course the calculated frequencies depend on the masses used for each atom.

While this can be influenced later through the orca vib routine (see Section 8.15.3.6 for more detail) and

individually for each atom in the geometry input, one might prefer using a set of precise atomic masses

rather than the set of atomic weights (which are set as default). This can be achieved through the !Mass2016

keyword, which triggers Orca to use those atomic masses representing either the most abundant isotope or

the most stable isotope (if all isotopes are unstable) of a certain element (e.g. the mass of 35Cl for chlorine or

the mass of 98Tc).

NOTE: The calculation of numerical frequencies puts rather high demands on both computer time and

accuracy. In order to get reliable frequencies make sure that:

• Your SCF is tightly converged. A convergence accuracy of at least 10−7 Eh in the total energy and

10−6 in the density is desirable.

• Grids of at least Grid4 or preferably larger are recommended.

• The use of two-sided (i.e. central) differences increases the computation time by a factor of two but

gives more accurate and reliable results.

• Small auxiliary basis sets like DGauss/J or DeMon/J may not result in fully converged frequencies

(up to 40 cm−1 difference compared to frequencies calculated without RI). The def2/J universal

auxiliary basis sets of Weigend that are now the default in ORCA (or the SARC/J for scalar relativistic

calculations) are thought to give sufficiently reliable results.
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• Possibly, the convergence criteria of the geometry optimization need to be tightened in order to get

fully converged results.

• If you can afford it, decrease the numerical increment to 0.001 Bohr or so. This puts even higher

demands on the convergence characteristics of the SCF calculation but should also give more accurate

numerical second derivatives. If the increment is too small or too high inaccurate results are expected.

The calculation of analytical frequencies is memory consuming. To control memory consumption the %maxcore

parameter must be set. For example %maxcore 8192 - use 8 Gb of memory per processor for the calculation.

The user should provide the value according to the computer available memory. The batching based on

%maxcore parameter will be introduced automatically to overcome probable memory shortage.

Numerical frequency calculations are restartable (but analytical frequency calculations are not). If the

numerical frequencies job died for one reason or another you can simply continue from where it stopped as in

the following example:

! RHF STO-3G

! NumFreq

%freq Restart true # restart an old calculation

# this requires a .hess file to be present

end

* int 0 1

C 0 0 0 0.0000 0 0

C 1 0 0 1.2160 0 0

H 1 2 0 1.083 180 0

H 2 1 3 1.083 180 0

*

NOTE

• You must not change the level of theory, basis set or any other detail of the calculation. Any change

will produce an inconsistent, essentially meaningless Hessian.

• The geometry at which the Hessian is calculated must be identical. If you followed a geometry

optimization by a frequency run then you must restart the numerical frequency calculation from the

optimized geometry.

• Numerical frequencies can be performed in multi-process mode. Please see section 5.2 (“Hints on the

use of parallel ORCA”) for more information.

• In multi-process mode the restart will take off from the locally calculated Hessians (.procmyid.hess,

e.g. .proc0.hess, .proc1.hess) where myid is the process id of some local process. Please make sure

that all these local Hessians get copied to your compute directory. If restart is set and no local files to

be found, ORCA will try to restart on the global Hessian file.

• The Hessian file will contain a joblist, showing which displacements have been performed. You can

recalculate a single (or more) displacements by changing the 1 (“done”-) entry to 0 (“to-be-done”).
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• The Hessian can be transformed to redundant internal coordinates. More information can be found in

section 8.2.15.

8.4 Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT

ORCA features a module to perform TD-DFT, single-excitation CI (CIS) and RPA. The module works

with either closed-shell (RHF or RKS) or unrestricted (UHF or UKS) reference wavefunctions. For DFT

models the module automatically chooses TD-DFT and for HF wavefunctions the CIS model. If the RI

approximation is used in the SCF part it will also be used in the excited states calculation. A detailed

documentation is provided in section 9.23.

8.4.1 General Use

In its simplest form it is only necessary to provide the number of roots sought:

! RKS B3LYP/G SV(P) TightSCF

%tddft nroots 8

maxdim 2 #Davidson expansion space = MaxDim * NRoots

triplets true

end

* int 0 1

C(1) 0 0 0 0.00 0.0 0.00

O(2) 1 0 0 1.20 0.0 0.00

H(3) 1 2 0 1.08 120 0.00

H(3) 1 2 3 1.08 120 180.00

*

The MaxDim parameter controls the maximum number of expansion vectors in the iterative solution of the

CI equations. The default is the smallest possible choice. The triplets parameter is only valid for closed-shell

references. If chosen as true the program will also determine the triplet excitation energies in addition to the

singlets.

8.4.2 Use of TD-DFT for the Calculation of X-ray Absorption Spectra

In principle X-ray absorption spectra are “normal” absorption spectra that are just taken in a special

high-energy wavelength range. Due to the high energy of the radiation employed (several thousand eV),

core-electrons rather than valence electrons are excited. This has two consequences: a) the method becomes

element specific because the core-level energies divide rather cleanly into regions that are specific for a given

element. b) the wavelength of the radiation is so short that higher-order terms in the expansion of the

light-matter interaction become important. Most noticeably, quadrupole intensity becomes important.
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X-ray absorption spectra can be generally divided into three regions: a) the pre-edge that corresponds to

transitions of core electrons into low lying virtual orbitals that lead to bound states. b) the rising edge that

corresponds to excitations to high-lying states that are barely bound, and c) the extended X-ray absorption

fine structure region (EXAFS) that corresponds to electrons being ejected from the absorber atom and

scattered at neighbouring atoms.

With the simple TD-DFT calculations described here, one focuses the attention on the pre-edge region.

Neither the rising edge nor the EXAFS region are reasonably described with standard electronic structure

methods and no comparison should be attempted. In addition, these calculations are restricted to K-edges as

the calculation of L-edges is much more laborious and requires a detailed treatment of the core hole spin

orbit coupling.

It is clearly hopeless to try to calculate enough states to cover all transitions from the valence to the pre-edge

region. Hence, instead one hand-selects the appropriate donor core orbitals and only allows excitations out of

these orbitals into the entire virtual space. This approximation has been shown to be justified. [172] One

should distinguish two situations: First, the core orbital in question may be well isolated and unambiguously

defined. This is usually the case for metal 1s orbitals if there is only one metal of the given type in the

molecule. Secondly, there may be several atoms of the same kind in the molecule and their core orbitals

form the appropriate symmetry adapted linear combinations dictated by group theory. In this latter case

special treatment is necessary: The sudden approximation dictates that the excitations occurs from a local

core orbital. In previous versions of the program you had to manually localize the core holes. In the present

version there is an automatic procedure that is described below.

A typical example is TiCl4. If we want to calculate the titanium K-edge, the following input is appropriate:

! BP86 ZORA ZORA-def2-TZVP(-f) SARC/J TightSCF

%maxcore 1024

%tddft OrbWin[0] = 0,0,-1,-1

NRoots 25

DoQuad true

end

* int 0 1

Ti 0 0 0 0 0 0

Cl 1 2 3 2.15 0 0

Cl 1 2 3 2.15 109.4712 0

Cl 1 2 3 2.15 109.4712 120

Cl 1 2 3 2.15 109.4712 240

*

NOTE:

• The absolute transition energies from such calculations are off by a few hundred electron volts due

to the shortcomings of DFT. The shift is constant and very systematic for a given element. Hence,

calibration is possible and has been done for a number of edges already. Calibration depends on the

basis set!



190 8 Running Typical Calculations

• Quadrupole contributions (and magnetic dipole contributions) have been invoked with DoQuad true,

which is essential for metal edges. For ligand edges, the contributions are much smaller.

• OrbWin is used to select the single donor orbital (in this case the metal 1s). The LUMO (45) and

last orbital in the set (174) are selected automatically if “-1” is given. This is different from previous

program versions where the numbers had to be given manually.

The output contains standard TD-DFT output but also:

------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (origin adjusted)

------------------------------------------------------------------------------------------------------

State Energy Wavelength D2 m2 Q2 D2+m2+Q2 D2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

------------------------------------------------------------------------------------------------------

....

This section contains the relevant output since it combines electric dipole, electric quadrupole and magnetic

dipole transition intensities into the final spectrum. Importantly, there is a gauge issue with the quadrupole

intensity: the results depend on the where the origin is placed. We have proposed a minimization procedure

that guarantees the fastest possible convergence of the multipole expansion. [173]

The spectra are plotted by calling

orca_mapspc MyOutput.out ABSQ -eV -x04890 -x14915 -w1.3

Starting from ORCA version 4.1 one may obtain exact origin independent transition moments which can be

combined with the multipole moments up to 2nd order to regenerate the electric dipole, electric quadrupole

and magnetic dipole contributions in either length or the velocity representations. This requires in addition to

the electric dipole (D), electric quadrupole (Q) and magnetic dipole (m) intensities the corresponding electric

dipole - magnetic quadrupole (DM) and the electric dipole - electric octupole (DO) intensities. [174] [175].

See also section 9.24.1.

These spectra are requested by:

DoQuad true

DoLength true #Evaluate the exact oscillation strengths and multipole moments

#up to 2nd order in length representation

DoVelocity true #Evaluate the exact oscillation strengths and multipole moments

#up to 2nd order in velocity representation

Resulting in:
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-------------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin Independent, Length)

-------------------------------------------------------------------------------------------------------------

State Energy Wavelength D2 m2 Q2 D2+m2+Q2+DM+DO D2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-------------------------------------------------------------------------------------------------------------

...

-------------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Exact Formulation, Length)

-------------------------------------------------------------------------------------------------------------

State Energy Wavelength D2 m2 Q2 Exact Osc. Strength D2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-------------------------------------------------------------------------------------------------------------

...

-------------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin Independent, Velocity)

-------------------------------------------------------------------------------------------------------------

State Energy Wavelength P2 m2 Q2 P2+m2+Q2+PM+PO P2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-------------------------------------------------------------------------------------------------------------

...

-------------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Exact Formulation, Velocity)

-------------------------------------------------------------------------------------------------------------

State Energy Wavelength P2 m2 Q2 Exact Osc. Strength P2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-------------------------------------------------------------------------------------------------------------

...

The Exact transition moments spectra are plotted by calling:

orca_mapspc MyOutput.out ABSOI/ABSVOI -eV -x04890 -x14915 -w1.3

Although the multipole moments up to 2nd order:

• Only approximate origin independence is achieved by using the length approximation for distances

from the excited atom up to about 5 Angstrom.

• Can form negative intensities which can be partly cured by using larger basis sets.

The exact transition moments:

• Behave like the multipole expansion in the velocity representation.

• They are by definition origin independent they do not suffer from artificial negative values like the

multipole moments beyond 1st order.

• They are used with the multipole moments up to 2nd order to regenerate the electric dipole, electric

quadrupole and magnetic dipole contributions in either length or the velocity representation.
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Now, let us turn to the Cl K-edge. Looking at the output of the first calculation, we have:

----------------

ORBITAL ENERGIES

----------------

NO OCC E(Eh) E(eV)

0 2.0000 -180.182806 -4903.0234

1 2.0000 -101.517692 -2762.4368

2 2.0000 -101.517681 -2762.4365

3 2.0000 -101.517442 -2762.4300

4 2.0000 -101.517442 -2762.4300

5 2.0000 -19.814042 -539.1675

6 2.0000 -16.394212 -446.1092

7 2.0000 -16.394210 -446.1091

8 2.0000 -16.394203 -446.1089

9 2.0000 -9.281040 -252.5499

10 2.0000 -9.281011 -252.5491

11 2.0000 -9.280892 -252.5459

12 2.0000 -9.280892 -252.5459

18 2.0000 -7.034911 -191.4297

....

And looking at the energy range or the orbital composition, we find that orbitals 1 through 4 are Cl 1s-orbitals.

They all have the same energy since they are essentially non-interacting. Hence, we can localize them without

invalidating the calculation. To this end, you can invoke the automatic localization for XAS which modifies

the input to:

! BP86 ZORA ZORA-def2-TZVP(-f) SARC/J TightSCF

%maxcore 1024

%tddft XASLoc[0] = 1,4

OrbWin[0] = 1,1,-1,-1

NRoots 25

DoQuad true

end

* int 0 1

Ti 0 0 0 0 0 0

Cl 1 2 3 2.15 0 0

Cl 1 2 3 2.15 109.4712 0

Cl 1 2 3 2.15 109.4712 120

Cl 1 2 3 2.15 109.4712 240

*

• This localizes the orbitals 1 through 4 of operator 0 (the closed-shell) and then allows excitations

(arbitrarily) from core hole 1 only. You could choose any of the three other localized 1s orbitals instead

without changing the result. You could even do all four core holes simultaneously (they produce

identical spectra) in which case you have the entire ligand K-edge intensity and not just the one

normalized to a single chlorine (this would be achieved with OrbWin[0] = 1,4,-1,-1).
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• If you have a spin unrestricted calculation, you need to give the same XASLoc and OrbWin information

for the spin-down orbitals as well.

Quite nice results have been obtained for a number of systems in this way. [176]

8.4.3 Excited State Geometry Optimization

For RPA, CIS, TDA and TD-DFT the program can calculate analytic gradients. With the help of the

IRoot keyword, a given state can be selected for geometry optimization. Note however, that if two states

cross during the optimization it may fail to converge or fail to converge to the desired excited state (see

section 8.4.3.1 below)! If you want to follow a triplet state instead of the singlet, please set IROOTMULT to

TRIPLET.

! RHF SVP TightSCF Opt

%tddft NRoots 1

IRoot 1

end

* int 0 1

C(1) 0 0 0 0.00 0.0 0.00

O(2) 1 0 0 1.20 0.0 0.00

H(3) 1 2 0 1.08 120 0.00

H(3) 1 2 3 1.08 120 180.00

*

Note that this example converges to a saddle point as can be verified through a numerical frequency calculation

(which is also possible with the methods mentioned above). The excited state relaxed density matrix is

available from such gradient runs (MyJob.cisp when using the KeepDens keyword) and can be used for

various types of analysis. Note that the frozen core option is available starting from version 2.8.0.

8.4.3.1 Root Following Scheme for Difficult Cases

In case there is a root flipping after a step during the geometry optimization, it might be impossible to converge

an excited state geometry using the regular methods. To help in those cases, the flag FOLLOWIROOT might

be set to TRUE. Then, the total overlap between the excited state wavefunctions will be calculated and

compared with the previous from IROOT. The flag IROOT will be thus adjusted to follow the maximum

overlap.

It is important to stress that this will not necessarily solve all problems (root flipping can be particularly bad

if the system is highly symmetric), for the excited states may change too much during the optimization. If

that happens, it is advisable to restart the calculation after some steps and check which IROOT you still

want. This can also be used when calculating numerical gradients and Hessians, in case you suspect of root

flipping after the displacements.
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8.4.4 Doubles Correction

For CIS (and also for perturbatively corrected time-dependent double-hybrid functionals) the program can

calculate a doubles correction to the singles-only excited states. The theory is due to Head-Gordon and

co-workers.

%cis dcorr n # n=1,2,3,4 are four different algorithms that

# lead to (essentially) the same result but differ

# in the way the rate-limiting steps are handled

NOTE:

• CIS(D) is often a quite big improvement over CIS.

• The cost of the (D) correction is O(N5) and therefore comparable to RI-MP2. Since there are quite a

few things more to be done for (D) compared to RI-MP2, expect the calculations to take longer. In

the most elementary implementation the cost is about two times the time for RI-MP2 for each root.

• The (D) correction is compatible with the philosophy of the double-hybrid density functionals and

should be used if these functionals are combined with TD-DFT. The program takes this as the default

but will not enforce it. The (D) correction can be used both in a TD-DFT and TDA-DFT context.

• In our implementation it is only implemented together with the RI approximation and therefore you

need to supply an appropriate (“/C”) fitting basis.

• The program will automatically put the RI-MP2 module into operation together with the (D) correction.

This will result in the necessary integrals becoming available to the CIS module.

8.4.5 Spin-orbit coupling

It also possible to include spin-orbit coupling between singlets and triplets calculated from TD-DFT by using

quasi-degenerate perturbation theory (please refer to the relevant publication [177]), similarly to what is done

in ROCIS. In order to do that, the flag DOSOC must be set to TRUE. The reduced matrix elements are

printed and the new transition dipoles between all SOC coupled states are also printed after the regular ones.

This option is currently still not compatible with double hybrids, but works for all other cases including

CPCM. All the options regarding the SOC integrals can be altered in the %rel block, as usual.

%cis dosoc true

Please have in mind that, as it is, you can only calculate the SOC between excited singlets and the spin-

adapted triplets. There is no SOC starting from a UHF/UKS wavefunction. If you want more information

printed such as the full SOC matrix or triplet-triplet couplings, please set a higher PRINTLEVEL.
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8.4.5.1 Geometry Optimization of SOC States

If you want to compute geometries for the SOC states, just choose SOCGRAD TRUE and a given IROOT.

The weigthed “unrelaxed” gradient will then be calculated after selecting the CIS/TD-DFT states with

contribution larger than 0.01%. Each gradient will be calculated separately and, after that, the final SOC

gradient will be computed as a weighted sum. Setting IROOT 0 in this case corresponds to ask for the SOC

ground state, which is NOT necessarily equal to the ground state from HF/DFT.

8.4.6 Transient spectra

If one wants to compute transient spectra, or transition dipoles starting from a given excited state, the option

DOTRANS must be set to TRUE and an IROOT should be given for the initial state (the default is 1). If

DOTRANS ALL is requested instead, the transition dipoles between all states are computed. The transient

transition dipoles will then be printed after the normal spectra. This option is currently only available for

CIS/TDA and is done usng the expectation value formalism, as the other transition dipole moments in

ORCA.

%cis dotrans true

#or

dotrans all

8.4.7 Hellmann-Feyman non-adiabatic couplings

The CIS module can also compute the Hellmann-Feyman non-adiabatic couplings between ground and

an excited state given by an IROOT, 〈ΨGS | ∂
∂Rx
|ΨIROOT 〉. In the HF approach, that is calculated as

〈ΨGS |∂V̂ne∂Rx
|ΨIROOT 〉. As discussed in the recent literature [178], these are missing all the Pulay terms when

using an atom centered basis and are strictly exact only on the complete basis set limit. In our experience, a

large basis such as aug-cc-pVTZ can already reach good results. For exact, but costlier calculations, please

check the NumNACME flag for the numerical ones (see below).

%cis HFNacme true

8.4.8 Numerical non-adiabatic coupling matrix elements

The exact non-adiabatic coupling matrix elements between ground and excited states from CIS/TD-DFT can

be calculated in a numerical fashion, by setting the NumNACME flag on the main input line:

! NumNACME

ORCA will then calculate both the NACMEs and the numerical gradient for a given IROOT at the same

cost. Please be careful with the SCF options and GRID sizes since there are displacements involved, for more

information check 8.2.2. All options regarding step size and so on can be changed from %NUMGRAD.
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These are current implemented in both RHF/RKS and UHF/UKS, but only for CIS/TDA and RPA/TD-DFT,

no multireference methods yet. For the latter case, the overlap of the |X − Y 〉 vector is used [178].

8.4.9 Restricted Open-shell CIS

In addition to the CIS/TD-DFT description of excited states, ORCA features the orca rocis module to

perform configuration interaction with single excitations calculations using a restricted open-shell Hartree–

Fock (ROHF) reference. It can be used to calculate excitation energies, absorption intensities and CD

UHFintensities. In general, ROCIS calculations work on restricted open-shell HF reference functions but

in this implementation it is possible to enter the calculations with RHF (only for closed-shell molecules) or

UHF reference functions as well. If the calculation starts with an UHF/UKS calculation, it will automatically

produce the quasi-restricted orbitals which will then be used for the subsequent ROCIS calculations. Note

that if the reference function is a RHF/RKS function the method produces the CIS results. The module is

invoked by providing the number of roots sought in the %rocis block of the input file:

! SVP TightSCF

%rocis NRoots 2

MaxDim 5 #Davidson expansion space = MaxDim * NRoots

end

* xyz -2 2

Cu 0.00 0.00 0.00

Cl 2.25 0.00 0.00

Cl -2.25 0.00 0.00

Cl 0.00 2.25 0.00

Cl 0.00 -2.25 0.00

*

In this example the MaxDim parameter is given in addition to the number of roots to be calculated. It controls

the maximum dimension of the expansion space in the Davidson procedure that is used to solve the CI

problem.

The use of ROCIS is explained in greater detail in section 9.24.

8.5 SCF Stability Analysis

The SCF stability will give an indication whether the SCF solution is at a local minimum or a saddle

point. [179, 180] It is available for RHF/RKS and UHF/UKS. In the latter case, the SCF is restarted by

default using new unrestricted start orbitals if an instability was detected. For a demonstration, consider the

following input:
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! BHLYP def2-SVP NORI

%scf

guess hcore

HFTyp UHF

STABPerform true

end

* xyz 0 1

h 0.0 0.0 0.0

h 0.0 0.0 1.4

*

The HCORE guess leads to a symmetric/restricted guess, which does not yield the unrestricted solution.

The same is often true for other guess options. For more details on the stability analysis, see section 9.9.

8.6 Excited States for Open-Shell Molecules with CASSCF Linear

Response (MC-RPA)

ORCA has the possibility to calculate excitation energies, oscillator and rotatory strengths for CASSCF

wave functions within the response theory (MC-RPA) formalism. [?, 181, 182] The main scope of MC-RPA is

to simiulate UV/Vis and ECD absorption spectra of open-shell molecules like transition metal complexes

and organic radicals. MC-RPA absorption spectra are usually more accurate than those obtained from the

state-averaged CASSCF ansatz as orbital relaxation effects for excited states are taken into account. The

computational costs are ususally larger than those of SA-CASSCF and should be comparable to a TD-DFT

calculation for feasible active space sizes.

8.6.1 General Use

MC-RPA needs a converged state-specific CASSCF calculation of the electronic ground state. The only

necessary information that the user has to provide is the desired number of excited states (roots). All other

keywords are just needed to control the Davidson algorithm or post process the results. A minimal input for

calculating the four lowest singlet excited states of ethylene could like the following:

#

# CASSCF + MCRPA for C 2H 4

#

! DEF2-SVP DEF2-TZVP/C VeryTightSCF

%casscf

nel 2
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norb 2

mult 1

nroots 1

gtol 1e-6

etol 1e-10

end

%mcrpa

nroots 4

end

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 1.3385 0 0

H 1 2 0 1.07 120 0

H 1 2 3 1.07 120 180

H 2 1 3 1.07 120 0

H 2 1 3 1.07 120 180

*

After the residual norm is below a user-given threshold TolR we get the following information

Final Eigenvalues

State Eigenvalue RMSD error Converged

0 0.3352792890 2.4181038930e-07 T

1 0.3484190806 9.8077823429e-07 T

2 0.3514832140 2.7908735363e-07 T

3 0.3741119713 2.9210937348e-07 T

4 roots were CONVERGED within 19 iterations!

64 Sigma vectors were computed in total!

and the absorption and ECD spectrum

-----------------------------------------------------------------------------------------

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------------------

State Energy Wavelength fosc T2 TX ...

(eV) (nm) (au**2) (au) ...

-----------------------------------------------------------------------------------------

1 9.123413 135.896711 0.43048784 1.92595185 1.38778667

2 9.480965 130.771692 0.00992425 0.04272547 -0.00000001

3 9.564344 129.631660 0.00000000 0.00000000 0.00000004

4 10.180104 121.790683 0.00000000 0.00000000 -0.00000006

-----------------------------------------------------------------------------------------

CD SPECTRUM (VELOCITY GAUGE)

-----------------------------------------------------------------------------------------
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State Energy Wavelength R MX MY ...

(eV) (nm) (1e40*cgs) (au) (au) ...

-----------------------------------------------------------------------------------------

1 9.123413 135.896711 0.00000093 0.00000000 0.00000000

2 9.480965 130.771692 -0.00001279 -0.00000004 -0.00000001

3 9.564344 129.631660 0.00001205 1.39883362 -0.00000003

4 10.180104 121.790683 0.00000125 -0.31558199 -0.00000568

8.6.2 Capabilities

At the moment, we can simulate UV/Vis and ECD absorption spectra by computing excitation energies,

oscillator and rotatory strengths. The code is parallelized and the computational bottleneck is the integral

direct AO-Fock matrix construction. All intermediates that depend on the number of states are stored on

disk, which makes the MC-RPA implementation suitable for computing many low-lying electronic states of

larger molecules. So far, point-group symmetry cannot be exploited in the calculation. Moreover, there are

no calculations of spin-flip excitations possible at the moment. That means all excited states will have the

same spin as the reference state, which is specified in the %casscf input block.

It is also possible to analyze and visualize the ground-to-excited-state transitions by means of natural

transition orbitals [183] (NTO), which is explained in more detail in section 9.25.

For further details, please study our recent publications [184,185].

8.7 Ionized Excited states with IPROCI

Unlike IPEOMCC, the Ionization Potential from Restricted Open-shell Configuration Interaction (IPROCI)

method can be applied to open shell and it produces spin adapted open shell excitations, while it retains

some of the disadvantages of CI type wavefunctions. Nevertheless with an appropriate shift in ionization

potentials, IPROCI can be used to compute core level ionization potentials and thus reproduce the basic

features of XPS spectra as well.

8.7.1 General Use

Since IPROCI is intended mainly to compute core ionization potentials, the default is to compute the lowest

core orbital. The minimal input for performing IPROCI looks like

!DEF2-SVP nofrozencore

%autoci

citype IPROCI

end

*xyz 0 1
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C 0.016227 -0.000000 0.000000

O 1.236847 0.000000 -0.000000

H -0.576537 0.951580 -0.000000

H -0.576537 -0.951580 -0.000000

*

IPROCI is implemented within the autoci module and its parameters have to be set in the corresponding

module. Note the use of the nofrozencore option for calculations. The IPROCI output section begins with

some initial information about the specific calculation as shown below:

------------------------------------------------------------------------

RootType Block: 0

XOrb Solving: 0

------------------------------------------------------------------------

Excitation classes included:

IP_I IP_IJA

------------------------------------------------------------------------

Roottype 0

------------------------------------------------------------------------

Rootwise Solution: iroot/NROOT= 1/1, IPRoot=0

------------------------------------------------------------------------

Entering Solve()

... Initialized Buffers

------------------------

DAVIDSON-DIAGONALIZATION

------------------------

Dimension of the eigenvalue problem ... 1928

Number of roots to be determined ... 1

Maximum size of the expansion space ... 4

Maximum number of iterations ... 50

Convergence tolerance for the residual ... 1.000e-06

Convergence tolerance for the energies ... 1.000e-06

Orthogonality tolerance ... 1.000e-16

Level Shift ... 2.000e-01

Constructing the preconditioner ... o.k.

Building the initial guess ...

Calculating Preconditioner ... o.k.

Guess Rootwise (IPRoot=0) ... o.k.

Number of trial vectors determined ... 1

At the end of the calculation, the lowest core IP and the corresponding amplitudes are printed, where -1 is

interpreted as continuum orbital or infinity:

*** CONVERGENCE OF ENERGIES REACHED ***

Storing the converged CI vectors ... iproci_typ1.ci.tmp

*** DAVIDSON DONE ***
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========= Root 0, Energy(Eh): 19.83267814, Energy(eV): 539.67460864 =========

------------------------------ Largest amplitudes -----------------------------

1920 IP_I(23): 0 -> -1 0 -> 0 : -0.91928361

180 IP_IJA(24): 0 -> -1 6 -> 8 : -0.20117079

191 IP_IJA(24): 0 -> -1 6 -> 19 : -0.17892501

160 IP_IJA(24): 0 -> -1 5 -> 18 : -0.13412691

222 IP_IJA(24): 0 -> -1 7 -> 20 : -0.12613128

***Iteration converged in 9 ***

Time Taken: 0.273 sec (= 0.005 min)

Storing converged CI vectors of all the Roots ... iproci_typ1.DVD_0.ci

------------------------------------------------------------------------

RootType Block: 0 Completed ( 0.273 sec) ( 0.005 min)

------------------------------------------------------------------------

The number of roots can also be increased using the keyword NRoots and the XPSORB vector can be used to

specify the orbitals from which the electron is removed. For open shells, the electron may be removed from

a DOMO alpha or beta or from a SOMO alpha orbital. This choice can be specified using the RootType

keyword.

%autoci

citype IPROCI

XPSORB=0,1

RootType 0

nroots 2

end

8.7.2 Capabilities

The IPROCI method is able to calculate all types of IP in closed shell and high-spin open-shell molecules.

Currently, the module is essentially serial, although some steps make use of parallelization. For larger

calculations, the PNO and RIJCOSX features are available to accelerate calculations. The detailed description

of these keywords and others is provided in a later section (9.26), along with examples of plotting XPS

spectra. Please visit the literature [186] for further details.

8.8 Excited States with EOM-CCSD

The methods described in the previous section are all based on the single excitation framework. For a

more accurate treatment, double excitations should also be considered. The equation of motion (EOM)

CCSD method (and the closely related family of linear response CC methods) provides an accurate way of

describing excited, ionized and electron attached states based on singles and doubles excitations within the



202 8 Running Typical Calculations

coupled-cluster framework. In this chapter, the typical usage of the EOM-CCSD routine will be described,

along with a short list of its present capabilities. A detailed description will be given in 9.27.

8.8.1 General Use

The simplest way to perform an EOM calculation is via the usage of the EOM-CCSD keyword, together with

the specification of the desired number of roots:

! RHF EOM-CCSD cc-pVDZ TightSCF

%mdci

nroots 9

end

*xyz 0 1

C 0.016227 -0.000000 0.000000

O 1.236847 0.000000 -0.000000

H -0.576537 0.951580 -0.000000

H -0.576537 -0.951580 -0.000000

*

The above input will call the EOM routine with default settings. The main output is a list of excitation

energies, augmented with some further state specific data. For the above input, the following output is

obtained:

----------------------

EOM-CCSD RESULTS (RHS)

----------------------

IROOT= 1: 0.147818 au 4.022 eV 32442.3 cm**-1

Amplitude Excitation

-0.107929 4 -> 8

0.665498 7 -> 8

0.104696 7 -> 8 6 -> 8

Ground state amplitude: 0.000000

IROOT= 2: 0.314137 au 8.548 eV 68945.2 cm**-1

Amplitude Excitation

-0.671249 7 -> 9

Ground state amplitude: 0.000000

IROOT= 3: 0.343838 au 9.356 eV 75463.7 cm**-1

Amplitude Excitation

-0.670757 5 -> 8

-0.112213 6 -> 8 5 -> 8

Ground state amplitude: 0.000000

IROOT= 4: 0.364197 au 9.910 eV 79931.9 cm**-1

Amplitude Excitation

-0.102822 4 -> 10

-0.484680 6 -> 8
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0.438242 7 -> 10

-0.167485 6 -> 8 6 -> 8

Ground state amplitude: -0.021122

IROOT= 5: 0.389395 au 10.596 eV 85462.3 cm**-1

Amplitude Excitation

0.646790 4 -> 8

0.122394 7 -> 8

-0.171550 7 -> 8 6 -> 8

Ground state amplitude: -0.000000

IROOT= 6: 0.414589 au 11.282 eV 90991.8 cm**-1

Amplitude Excitation

-0.378598 6 -> 8

-0.537683 7 -> 10

-0.124965 6 -> 8 6 -> 8

Ground state amplitude: -0.061151

IROOT= 7: 0.423876 au 11.534 eV 93030.0 cm**-1

Amplitude Excitation

0.673885 7 -> 11

Ground state amplitude: 0.000000

IROOT= 8: 0.444228 au 12.088 eV 97496.7 cm**-1

Amplitude Excitation

-0.664844 6 -> 9

-0.130443 6 -> 9 6 -> 8

Ground state amplitude: 0.000000

IROOT= 9: 0.510518 au 13.892 eV 112045.8 cm**-1

Amplitude Excitation

0.665772 6 -> 10

0.114314 6 -> 15

0.125093 6 -> 10 6 -> 8

Ground state amplitude: -0.000000

The IP and EA versions can be called using the keywords IP-EOM-CCSD and EA-EOM-CCSD respectively.

For open-shell systems (UHF reference wavefunction), IP/EA-EOM-CCSD calculations require the use of

additional keywords. Namely, an IP/EA calculation involving the removal/attachment of an α electron is

requested by setting the DoAlpha keyword to true in the %mdci block, while setting the DoBeta keyword

to true selects an IP/EA calculation for the removal/attachment of a β electron. Note that DoAlpha and

DoBeta cannot simultaneously be true and that the calculation defaults to one in which DoAlpha is true if no

keyword is specified on input. A simple example of the input for a UHF IP-EOM-CCSD calculation for the

removal of an α electron is given below.

!UHF IP-EOM-CCSD cc-pVDZ

%mdci

DoAlpha true

NRoots 7

end

*xyz 0 3

O 0.0 0.0 0.0

O 0.0 0.0 1.207

*
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8.8.2 Capabilities

At present, the EOM routine is able to perform excited, ionized and electron attached state calculations, for

both closed- or open-shell systems, using RHF or UHF reference wavefunctions, respectively. It can be used

for serial and parallel calculations. In the closed-shell case (RHF), a lower scaling version can be invoked by

setting the CCSD2 keyword to true in the %mdci section. For the time being, the most useful information

provided is the list of the excitation energies, the ionization potentials or the electron affinities. The ground to

excited state transition moments are also available for the closed-shell implementation of EE-EOM-CCSD.

8.9 Excited States with STEOM-CCSD

The STEOM-CCSD method provides an efficient way to calculate excitation energies, with an accuracy

comparable to the EOM-CCSD approach, at a nominal cost. A detailed description will be given in 9.28.

8.9.1 General Use

The simplest way to perform a STEOM calculation is via the usage of the STEOM-CCSD keyword, together

with the specification of the desired number of roots:

! RHF STEOM-CCSD cc-pVDZ TightSCF

%mdci

nroots 9

Dodbfilter true

end

*xyz 0 1

C 0.016227 -0.000000 0.000000

O 1.236847 0.000000 -0.000000

H -0.576537 0.951580 -0.000000

H -0.576537 -0.951580 -0.000000

*

The above input will call the STEOM routine with default settings. The main output is a list of excitation

energies, augmented with some further state specific data. The STEOMCC approach in ORCA uses state-

averaged CIS natural transition orbitals(NTO) for the selection of the active space. For the above input, the

following output is obtained:

------------------

STEOM-CCSD RESULTS

------------------

IROOT= 1: 0.146552 au 3.988 eV 32164.5 cm**-1
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Amplitude Excitation

0.196225 4 -> 8

-0.979974 7 -> 8

Amplitude Excitation in Canonical Basis

-0.153212 4 -> 8

0.977931 7 -> 8

-0.121980 7 -> 13

IROOT= 2: 0.308608 au 8.398 eV 67731.7 cm**-1

Amplitude Excitation

-0.141414 4 -> 9

0.988498 7 -> 9

Amplitude Excitation in Canonical Basis

-0.989700 7 -> 9

IROOT= 3: 0.336979 au 9.170 eV 73958.3 cm**-1

Amplitude Excitation

-0.994070 5 -> 8

Amplitude Excitation in Canonical Basis

0.983934 5 -> 8

-0.137018 5 -> 13

IROOT= 4: 0.362974 au 9.877 eV 79663.6 cm**-1

Amplitude Excitation

0.177265 4 -> 10

0.825223 6 -> 8

-0.500412 7 -> 10

-0.118642 7 -> 12

Amplitude Excitation in Canonical Basis

-0.152751 4 -> 10

-0.821991 6 -> 8

0.506004 7 -> 10

IROOT= 5: 0.402096 au 10.942 eV 88249.9 cm**-1

Amplitude Excitation

0.100684 5 -> 11

0.617781 6 -> 8

0.761064 7 -> 10

Amplitude Excitation in Canonical Basis

-0.612814 6 -> 8

-0.754151 7 -> 10

IROOT= 6: 0.421001 au 11.456 eV 92399.1 cm**-1

Amplitude Excitation

-0.165095 4 -> 11

0.983905 7 -> 11

Amplitude Excitation in Canonical Basis

0.121348 4 -> 11

-0.983982 7 -> 11
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IROOT= 7: 0.445178 au 12.114 eV 97705.3 cm**-1

Amplitude Excitation

0.995471 6 -> 9

Amplitude Excitation in Canonical Basis

-0.989647 6 -> 9

IROOT= 8: 0.462852 au 12.595 eV 101584.3 cm**-1

Amplitude Excitation

-0.985707 4 -> 8

-0.130220 6 -> 10

Amplitude Excitation in Canonical Basis

0.975461 4 -> 8

-0.147945 4 -> 13

0.128680 6 -> 10

IROOT= 9: 0.512757 au 13.953 eV 112537.1 cm**-1

Amplitude Excitation

0.121760 4 -> 8

-0.989185 6 -> 10

Amplitude Excitation in Canonical Basis

-0.121079 4 -> 8

0.979589 6 -> 10

-0.154643 6 -> 15

The first set of excitation amplitudes, printed for each root, have been calculated in the CIS NTO (Natural

Transition Orbitals) basis. The second set of amplitudes have been evaluated in the RHF canonical basis.

8.9.2 Capabilities

At present, the STEOM routine is able to calculate excitation energies, for both closed- or open-shell systems,

using an RHF or UHF reference function, respectively. It can be used for both serial and parallel calculations.

In the closed-shell case (RHF), a lower scaling version can be invoked by setting the CCSD2 keyword to true

in the %mdci section. The transition moments can also be obtained for closed- and open-shell systems.

8.10 Excited States with PNO based coupled cluster methods

The methods described in the previous section are performed over a canonical CCSD or MP2 ground state.

The use of canonical CCSD amplitudes restricts the use of EOM-CC and STEOM-CC methods to small

molecules. The use of MP2 amplitudes is possible (e.g. the EOM-CCSD(2) or STEOM-CCSD(2) approaches),

but it seriously compromises the accuracy of the method.

The bt-PNO-EOM-CCSD methods gives an economical compromise between accuracy and computational

cost by replacing the most expensive ground state CCSD calculation with a DLPNO based CCSD calculation.

The typical deviation of the results from the canonical EOM-CCSD results is around 0.01 eV. A detailed

description will be given in 9.29.
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8.10.1 General Use

The simplest way to perform a PNO based EOM calculation is via the usage of the bt-PNO-EOM-CCSD

keyword, together with the specification of the desired number of roots. The specification of an auxilary basis

set is also required, just as for ground state DLPNO-CCSD calculations.

! RHF bt-PNO-EOM-CCSD def2-TZVP def2-TZVP/C def2/J TightSCF

%mdci

nroots 9

end

*xyz 0 1

C 0.016227 -0.000000 0.000000

O 1.236847 0.000000 -0.000000

H -0.576537 0.951580 -0.000000

H -0.576537 -0.951580 -0.000000

*

The output is similar to that from a canonical EOM-CCSD calculation:

----------------------

EOM-CCSD RESULTS (RHS)

----------------------

IROOT= 1: 0.145339 au 3.955 eV 31898.3 cm**-1

Amplitude Excitation

-0.402736 2 -> 8

-0.101455 2 -> 13

0.402595 3 -> 8

0.101420 3 -> 13

0.231140 6 -> 8

-0.231142 7 -> 8

Ground state amplitude: 0.000000

IROOT= 2: 0.311159 au 8.467 eV 68291.5 cm**-1

Amplitude Excitation

-0.382967 2 -> 9

0.382816 3 -> 9

0.257265 6 -> 9

-0.257276 7 -> 9

Ground state amplitude: 0.000000

IROOT= 3: 0.337350 au 9.180 eV 74039.8 cm**-1

Amplitude Excitation

0.342418 2 -> 8

0.342586 3 -> 8

-0.257991 4 -> 8

0.257936 5 -> 8

0.172202 6 -> 8

0.172230 7 -> 8

Ground state amplitude: 0.000010
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IROOT= 4: 0.348181 au 9.474 eV 76416.9 cm**-1

Amplitude Excitation

0.393166 2 -> 11

-0.393020 3 -> 11

-0.246227 6 -> 11

0.246232 7 -> 11

Ground state amplitude: 0.000001

IROOT= 5: 0.354611 au 9.649 eV 77828.2 cm**-1

Amplitude Excitation

0.226219 2 -> 10

-0.226139 3 -> 10

-0.385817 4 -> 8

-0.385755 5 -> 8

-0.100298 6 -> 10

0.100300 7 -> 10

Ground state amplitude: 0.032619

IROOT= 6: 0.379574 au 10.329 eV 83307.0 cm**-1

Amplitude Excitation

0.214487 2 -> 8

-0.214423 3 -> 8

0.402942 6 -> 8

-0.402947 7 -> 8

Ground state amplitude: -0.000001

IROOT= 7: 0.386805 au 10.525 eV 84893.8 cm**-1

Amplitude Excitation

-0.337735 2 -> 10

-0.113836 2 -> 14

0.337611 3 -> 10

0.113798 3 -> 14

-0.182472 4 -> 8

-0.182457 5 -> 8

0.239131 6 -> 10

-0.239136 7 -> 10

Ground state amplitude: 0.038944

IROOT= 8: 0.440569 au 11.989 eV 96693.8 cm**-1

Amplitude Excitation

-0.463727 4 -> 9

-0.463700 5 -> 9

Ground state amplitude: -0.000004

IROOT= 9: 0.447197 au 12.169 eV 98148.3 cm**-1

Amplitude Excitation

-0.107379 2 -> 8

0.385138 2 -> 13

0.107343 3 -> 8

-0.385019 3 -> 13

-0.254544 6 -> 13

0.254548 7 -> 13

Ground state amplitude: 0.000000

The IP and EA versions can be called by using the keywords bt-PNO-IP-EOM-CCSD and bt-PNO-EA-

EOM-CCSD, respectively. Furthermore, the STEOM version can be invoked by using the keywords bt-PNO-

STEOM-CCSD.
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8.10.2 Capabilities

All of the features of canonical EOM-CC and STEOM-CC are available in the PNO based approaches for

both closed- and open-shell systems.

8.11 Excited States with DLPNO based coupled cluster methods

The bt-PNO-STEOM-CCSD method scales as non-iterative O(N6). To reduce the scaling further one need to

rewrite the IP and EA EOM-CCSD steps needs to be re-written in DLPNO-framework. The overall scaling

of the method STEOM-DLPNO-CCSD is non-iterative O(N6).

8.11.1 General Use

The simplest way to perform a DLPNO based STEOM calculation is via the usage of the STEOM-DLPNO-

CCSD keyword, together with the specification of the desired number of roots. The specification of an

auxilary basis set is also required, just as for ground state DLPNO-CCSD calculations.

! RHF STEOM-DLPNO-CCSD def2-TZVP def2-TZVP/C def2/J TightSCF

%mdci

nroots 6

dorootwise true

end

*xyz 0 1

C 0.016227 -0.000000 0.000000

O 1.236847 0.000000 -0.000000

H -0.576537 0.951580 -0.000000

H -0.576537 -0.951580 -0.000000

*

The output is similar to that from a canonical STEOM-CCSD calculation:

------------------

STEOM-CCSD RESULTS

------------------

IROOT= 1: 0.144688 au 3.937 eV 31755.4 cm**-1

Amplitude Excitation

0.141945 4 -> 8

-0.988777 7 -> 8

Percentage Active Character 99.78
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Amplitude Excitation in Canonical Basis

-0.134746 4 -> 8

-0.955015 7 -> 8

0.236783 7 -> 13

IROOT= 2: 0.309626 au 8.425 eV 67955.0 cm**-1

Amplitude Excitation

0.968654 7 -> 9

-0.227371 7 -> 10

Percentage Active Character 99.64

Amplitude Excitation in Canonical Basis

0.952987 7 -> 9

0.248631 7 -> 11

0.108031 7 -> 16

IROOT= 3: 0.332378 au 9.044 eV 72948.6 cm**-1

Amplitude Excitation

-0.993606 5 -> 8

Percentage Active Character 98.85

Amplitude Excitation in Canonical Basis

-0.957132 5 -> 8

0.250345 5 -> 13

0.106357 5 -> 18

IROOT= 4: 0.346936 au 9.441 eV 76143.6 cm**-1

Amplitude Excitation

0.103021 4 -> 10

-0.222895 7 -> 9

-0.967467 7 -> 10

Percentage Active Character 99.66

Amplitude Excitation in Canonical Basis

-0.242341 7 -> 9

0.951366 7 -> 11

0.114163 7 -> 19

IROOT= 5: 0.349212 au 9.503 eV 76643.2 cm**-1

Amplitude Excitation

-0.134720 4 -> 11

0.836562 6 -> 8

0.428363 7 -> 11

-0.245698 7 -> 12

Percentage Active Character 90.35

Warning:: the state may have not converged with respect to active space

-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis

0.154535 4 -> 10

0.820157 6 -> 8
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-0.168210 6 -> 13

0.465575 7 -> 10

-0.135840 7 -> 17

IROOT= 6: 0.379862 au 10.337 eV 83370.0 cm**-1

Amplitude Excitation

0.984054 4 -> 8

0.155885 7 -> 8

Percentage Active Character 99.53

Amplitude Excitation in Canonical Basis

-0.951880 4 -> 8

0.234713 4 -> 13

0.156620 7 -> 8

The IP and EA versions can be called by using the keywords IP-EOM-DLPNO-CCSD and EA-EOM-DLPNO-

CCSD, respectively. As in canonical STEOM-CCSD, the first set of excitatio amplitudes, printed for each

root, are calculated in the CIS NTO (Natural Transition Orbitals) basis, while the second set is evaluated in

the RHF canonical basis.

8.11.2 Capabilities

Only energies and STEOM-DLPNO-CCSD transition moments are available for STEOM-DLPNO-CCSD.

8.12 Multireference Configuration Interaction and Pertubation Theory

8.12.1 Introductory Remarks

ORCA contains a multireference correlation module designed for traditional (uncontracted) approaches

(configuration interaction, MR-CI, and perturbation theory, MR-PT). For clarification, these approaches have

in common that they consider excitations from each and every configuration state function (CSF) of the

reference wavefunction. Hence, the computational cost of such approaches grows rapidly with the size of

the reference space (e.g. CAS-CI). Internally contracted on the other hand define excitations with respect

to the entire reference wavefunction and hence do not share the same bottlenecks. ORCA also features

internally contracted approaches (perturbation theory, NEVPT2 and configuration interaction, FIC-MRCI),

which are described elsewhere in the manual. The following chapter focuses on the traditional multi-reference

approaches as part of the orca mrci module.

Although there has been quite a bit of experience with it, this part of the program is still somewhat hard to

use and requires patience and careful testing before the results should be accepted. While we try to make

your life as easy as possible, you have to be aware that ultimately any meaningful multireference ab initio

calculation requires more insight and planning from the user side than standard SCF or DFT calculation

or single reference correlation approaches like MP2 – so don’t be fainthearted! You should also be aware

that with multireference methods it is very easy to let a large computer run for a long time and still to
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not produce a meaningful result – your insight is a key ingredient to a successful application! Below a few

examples illustrate some basic uses of the orca mrci module.

RI-approximation

First of all, it is important to understand that the default mode of the MR-CI module in its present

implementation performs a full integral transformation from the AO to the MO basis. This becomes very

laborious and extremely memory intensive beyond approximately 200 MOs that are included in the CI.

Alternatively, one can construct molecular electron-electron repulsion integrals from the resolution of the

identity (RI) approximation. Thus a meaningful auxiliary basis set must be provided if this option is chosen.

We recommend the fitting bases developed by the TurboMole developers for MP2 calculations. These give

accurate transition energies; however, the error in the total energies is somewhat higher and may be on the

order of 1 mEh or so. Check IntMode to change the default mode for the integral transformation. Note that

in either way, the individually selecting MRCI module requires to have all integrals in memory which sets a

limit on the size of the molecule that can be studied.

Individual Selection

Secondly, it is important to understand that the MR-CI module is of the individually selecting type. Thus,

only those excited configuration state functions (CSFs) which interact more strongly than a given threshold

(Tsel) with the 0th order approximations to the target states will be included in the variational procedure. The

effect of the rejected CSFs is estimated using second order perturbation theory. The 0th order approximations

to the target states are obtained from the diagonalization of the reference space configurations. A further

approximation is to reduce the size of this reference space through another selection – all initial references

which contribute less than a second threshold (Tpre) to the 0th order states are rejected from the reference

space.

Single excitations

One important aspect concerns the single excitations. If the reference orbitals come from a CASSCF

calculation the matrix elements between the reference state and the single excitations vanishes and the singles

will not be selected. However, they contribute to fourth and higher orders in perturbation theory and may

be important for obtaining smooth potential energy surfaces and accurate molecular properties. Hence, the

default mode of the MRCI module requires to include all of the single excitations via the flag AllSingles

=true. This may lead to lengthy computations if the reference spaces becomes large!

Reference Spaces

Third, the reference spaces in the MR-CI module can be of the complete active space (CAS(n-electrons,m-

orbitals)) or restricted active space (RAS, explained later) type. It is important to understand that the

program uses the orbitals around the HOMO-LUMO gap as provided by the user to build up the reference

space! Thus, if the orbitals that you want to put in the active space are not coming “naturally” from your

SCF calculation in the right place you have to reorder them using the “moread” and “rotate” features
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together with the NoIter directive. To select the most meaningful and economic reference space is the most

important step in a multireference calculation. It always requires insight from the user side and also care

and, perhaps, a little trial and error.

Size Consistency

Fourth, it is important to understand that CI type methods are not size consistent. Practically speaking

the energy of the supermolecule A-B with noninteracting A and B fragments is not equal to the energies

of isolated A and isolated B. There are approximate ways to account for this (ACPF, AQCC and CEPA

methods) but the effect will be present in the energies, the more so the more electrons are included in the

treatment. The same is not true for the perturbation theory based methods which are size consistent as long

as the reference wavefunction is.

Performance

There are many flags that control the performance of the MR-CI program. Please refer to chapter 0 for a

description of possible flags, thresholds and cut-offs. The most important thresholds are Tsel and Tpre, and

for SORCI also Tnat.

For some methods, like ACPF, it is possible to compare the performance of the MRCI module with the

performance of the MDCI module. The MDCI module has been written to provide optimum performance

if no approximations are introduced. The MRCI module has ben written more with the idea of flexibility

rather than the idea of performance. Let us compare the performance of the two programs in a slightly

nontrivial calculation – the zwitter-ionic form of serine. We compare the selecting MRCI approach with the

approximation free MDCI module. The molecular size is such that still all four index integrals can be stored

in memory.

Table 8.12: Comparison of the performance of the MRCI and MDCI modules for a single reference calculation

with the bn-ANO-DZP basis set on the zwitter-ionic form of serine (14 atoms, 133 basis functions).

Module Method Tsel(Eh) Time (sec) Energy (Eh)

MRCI ACPF 10−6 3277 -397.943250

MDCI ACPF 0 1530 -397.946429



214 8 Running Typical Calculations

MDCI CCSD 0 2995 -397.934824

MDCI CCSD(T) 0 5146 -397.974239

The selecting ACPF calculation selects about 15% of the possible double excitations and solves a secular

problem of size ≈ 360,000 CSFs. The MDCI module ACPF calculation optimizes approximately 2.5 million

wavefunction amplitudes — and this is not a large molecule or a large basis set! Despite the fact that the

MDCI module makes no approximation, it runs twice as fast as the selected MRCI module and an estimated

50 times faster than the unselected MRCI module! This will become even more pronounced for the larger

and more accurate basis sets that one should use in such calculations anyways. The error of the selection

is on the order of 3 mEh or 2 kcal/mol in the total energy. One can hope that at least part of this error

cancels upon taking energy differences.10 The more rigorous CCSD calculation takes about a factor of two

longer than the ACPF calculation which seems reasonable. The triples add another factor of roughly 2 in

this example but this will increase for larger calculations since it has a steeper scaling with the system size.

The ACPF energy is intermediate between CCSD and CCSD(T) which is typical — ACPF overshoots the

effects of disconnected quadruples which partially compensates for the neglect of triples.

These timings will strongly depend on the system that you run the calculation on. Nevertheless, what you

should take from this example are the message that if you can use the MDCI module, do it.

The MDCI module can avoid a full integral transformation for larger systems while the MRCI module can use

selection and the RI approximation for larger systems. Both types of calculation will become very expensive

very quickly! Approximate MDCI calculations are under development.

Symmetry

The MRCI program really takes advantage of symmetry adapted orbitals. In this case the MRCI matrix

can be blocked according to irreducible representations and be diagonalized irrep by irrep. This is a big

computational advantage and allows one to converge on specific excited states much more readily than if

symmetry is not taken into account.

The syntax is relatively easy. If you specify:

newblock 1 *

nroots 8

refs cas(4,4) end

end

Then the “*” indicates that this is to be repeated in each irrep of the point group. Thus, in C2v the program

would calculate 8 singlet roots in each of the four irreps of the C2v point group thus leading to a total of 32

states.

10 Depending on whether one wants to take a pessimistic or an optimistic view one could either say that this result
shows what can be achieved with a code that is dedicated to a single determinant reference. Alternatively one
could (and perhaps should) complain about the high price one pays for the generality of the MRCI approach. In
any case, the name of the game would be to develop MR approaches that are equally efficient to single reference
approaches. See FIC-MRCI chapter for more information.
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Alternatively, you can calculate just a few roots in the desired irreps:

newblock 1 0

nroots 3

refs cas(4,4) end

end

newblock 1 2

nroots 5

refs cas(4,4) end

end

newblock 3 1

nroots 1

refs cas(4,4) end

end

In this example, we would calculate 3 singlet roots in the irrep “0” (which is A1), then five roots in irrep “2”

(which is B1) and then 1 triplet root in irrep 1 (which is B2).

Obviously, the results with and without symmetry will differ slightly. This is due to the fact that without

symmetry the reference space will contain references that belong to “wrong” symmetry but will carry with

them excited configurations of “right” symmetry. Hence, the calculation without use of symmetry will have

more selected CSFs and hence a slightly lower energy. This appears to be unavoidable. However, the effects

should not be very large for well designed reference spaces since the additional CSFs do not belong to the

first order interacing space.

8.12.2 A Tutorial Type Example of a MR Calculation

Perhaps, the most important use of the MR-CI module is for the calculation of transition energies and optical

spectra. Let us first calculate the first excited singlet and triplet state of the formaldehyde molecule using

the MR-CI method together with the Davidson correction to approximately account for the effect of unlinked

quadruple substitutions. We deliberately choose a somewhat small basis set for this calculation which is

already reasonable since we only look at a valence excited state and want to demonstrate the principle.

Suppose that we already know from a ground state calculation that the HOMO of H2CO is an oxygen lone

pair orbitals and the LUMO the π∗ MO. Thus, we want to calculate the singlet and triplet n→ π∗ transitions

and nothing else. Consequently, we only need to correlate two electrons in two orbitals suggesting a CAS(2,2)

reference space.

# A simple MRCI example

! def2-SVP def2-SVP/C UseSym

%method frozencore fc_ewin

end

%mrci ewin -3,1000
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CIType MRCI

EUnselOpt FullMP2

DavidsonOpt Davidson1

UseIVOs true

tsel 1e-6

tpre 1e-2

MaxMemInt 256

MaxMemVec 32

IntMode FullTrafo

AllSingles true

Solver Diag

# ground state 1A1

NewBlock 1 0

NRoots 1

Excitations cisd

Refs CAS(2,2) end

End

# HOMO LUMO transition 1A2

NewBlock 1 1

NRoots 1

Excitations cisd

Refs CAS(2,2) end

End

# HOMO LUMO triplet transition 3A2

NewBlock 3 1

NRoots 1

Excitations cisd

Refs CAS(2,2) end

end

end

* int 0 1

C 0 0 0 0.000000 0.000 0.000

O 1 0 0 1.200371 0.000 0.000

H 1 2 0 1.107372 121.941 0.000

H 1 2 3 1.107372 121.941 180.000

*

This input – which is much more than what is really required - needs some explanations: First of all, we

choose a standard RHF calculation with the SVP basis set and we assign the SV/C fitting basis although it

is not used in the SCF procedure at all. In the %mrci block all details of the MR-CI procedure are specified.

First, EWin (%method frozencore fc ewin) selects the MOs within the given orbital energy range to be

included in the correlation treatment. The CIType variable selects the type of multireference treatment.

Numerous choices are possible and MRCI is just the one selected for this application.

• NOTE: The CIType statement selects several default values for other variables. So it is

a very good idea to place this statement at the beginning of the MR-CI block and possibly
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overwrite the program selected defaults later . If you place the CIType statement after one of

the values which it selects by default your input will simply be overwritten!

The variables EUnselOpt and DavidsonOpt control the corrections to the MR-CI energies. EUnselOpt specifies

the way in which the MR-CI energies are extrapolated to zero threshold TSel. Here we choose a full MR-MP2

calculation of the missing contributions to be done after the variational step, i.e. using the relaxed part of

the reference wavefunction as a 0th order state for MR-PT. The DavidsonOpt controls the type of estimate

made for the effect of higher substitutions. Again, multiple choices are possible but the most commonly

used one (despite some real shortcomings) is certainly the choice Davidson1. The flag UseIVOs instructs the

program to use “improved virtual orbitals”. These are virtual orbitals obtained from a diagonalization of

the Fock operator from which one electron has been removed in an averaged way from the valence orbitals.

Thus, these orbitals “see” only a N − 1 electron potential (as required) and are not as diffuse as the standard

virtual orbitals from Hartree-Fock calculations. If you input DFT orbitals in the MR-CI moldule (which is

perfectly admittable and also recommened in some cases, for example for transition metal complexes) then

it is recommended to turn that flag off since the DFT orbitals are already o.k. in this respect. The two

thresholds Tsel and Tpre are already explained above and represent the selection criteria for the first order

interacting space and the reference space respectively. Tsel is given in units of Eh and refers to the second

order MR-MP2 energy contribution from a given excited CSF. 10−6 Eh is a pretty good value. Reliable

results for transition energies start with ≈ 10−5; however, the total energy is converging pretty slowly with

this parameter and this is one of the greatest drawbacks of individually selecting CI procedures! (see below).

Tpre is dimensionless and refers to the weight of a given initial reference after diagonalization of the the

given initial reference space (10−4 is a pretty good value and there is little need to go much lower. Aggressive

values such as 10−2 only select the truly leading configurations for a given target state which can be time

saving. Intermediate values are not really recommended). The parameters MaxMemInt and MaxMemVec tell

the program how much memory (in MB) it is allowed to allocate for integrals and for trial and sigma-vectors

respectively.

The flag IntMode tells the program to perform a full integral transformation. This is possible for small cases

with less than, say, 100–200 MOs. In this case that it is possible it speeds up the calculations considerably.

For larger molecules you have to set this flag to RITrafo which means that integrals are recomputed on the

fly using the RI approximation which is more expensive but the only way to do the calculation. To switch

between the possible modes use:

%mrci IntMode FullTrafo # exact 4 index transformation

RITrafo # use auxiliary basis sets

For small molecules or if high accuracy in the total energies is required it is much better to use the exact four

index transformation. The limitations are that you will run out of disk space or main memory with more

than ca. 200–300 MOs.

The variable Solver can be diag (for Davidson type diagonalization) or DIIS for multirrot DIIS type

treatments.

%mrci Solver Diag # Davidson solver

DIIS # Multiroot DIIS
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For CI methods, the diag solver is usually preferable. For methods like ACPF that contain nonlinear terms,

DIIS is imperative.

Next in the input comes the definition of what CI matrices are to be constructed and diagonalized. Each

multiplicity defines a block of the CI matrix which is separately specified. Here we ask for two blocks – singlet

and triplet. The general syntax is:

NewBlock Multiplicity Irrep

NRoots 1 # Number of roots to determine

Excitations cisd # Type of excitations

Refs CAS(NEl,NOrb) end # Reference space def.

end # Finalize the block

Now that all input is understood let us look at the outcome of this calculation:

The first thing that happens after the SCF calculation is the preparation of the frozen core Fock matrix and

the improved virtual orbitals by the program orca ciprep. From the output the energies of the IVOs can be

seen. In this case the LUMO comes down to –8.2 eV which is much more reasonable than the SCF value of

+3. . . . eV. Concomitantly, the shape of this MO will be much more realistic and this important since this

orbital is in the reference space!

------------------------------------------------------------------------------

ORCA CI-PREPARATION

------------------------------------------------------------------------------

One-Electron Matrix ... Test-SYM-MRCI-H2CO.H.tmp

GBW-File ... Test-SYM-MRCI-H2CO.gbw

Improved virtual orbitals ... Test-SYM-MRCI-H2CO.ivo

First MO in the CI ... 2

Internal Fock matrix ... Test-SYM-MRCI-H2CO.cif.tmp

LastInternal Orbital ... 6

Integral package used ... LIBINT

Reading the GBW file ... done

Symmetry usage ... ON

Reading the one-electron matrix ... done

Forming inactive density ... done

Forming averaged valence density ...

Scaling the occupied orbital occupation numbers

First MO ... 2

Last MO ... 7

Number of electrons in the range ... 12

Scaling factor ... 0.917

done

Forming internal density ... done

Forming Fock matrix/matrices ...

Nuclear repulsion ... 31.371502

Core repulsion ... 31.371502

One-electron energy ... -114.942082

Fock-energy ... -94.993430

Final value ... -73.596255
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done

Modifying virtual orbitals ...

Last occupied MO ... 7

Total number of MOs ... 38

Number of virtual MOs ... 30

Doing diagonalization with symmetry

The improved virtual eigenvalues:

0: -0.2955 au -8.041 eV 2- B1

1: -0.0701 au -1.908 eV 6- A1

2: -0.0176 au -0.480 eV 3- B2

3: 0.0064 au 0.175 eV 7- A1

4: 0.2922 au 7.951 eV 8- A1

5: 0.2948 au 8.021 eV 3- B1

6: 0.3836 au 10.439 eV 4- B2

7: 0.4333 au 11.790 eV 9- A1

8: 0.4824 au 13.128 eV 5- B2

9: 0.5027 au 13.680 eV 10- A1

10: 0.7219 au 19.643 eV 11- A1

11: 0.8351 au 22.724 eV 4- B1

12: 0.9372 au 25.501 eV 6- B2

13: 1.0265 au 27.932 eV 1- A2

14: 1.1141 au 30.317 eV 12- A1

15: 1.2869 au 35.017 eV 5- B1

16: 1.4605 au 39.743 eV 7- B2

...

done

Transforming integrals ... done

Storing passive energy ... done ( -73.59625452 Eh)

Transforming internal FI ... done

.... done with the Frozen Core Fock matrices

The next step is to transform the electron-electron repulsion integrals into the MO basis:

------------------------------

PARTIAL COULOMB TRANSFORMATION

------------------------------

Dimension of the basis ... 38

Number of internal MOs ... 36 (2-37)

Pair cutoff ... 1.000e-11 Eh

Number of AO pairs included in the trafo ... 741

Total Number of distinct AO pairs ... 741

Memory devoted for trafo ... 256.0 MB

Max. Number of MO pairs treated together ... 45282

Max. Number of MOs treated per batch ... 36

Number Format for Storage ... Double (8 Byte)

Integral package used ... LIBINT

--->>> The Coulomb operators (i,j|mue,nue) will be calculated

Starting integral evaluation:

<ss|**>: 9404 b 1 skpd 0.023 s ( 0.002 ms/b)

<sp|**>: 10260 b 0 skpd 0.030 s ( 0.003 ms/b)

<sd|**>: 3420 b 0 skpd 0.016 s ( 0.005 ms/b)
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<pp|**>: 3591 b 0 skpd 0.026 s ( 0.007 ms/b)

<pd|**>: 2052 b 0 skpd 0.025 s ( 0.012 ms/b)

<dd|**>: 513 b 0 skpd 0.009 s ( 0.017 ms/b)

Collecting buffer AOJ

... done with AO integral generation

Closing buffer AOJ ( 0.00 GB; CompressionRatio= 4.22)

Number of MO pairs included in the trafo ... 666

... Now sorting integrals

IBATCH = 1 of 2

IBATCH = 2 of 2

Closing buffer JAO ( 0.00 GB; CompressionRatio= 5.20)

TOTAL TIME for half transformation ... 0.324 sec

AO-integral generation ... 0.118 sec

Half transformation ... 0.059 sec

J-integral sorting ... 0.146 sec

Collecting buffer JAO

-------------------

FULL TRANSFORMATION

-------------------

Processing MO 10

Processing MO 20

Processing MO 30

full transformation done

Number of integrals made ... 222111

Number of integrals stored ... 59070

Timings:

Time for first half transformation ... 0.326 sec

Time for second half transformation ... 0.160 sec

Total time ... 0.516 sec

This will result in a few additional disk files required by orca mrci. The program then tells you which

multiplicities will be treated in this MRCI run:

------------------

CI-BLOCK STRUCTURE

------------------

Number of CI-blocks ... 3

===========

CI BLOCK 1

===========

Multiplicity ... 1

Irrep ... 0

Number of reference defs ... 1

Reference 1: CAS(2,2)

Excitation type ... CISD

Excitation flags for singles:

1 1 1 1

Excitation flags for doubles:

1 1 1 / 1 1 1 / 1 1 1
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===========

CI BLOCK 2

===========

Multiplicity ... 1

Irrep ... 1

Number of reference defs ... 1

Reference 1: CAS(2,2)

Excitation type ... CISD

Excitation flags for singles:

1 1 1 1

Excitation flags for doubles:

1 1 1 / 1 1 1 / 1 1 1

===========

CI BLOCK 3

===========

Multiplicity ... 3

Irrep ... 1

Number of reference defs ... 1

Reference 1: CAS(2,2)

Excitation type ... CISD

Excitation flags for singles:

1 1 1 1

Excitation flags for doubles:

1 1 1 / 1 1 1 / 1 1 1

--------------------------------------------------------------------

-------------------- ALL SETUP TASKS ACCOMPLISHED ------------------

-------------------- ( 1.512 sec) ------------------

--------------------------------------------------------------------

Now that all the setup tasks have been accomplished the MRCI calculation itself begins.

###################################################

# #

# M R C I #

# #

# TSel = 1.000e-06 Eh #

# TPre = 1.000e-02 #

# TIntCut = 1.000e-10 Eh #

# Extrapolation to unselected MR-CI by full MP2 #

# DAVIDSON-1 Correction to full CI #

# #

###################################################

---------------------

INTEGRAL ORGANIZATION

---------------------

Reading the one-Electron matrix ... done

Reading the internal Fock matrix ... assuming it to be equal to the one-electron matrix!!!

done
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Preparing the integral list ... done

Loading the full integral list ... done

Making the simple integrals ... done

***************************************

* CI-BLOCK 1 *

***************************************

Configurations with insufficient # of SOMOs WILL be rejected

Building a CAS(2,2) for multiplicity 1 and irrep=A1

Reference Space:

Initial Number of Configurations : 2

Internal Orbitals : 2 - 6

Active Orbitals : 7 - 8

External Orbitals : 9 - 37

The number of CSFs in the reference is 2

Calling MRPT_Selection with N(ref)=2

In the first step, the reference space is diagonalized. From this CI, the most important configurations are

selected with Tpre:

------------------

REFERENCE SPACE CI

------------------

Pre-diagonalization threshold : 1.000e-02

N(ref-CFG)=2 N(ref-CSF)=2

****Iteration 0****

Lowest Energy : -113.779221544551

Maximum Energy change : 113.779221544551 (vector 0)

Maximum residual norm : 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

Reference space selection using TPre= 1.00e-02

... found 1 reference configurations (1 CSFs)

... now redoing the reference space CI ...

N(ref-CFG)=1 N(ref-CSF)=1

****Iteration 0****

Lowest Energy : -113.778810020485

Maximum Energy change : 113.778810020485 (vector 0)

Maximum residual norm : 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

In this case, the CAS space only has 2 correctly symmetry adapted CSFs one of which (the closed-shell

determinant) is selected. In general, larger CAS spaces usually carry around a lot of unnecessary CSFs which

are not needed for anything and then the selection is important to reduce the computational effort. The

result of the second reference space CI is printed:
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----------

CI-RESULTS

----------

The threshold for printing is 0.3 percent

The weights of configurations will be printed. The weights are summed over

all CSF’s that belong to a given configuration before printing

STATE 0: Energy= -113.778810020 Eh RefWeight= 1.0000 0.00 eV 0.0 cm**-1

1.0000 : h---h---[20]

Energy is the total energy in Eh. In the present case we can compare to the SCF energy -113.778810021

Eh and find that the reference space CI energy is identical, as it has to be since the lowest state coincides

with the reference space. RefWeight gives the weight of the reference configurations in a CI state. This is

1.0 in the present case since there were only reference configurations. The number 1.000 is the weight of

the following configuration in the CI vector. The description of the configuration h---h---[20]p---p--- is

understood as follows:11 The occupation of the active orbitals is explicitly given in square brackets. Since the

HOMO orbitals is number 7 from the SCF procedure, this refers to MOs 7 and 8 in the present example since

we have two active orbitals. The 2 means doubly occupied, the 0 means empty. Any number (instead of ---)

appearing after an h gives the index of an internal orbital in which a hole is located. Simarly, any number

after a p gives the index of an virtual (external) MO where a particle is located. Thus h---h---[20] is a

closed shell configuration and it coincides with the SCF configuration—this was of course to be expected. The

second root (in CI-Block 2) h---h---[11] by comparison refers to the configuration in which one electron

has been promoted from the HOMO to the LUMO and is therefore the desired state that we wanted to

calculate. Things are happy therefore and we can proceed to look at the output.

The next step is the generation of excited configurations and their selection based on Tsel:

------------------------------

MR-PT SELECTION TSel= 1.00e-06

------------------------------

Setting reference configurations WITH use of symmetry

Building active patterns WITH use of symmetry

Selection will be done from 1 spatial configurations

Selection will make use of spatial symmetry

( 0) Refs : Sel: 1CFGs/ 1CSFs Gen: 1CFGs/ 1CSFs

Building active space densities ... done

Building active space Fock operators ... done

( 1) (p,q)->(r,s): Sel: 1CFGs/ 1CSFs Gen: 1CFGs/ 1CSFs

( 2) (i,-)->(p,-): Sel: 1CFGs/ 1CSFs Gen: 1CFGs/ 1CSFs

( 3) (i,j)->(p,q): Sel: 8CFGs/ 8CSFs Gen: 8CFGs/ 8CSFs

( 4) (i,p)->(q,r): Sel: 0CFGs/ 0CSFs Gen: 1CFGs/ 1CSFs

( 5) (p,-)->(a,-): Sel: 8CFGs/ 8CSFs Gen: 8CFGs/ 8CSFs

( 6) (i,-)->(a,-): Sel: 52CFGs/ 52CSFs Gen: 52CFGs/ 52CSFs

( 7) (i,j)->(p,a): Sel: 95CFGs/ 166CSFs Gen: 96CFGs/ 167CSFs

( 8) (i,p)->(q,a): Sel: 21CFGs/ 42CSFs Gen: 22CFGs/ 44CSFs

11Note that for printing we always sum over all linearly independent spin couplings of a given spatial configuration and
only print the summed up weight for the configuration rather than for each individual CSF of the configuration.
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( 9) (p,q)->(r,a): Sel: 3CFGs/ 3CSFs Gen: 5CFGs/ 5CSFs

(10) (i,p)->(a,b): Sel: 555CFGs/ 1082CSFs Gen: 584CFGs/ 1139CSFs

(11) (p,q)->(a,b): Sel: 124CFGs/ 124CSFs Gen: 148CFGs/ 148CSFs

(12) (i,j)->(a,b): Sel: 1688CFGs/ 2685CSFs Gen: 1887CFGs/ 2947CSFs

Selection results:

Total number of generated configurations: 2814

Number of selected configurations : 2557 ( 90.9%)

Total number of generated CSFs : 4522

Number of selected CSFS : 4173 ( 92.3%)

The selected tree structure:

Number of selected Internal Portions : 11

Number of selected Singly External Portions: 27

average number of VMOs/Portion : 6.39

percentage of selected singly externals : 22.83

Number of selected Doubly External Portions: 21

average number of VMOs/Portion : 107.59

percentage of selected doubly externals : 27.76

Here, the program loops through classes of excitations. For each excitation it produces the excited con-

figurations (CFGs) and from it the linearly independent spin functions (CSFs) which are possible within

the configuration. It then calculates the interaction with the contracted 0th order roots and includes all

CSFs belonging to a given CFG in the variational space if the largest second order perturbation energy is

larger or equal to Tsel. In the present case ≈136,000 CSFs are produced of which 25% are selected. For

larger molecules and basis sets it is not uncommon to produce 109–1010 configurations and then there is no

choice but to select a much smaller fraction than 20%. For your enjoyment, the program also prints the total

energies of each state after selection:

Diagonal second order perturbation results:

State E(tot) E(0)+E(1) E2(sel) E2(unsel)

Eh Eh Eh Eh

----------------------------------------------------------------

0 -114.108347273 -113.778810020 -0.329430 -0.000107

You can ignore this output if you want. In cases that the perturbation procedure is divergent (not that

uncommon!) the total energies look strange—don’t worry—the following variational calculation is still OK.

The second order perturbation energy is here divided into a selected part E2(sel) and the part procedure by

the unselected configurations E2(unsel). Depending on the mode of EUnselOpt this value may already be

used later as an estimate of the energetic contribution of the unselected CSFs.12

Now we have ≈4,200 CSFs in the variational space of CI block 1 and proceed to diagonalize the Hamiltonian

over these CSFs using a Davidson or DIIS type procedure:

12In this case the maximum overlap of the 0th order states with the final CI vectors is computed and the perturbation
energy is added to the “most similar root”. This is of course a rather crude approximation and a better choice is
to recomputed the second order energy of the unselected configurations rigorously as is done with EUnselOpt =

FullMP2.
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------------------------

DAVIDSON-DIAGONALIZATION

------------------------

Dimension of the eigenvalue problem ... 4173

Number of roots to be determined ... 1

Maximum size of the expansion space ... 15

Convergence tolerance for the residual ... 1.000e-06

Convergence tolerance for the energies ... 1.000e-06

Orthogonality tolerance ... 1.000e-14

Level Shift ... 0.000e+00

Constructing the preconditioner ... o.k.

Building the initial guess ... o.k.

Number of trial vectors determined ... 2

****Iteration 0****

Size of expansion space: 2

Lowest Energy : -113.854262408162

Maximum Energy change : 113.854262408162 (vector 0)

Maximum residual norm : 1.004640962238

****Iteration 1****

Size of expansion space: 3

Lowest Energy : -114.076119460817

Maximum Energy change : 0.221857052655 (vector 0)

Maximum residual norm : 0.028974632398

****Iteration 2****

Size of expansion space: 4

Lowest Energy : -114.085249547769

Maximum Energy change : 0.009130086952 (vector 0)

Maximum residual norm : 0.001957827970

****Iteration 3****

Size of expansion space: 5

Lowest Energy : -114.086014164840

Maximum Energy change : 0.000764617071 (vector 0)

Maximum residual norm : 0.000167800384

****Iteration 4****

Size of expansion space: 6

Lowest Energy : -114.086071121272

Maximum Energy change : 0.000056956432 (vector 0)

Maximum residual norm : 0.000011388989

****Iteration 5****

Size of expansion space: 7

Lowest Energy : -114.086076153851

Maximum Energy change : 0.000005032579 (vector 0)

Maximum residual norm : 0.000001069291

****Iteration 6****

Size of expansion space: 8

Lowest Energy : -114.086076506777

Maximum Energy change : 0.000000352926 (vector 0)
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*** CONVERGENCE OF ENERGIES REACHED ***

Storing the converged CI vectors ... Test-SYM-MRCI-H2O.mrci.vec

*** DAVIDSON DONE ***

Returned from DIAG section

The procedure converges on all roots simultaneously and finishes after six iterations which is reasonable. Now

the program calculates the Davidson correction (DavidsonOpt) which is printed for each root.

Davidson type correction:

Root= 0 W= 0.912 E0= -113.778810020 ECI= -114.086076507 DE=-0.026914

Already in this small example the correction is pretty large, ca. 27 mEh for the ground state (and ≈ 36

mEh for the excited state, later in the output). Thus, a contribution of ≈ 9 mEh = 0.25 eV is obtained for

the transition energy which is certainly significant. Unfortunately, the correction becomes unreliable as the

reference space weight drops or the number of correlated electrons becomes large. Here 0.912 and 0.888 are

still OK and the system is small enough to expect good results from the Davidson correction.

The next step is to estimate the correction for the unselected configurations:

Unselected CSF estimate:

Full relaxed MR-MP2 calculation ...

Selection will be done from 1 spatial configurations

Selection will make use of spatial symmetry

Selection will make use of spatial symmetry

Selection will make use of spatial symmetry

done

Selected MR-MP2 energies ...

Root= 0 E(unsel)= -0.000106951

In the present case this is below 1 mEh and also very similar for all three states such that it is not important

for the transition energy.

----------

CI-RESULTS

----------

The threshold for printing is 0.3 percent

The weights of configurations will be printed. The weights are summed over

all CSF’s that belong to a given configuration before printing

STATE 0: Energy= -114.113097002 Eh RefWeight= 0.9124 0.00 eV 0.0 cm**-1

0.9124 : h---h---[20]

0.0114 : h 6h 6[22]

The final ground state energy is -114.113097002 which is an estimate of the full CI energy in this basis set.

The leading configuration is still the closed-shell configuration with a weight of ≈ 91%. However, a double



8.12 Multireference Configuration Interaction and Pertubation Theory 227

excitation outside the reference space contributes some 1%. This is the excitation MO6,MO6→LUMO,LUMO.

This indicates that more accurate results are expected once MO6 is also included in the reference space (this

is the HOMO-1). The excited state is dominated by the HOMO-LUMO transition (as desired) but a few

other single- and double- excitations also show up in the final CI vector.

Now that all CI vectors are known we can order the states according to increasing energy and print (vertical)

transition energies:

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -114.113097002 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 1 A1 0 0 0.000 0.000 0.0

1 3 A2 0 2 134.073 3.648 29425.7

2 1 A2 0 1 148.490 4.041 32589.8

This result is already pretty good and the transition energies are within ≈ 0.1 eV of their experimental gas

phase values (≈ 3.50 and ≈ 4.00 eV) and may be compared to the CIS values of 3.8 and 4.6 eV which are

considerably in error.

In the next step the densities and transition densities are evaluated and the absorption and CD spectra

are calculated (in the dipole length formalism) for the spin-allowed transitions together with state dipole

moments:

------------------------------------------------------------------------------------------

ABSORPTION SPECTRUM

------------------------------------------------------------------------------------------

States Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (D**2) (D) (D) (D)

------------------------------------------------------------------------------------------

0( 0)-> 0( 1) 1 32589.8 306.8 0.000000000 0.00000 -0.00000 0.00000 0.00000

------------------------------------------------------------------------------

CD SPECTRUM

------------------------------------------------------------------------------

States Energy Wavelength R*T RX RY RZ

(cm-1) (nm) (1e40*sgs) (au) (au) (au)

------------------------------------------------------------------------------

0( 0)-> 0( 1) 1 32589.8 306.8 0.00000 -0.00000 -0.00000 1.18711

------------------------------------------------------------------------------

STATE DIPOLE MOMENTS

------------------------------------------------------------------------------

Root Block TX TY TZ |T|

(Debye) (Debye) (Debye) (Debye)

------------------------------------------------------------------------------

0 0 0.00000 -0.00000 2.33244 2.33244

0 2 0.00000 -0.00000 1.45831 1.45831

0 1 0.00000 -0.00000 1.58658 1.58658
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Here the transition is symmetry forbidden and therefore has no oscillator strength. The state dipole moment

for the ground state is 2.33 Debye which is somewhat lower than 2.87 Debye from the SCF calculation. Thus,

the effect of correlation is to reduce the polarity consistent with the interpretation that the ionicity of the

bonds, which is always overestimated by HF theory, is reduced by the correlation. Finally, you also get a

detailed population analysis for each generated state density which may be compared to the corresponding

SCF analysis in the preceding part of the output.

This concludes the initial example on the use of the MR-CI module. The module leaves several files on disk

most of which are not yet needed but in the future will allow more analysis and restart and the like. The

.ivo file is a standard .gbw type file and the orbitals therein can be used for visualization. This is important

in order to figure out the identity of the generated IVOs. Perhaps they are not the ones you wanted and then

you need to re-run the MR-CI with the IVOs as input, NoIter and the IVO feature in the new run turned

off! We could use the IVOs as input for a state averaged CASSCF calculation:

! moread UseSym KDIIS

%moinp "Test-SYM-MRCI-H2CO.ivo"

%casscf nel 2

norb 2

irrep 0,1,1

mult 1,1,3

nroots 1,1,1

end

If we based a MR-ACPF calculation on this reference space we will find that the calculated transition energies

are slightly poorer than in the MRCI+Q calculation. This is typical of approximate cluster methods that

usually require somewhat larger reference spaces for accurate results. A similar result is obtained with

SORCI.

%mrci CIType SORCI

tsel 1e-6

tpre 1e-4

tnat 1e-5

AllSingles true

doNatOrbs true

IntMode FullTrafo

# ground state 1A1

NewBlock 1 0

NRoots 1

Excitations cisd

Refs CAS(2,2) end

End

# HOMO LUMO transition 1A2

NewBlock 1 1

NRoots 1
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Excitations cisd

Refs CAS(2,2) end

End

# HOMO LUMO triplet transition 3A2

NewBlock 3 1

NRoots 1

Excitations cisd

Refs CAS(2,2) end

end

This gives:

State Mult Irrep Root Block mEh eV 1/cm

0 1 A1 0 0 0.000 0.000 0.0

1 3 A2 0 2 146.507 3.987 32154.5

2 1 A2 0 1 161.801 4.403 35511.3

This is systematically 0.4 eV too high. But let us look at the approximate average natural orbital (AANOs)

occupation numbers:

------------------------

AVERAGE NATURAL ORBITALS

------------------------

Trace of the density to be diagonalized = 12.000000

Sum of eigenvalues = 12.000000

Natural Orbital Occupation Numbers:

N[ 2] ( A1)= 1.99832583

N[ 3] ( A1)= 1.99760289

N[ 4] ( A1)= 1.99481021

N[ 5] ( B2)= 1.99044471

N[ 6] ( B1)= 1.95799339

N[ 7] ( B2)= 1.33003795

N[ 8] ( B1)= 0.70704982

N[ 9] ( B2)= 0.00988857

N[ 10] ( A1)= 0.00448885

This shows that there is a low-occupancy orbital (MO6) that has not been part of the reference space. Thus,

we try the same calculation again but now with one more active orbital and two more active electrons:

! moread

%moinp "Test-SYM-MRCI-H2CO.gbw"

%casscf nel 4

norb 3

irrep 0,1,1

mult 1,1,3
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nroots 1,1,1

end

%mrci CIType SORCI

tsel 1e-6

tpre 1e-4

tnat 1e-5

AllSingles true

doNatOrbs true

IntMode FullTrafo

# ground state 1A1

NewBlock 1 0

NRoots 1

Excitations cisd

Refs CAS(4,3) end

End

# HOMO LUMO transition 1A2

NewBlock 1 1

NRoots 1

Excitations cisd

Refs CAS(4,3) end

End

# HOMO LUMO triplet transition 3A2

NewBlock 3 1

NRoots 1

Excitations cisd

Refs CAS(4,3) end

end

This gives:

State Mult Irrep Root Block mEh eV 1/cm

0 1 A1 0 0 0.000 0.000 0.0

1 3 A2 0 2 137.652 3.746 30211.1

2 1 A2 0 1 153.128 4.167 33607.7

Which is now fine since all essential physics has been in the reference space. Inspection of the occupation

numbers show that there is no suspicious orbital any more. Note that this is still a much more compact

calculation that the MRCI+Q.

Likewise, we get an accurate result from MRACPF with the extended reference space.

State Mult Irrep Root Block mEh eV 1/cm

0 1 A1 0 0 0.000 0.000 0.0

1 3 A2 0 2 134.985 3.673 29625.8

2 1 A2 0 1 148.330 4.036 32554.6
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However, the SORCI calculation is much more compact. For larger molecules the difference becomes more and

more pronounced and SORCI or even MRDDCI2 (with or without +Q) maybe the only feasible methods—if

at all.

8.12.3 Excitation Energies between Different Multiplicities

As an example for a relatively accurate MRCI+Q calculation consider the following job which calculates the

triplet- ground and as the first excited singlet states of O2.

! ano-pVQZ RI-AO cc-pVQZ/JK VeryTightSCF NoPop Conv UseSym RI-MP2 PModel

%mp2 density relaxed natorbs true end

%base "O2"

* xyz 0 3

O 0 0 0

O 0 0 1.2

*

$new_job

! ano-pVQZ RI-AO cc-pVQZ/JK VeryTightSCF NoPop Conv UseSym KDIIS

! moread

%moinp "O2.mp2nat"

%casscf nel 8

norb 6

irrep 1,0,1

nroots 1,2,1

mult 3,1,1

trafostep ri

switchstep nr

end

%mrci citype mrci

tsel 1e-7

tpre 1e-5

newblock 3 1 nroots 1 refs cas(8,6) end end

newblock 1 0 nroots 2 refs cas(8,6) end end

newblock 1 1 nroots 1 refs cas(8,6) end end

end

* xyz 0 3

O 0 0 0

O 0 0 1.2

*

Note that the linear molecule is run in D2h. This creates a slight problem as the CASSCF procedure

necessarily breaks the symmetry of the 1∆ state.
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LOWEST ROOT (ROOT 0, MULT 3, IRREP B1g) = -149.765383866 Eh -4075.323 eV

STATE ROOT MULT IRREP DE/a.u. DE/eV DE/cm**-1

1: 0 1 B1g 0.033334 0.907 7316.0

2: 0 1 Ag 0.033650 0.916 7385.3

3: 1 1 Ag 0.062381 1.697 13691.1

The result of the MRCI+Q is:

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -150.176905551 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 3 B1g 0 0 0.000 0.000 0.0

1 1 B1g 0 2 36.971 1.006 8114.2

2 1 Ag 0 1 38.021 1.035 8344.7

3 1 Ag 1 1 62.765 1.708 13775.2

These excitation energies are accurate to within a few hundred wavenumbers. Note that the ≈ 200 wavenumber

splitting in the degenerate 1∆ state is due to the symmetry breaking of the CAS and the individual selection.

Repeating the calculation with the MP2 natural orbitals gives an almost indistinguishable result and a ground

state energy that is even lower than what was found with the CASSCF orbitals. Thus, such natural orbitals

(that might often be easier to get) are a good substitute for CASSCF orbitals and at the same time the

symmetry breaking due to the use of symmetry appears to be difficult to avoid.

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -150.177743426 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 3 B1g 0 0 0.000 0.000 0.0

1 1 B1g 0 2 37.369 1.017 8201.5

2 1 Ag 0 1 38.237 1.040 8392.1

3 1 Ag 1 1 62.731 1.707 13767.9

8.12.4 Correlation Energies

The logic we are following here is the following: CID minus SCF gives the effect of the doubles; going to CISD

gives the effect of the singles; QCISD(=CCD) minus CID gives the effect of the disconnected quadruples.

QCISD minus QCID gives simultaneously the effect of the singles and the disconnected triples. They are a bit

difficult to separate but if one looks at the singles alone and compares with singles + disconnected triples, a

fair estimate is probably obtained. Finally, QCISD(T) minus QCISD gives the effect of the connected triples.

One could of course also use CCSD instead of QCISD but I felt that the higher powers of T1 obscure the

picture a little bit—but this is open to discussion of course.



8.12 Multireference Configuration Interaction and Pertubation Theory 233

First H2O/TZVPP at its MP2/TZVPP equilibrium geometry (Tpre =10−6 and Tsel =10−9 Eh for the MRCI

and MRACPF calculations):

Excitation class Energy (Eh) Delta-Energy (mEh)

None (RHF) -76.0624

Doubles (CID) -76.3174 255

+Singles (CISD) -76.3186 1

+Disconnected Quadruples (QCID) -76.3282 11

+Disconnected Triples (QCISD) -76.3298 2

+Connected Triples (QCISD(T)) -76.3372 7

CASSCF(8,6) -76.1160

CASSCF(8,6) + MRCI -76.3264 210

CASSCF(8,6) + MRCI+Q -76.3359 10

CASSCF(8,6) + MRACPF -76.3341 218

One observes quite good agreement between single- and multireference approaches. In particular, the

contribution of the disconnected triples and singles is very small. The estimate for the disconnected

quadruples is fairly good from either the multireference Davidson correction or the ACPF and the agreement

between CCSD(T) and these MR methods is 2-3 mEh in the total energy which is roughly within chemical

accuracy.

In order to also have an open-shell molecule let us look at NH with a N-H distance of 1.0 Å using the TZVPP

basis set.

Excitation class Energy (Eh) Delta-Energy (mEh)

None (UHF) -54.9835

Doubles (CID) -55.1333 150

+Singles (CISD) -55.1344 1

+Disconnected Quadruples (QCID) -55.1366 3

+Disconnected Triples (QCISD) -55.1378 1

+Connected Triples (QCISD(T)) -55.1414 4

CASSCF(6,5) -55.0004

CASSCF(6,5) + MRCI -55.1373 137

CASSCF(6,5) + MRCI+Q -55.1429 6

CASSCF(6,5) + MRACPF -55.1413 141

Again, the agreement is fairly good and show that both single- and multiple reference approaches converge to

the same limit.

8.12.5 Thresholds

Now we choose the CO molecule (1.128 Ångström) with the SVP basis set and study the convergence of

the results with respect to the selection threshold. Comparison to high level single-reference approaches is

feasible (The SCF energy is -112.645 946 Eh).
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8.12.5.1 Reference Values for Total Energies

The single-reference values are:

BD: -112.938 48002

CCSD: -112.939 79145

QCISD: -112.941 95700

BD(T): -112.950 17278

CCSD(T): -112.950 63889

QCISD(T): -112.951 37425

MP4(SDTQ): -112.954 80113

The calculations without connected triples (BD, CCSD, QCISD) are about the best what can be achieved

without explicitly considering triple excitations. The CCSD is probably the best in this class. As soon as

connected triples are included the CCSD(T), QCISD(T) and BD(T) values are close and from experience they

are also close to the full CI values which is then expected somewhere between –112.950 and –112.952 Eh.

8.12.5.2 Convergence of Single Reference Approaches with Respect to Tsel

Next it is studied how these single reference methods converge with Tsel:

Closed-Shell ACPF:

Tsel Energy (NCSF) Energy (NCSF)

(Eh) AllSingles=true AllSingles=false

TSel=0 -112.943 387 (5671)

TSel=1e-14 -112.943 387 (2543) -112.943 387 (2478)

TSel=1e-10 -112.943 387 (2543) -112.941 023 (2453)

TSel=1e-08 -112.943 387 (2451) -112.937 087 (2346)

TSel=1e-06 -112.943 350 (2283) -112.937 046 (2178)

TSel=1e-05 -112.943 176 (1660) -112.936 821 (1555)

TSel=1e-04 -112.944 039 ( 782) -112.938 381 ( 677)

It is clear that the convergence is erratic if the singles are not automatically included. This is the reason

for making this the default from release 2.6.35 on. In the present case singles will only be selected due

to round-off errors since by Brillouin’s theorem the singles have zero-interaction with the ground state

determinant. Thus, for individually selecting single-reference methods it is a good idea to automatically

include all single-excitations in order to get converged results. The alternative would be a different singles

selection procedure which has not yet been developed however. The selection of doubles appear to converge

the total energies reasonably well. It is seen that the selection selects most CSFs between 10−5 and 10−7 Eh.

Already a threshold of 10−6 Eh yields an error of less than 0.1 mEh which is negligible in relation to reaction

energies and the like. Even 10−5 Eh gives an error of less than 0.1 kcal/mol.
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8.12.5.3 Convergence of Multireference Approaches with Respect to Tpre

We next turn to multireference treatments. Here we want to correlate all valence electrons in all valence

orbitals and therefore a CAS(10,8) is the appropriate choice. We first ask for the converged value of Tpre by

using Tsel =10−14 and obtain for MRCI+Q:

TPre = 1e-1: -112.943 964

1e-2: -112.952 963

1e-3: -112.953 786

1e-4: -112.954 019

1e-5: -112.954 336

1e-6: -112.954 416

1e-7: -112.954 440

Thus, pretty good convergence is obtained for Tpre = 10−4 − 10−6. Hence 10−4 is the default.

To show a convenient input consider the following:

#

# Here we calculate the CO ground state correlation energy with several methods

#

! RHF aug-SVP aug-SV/C RI-MP2 CCSD(T)

%base "1"

%mp2 density relaxed

donatorbs true

end

* int 0 1

C 0 0 0 0.000000 0.000 0.000

O 1 0 0 1.128 0.000 0.000

*

$new_job

! RHF aug-SVP MRACPF

! moread

%moinp "1.mp2nat"

# the CASSCF is done with MP2 natural orbitals which is a good idea and

# secondly we use a large level shift in order to help convergence

%casscf nel 10

norb 8

mult 1

nroots 1
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shiftup 2

shiftdn 2

end

%mrci tsel 1e-8

tpre 1e-6

end

* int 0 1

C 0 0 0 0.000 0.000 0.000

O 1 0 0 1.128 0.000 0.000

*

This job computes at the same time all of the below and demonstrates once more the agreement between

consequent single- and multireference correlation methods

SCF = -112.6523

RI-MP2 = -112.9591

CCSD = -112.9604

CCSD(T) = -112.9730

CASSCF(10,8) = -112.7829

MRACPF = -112.9722

8.12.6 Energy Differences - Bond Breaking

For the calculation of energy differences we start again with the reference CCSD(T) calculation; this method

is one of the few which can claim chemical accuracy in practical applications:

Reference Total Energies for N2 at 1.0977 Angström with

The SVP basis

E(CCSD) = -109.163 497

E(CCSD(T))= -109.175 625

Nitrogen Atom (4S), SVP basis, unrestricted

E(CCSD) = -54.421 004

E(CCSD(T))= -54.421 7183

Energy Difference:

Delta-E(CCSD) = -0.321 489 = 8.75 eV

Delta-E(CCSD(T))= -0.332 188 = 9.04 eV

The basis set is of course not suitable for quantitative comparison to experimental values. However, this is

not the point here in these calculations which are illustrative in nature. The SVP basis is just good enough

to allow for a method assessment without leading to excessively expensive calculations.
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This is now to be compared with the corresponding energy differences computed with some single-reference

approaches. A typical input is (this is a somewhat old-fashioned example – in the present program version

you would do a full valence CASSCF(10,8) or CASSCF(6,6) and invoke the MR-methods with a single

keyword):

! RHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop

%base "1"

* xyz 0 1

N 0 0 0

N 0 0 1.0977

*

%method

frozencore fc_ewin

end

%mrci

EWin -3,1000

CIType MRACPF2a

Solver DIIS

IntMode FullTrafo

UseIVOs true

AllSingles true

TSel 1e-14

TPre 1e-05

TNat 0.0

ETol 1e-10

RTol 1e-10

NewBlock 1 *

NRoots 1

Excitations CISD

refs CAS(0,0) end

end

end

$new_job

! ROHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop PModel

%base "2"

* xyz 0 4

N 0 0 0

*
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%method

frozencore fc_ewin

end

%mrci

EWin -3,1000

CIType MRACPF2a

IntMode FullTrafo

UseIVOs true

AllSingles true

TSel 1e-14

TPre 1e-05

TNat 0.0

ETol 1e-10

RTol 1e-10

NewBlock 4 *

NRoots 1

Excitations CISD

refs CAS(3,3) end

end

end

The results are:

Single reference approaches:

Method N2-Molecule N-Atom Delta-E

CISD+Q : -109.167 904 -54.422 769 8.77 eV

ACPF : -109.166 926 -54.421 783 8.80 eV

ACPF2 : -109.166 751 -54.421 333 8.82 eV

ACPF2a : -109.166 730 -54.421 186 8.83 eV

CEPA1 : -109.159 721 -54.422 564 8.56 eV

CEPA2 : -109.172 888 -54.422 732 8.91 eV

CEPA3 : -109.161 034 -54.422 589 8.59 eV

AQCC : -109.160 574 -54.420 948 8.67 eV

CEPA-0 : -109.174 924 -54.422 951 8.95 eV

With exception is CEPA1 and CEPA3, the results are OK. The reason for the poor performance of these

methods is simply that the formalism implemented is only correct for closed shells – open shells require a

different formalism which we do not have available in the MRCI module (but in the single reference MDCI

module). Due to the simple approximations made in CEPA2 it should also be valid for open shells and the

numerical results are in support of that.

Next we turn to the multireference methods and take a CAS(10,8) reference as for CO in order to correlate

all valence electrons. 13

13Most of these results have been obtained with a slightly earlier version for which the MR energies are a little
different from that what the present version gives. The energy differences will not be affected.
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Multi reference approaches:

Method N2-Molecule N-Atom Delta-E

MRCISD+Q: -109.180 089 -54.422 667 9.11 eV

MRACPF : -109.178 708 -54.421 685 9.12 eV

MRACPF2 : -109.177 140 -54.421 236 9.11 eV

MRAQCC : -109.175 947 -54.420 851 9.10 eV

SORCI : -109.179 101 -54.422 703 9.08 eV

This test calculation pleasingly shows the high consistency of multireference approaches which all converge

more or less to the same result which must be accurate.

8.12.7 Energy Differences - Spin Flipping

There are a number if interesting situations in which one is interested in a small energy difference which

arises from two states of different multiplicity but same orbital configuration. This is the phenomenon met in

diradicals or in magnetic coupling in transition metal complexes. As a primitive model for such cases one

may consider the hypothetical molecule H-Ne-H in a linear configuration which will be used as a model in

this section.

The reference value is obtained by a MR-ACPF calculation with all valence electrons active (again, this

example is somewhat old fashioned – in the present program version you would do a CASSCF calculation

followed by MR methods with a single keyword):

! ROHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop

%basis

NewAuxCGTO Ne "AutoAux" end

end

* xyz 0 3

H 0 0 0

Ne 0 0 2.0

H 0 0 4.0

*

%method frozencore fc_ewin

end

%mrci EWin -3,1000

CIType MRACPF2a

IntMode FullTrafo

Solver DIIS

UseIVOs true

TSel 0

TPre 1e-10

ETol 1e-09

RTol 1e-09

DoDDCIMP2 true
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NewBlock 1 *

NRoots 1

Excitations CISD

refs CAS(10,6) end

end

NewBlock 3 *

NRoots 1

Excitations CISD

refs CAS(10,6) end

end

end

which gives the reference value 108 cm−1. We now compare that to several other methods which only have

the two “magnetic” orbitals (the 1s’s on the hydrogens) in the active space:

... same as above

%mrci EWin -10,1000

CIType MRDDCI3

... same as previously

NewBlock 1 *

NRoots 1

refs CAS(2,2) end

end

NewBlock 3 *

NRoots 1

refs CAS(2,2) end

end

end

This gives the result:

Method S-T gap

MR-CI+Q : 98 cm-1

MR-CI : 93 cm-1

MR-ACPF : 98 cm-1

MR-ACPF2 : 98 cm-1

MR-ACPF2a: 97 cm-1

MR-AQCC : 95 cm-1

SORCI : 131 cm-1

MR-DDCI2 : 85 cm-1

MR-DDCI3 : 130 cm-1

All these methods give good results with SORCI leading to a somewhat larger error than the others. The

(difference dedicated CI) DDCI2 method slightly underestimates the coupling which is characteristic of
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this method. It is nice in a way that DDCI3 gives the same result as SORCI since SORCI is supposed to

approximate the DDCI3 (or better the IDDCI3) result which it obviously does.

This splitting can also be studied using broken symmetry HF and DFT methods as explained elsewhere in

this manual:

Method S-T gap

UHF : 70 cm-1

B3LYP/G : 240 cm-1

BP86 : 354 cm-1

PW91 : 234 cm-1

PBE : 234 cm-1

PBE0 : 162 cm-1

RPBE : 242 cm-1

This confirms the usual notions; UHF underestimates the coupling and DFT overestimates it, less so for

hybrid functionals than for GGAs. The BP86 is worse than PW91 or PBE. The PBE0 hybrid may be the

best of the DFT methods. For some reason most of the DFT methods give the best results if the BS state is

simply taken as an approximation for the true open-shell singlet. This is, in our opinion, not backed up by

theory but has been observed by other authors too.

Now let us study the dependence on Tsel as this is supposed to be critical (we use the DDCI3 method):

Tsel S-T gap

1e-04 121

1e-05 128

1e-06 132

1e-07 131

1e-08 131

1e-10 131

1e-12 131

0 131

The convergence is excellent once AllSingles are included.

8.12.8 Potential Energy Surfaces

Another situation where multireference approaches are necessary is when bond breaking is studied and one

wants to calculate a full potential energy surface. Say we want to compute the potential energy surface of the

CH molecule. First we have to figure out which states to include. Hence, let us first determine a significant

number of roots for the full valence CASSCF reference state (we use a small basis set in order to make the

job fast).
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! ANO-pVDZ VeryTightSCF NoPop Conv

%casscf nel 5

norb 5

nroots 2

mult 2

end

%mrci CIType MRCI

NewBlock 2 *

excitations none

NRoots 15

refs CAS(5,5) end

end

NewBlock 4 *

excitations none

NRoots 15

refs CAS(5,5) end

end

end

* xyz 0 2

C 0 0 0

H 0 0 1.15

*

This yields:

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -38.308119994 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 2 -1 0 0 0.000 0.000 0.0

1 2 -1 1 0 0.000 0.000 0.0

2 4 -1 0 1 14.679 0.399 3221.6

3 2 -1 2 0 126.464 3.441 27755.7

4 2 -1 3 0 126.464 3.441 27755.7

5 2 -1 4 0 132.689 3.611 29121.8

6 2 -1 5 0 164.261 4.470 36051.2

7 2 -1 6 0 305.087 8.302 66958.9

8 2 -1 7 0 305.087 8.302 66958.9

9 4 -1 1 1 328.911 8.950 72187.7

10 4 -1 2 1 452.676 12.318 99350.8

11 4 -1 3 1 452.676 12.318 99350.8

12 2 -1 8 0 460.116 12.520 100983.9

13 2 -1 9 0 463.438 12.611 101712.9
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14 2 -1 10 0 463.438 12.611 101712.9

...

Thus, if we want to focus on the low-lying states we should include five doublet and one quartet root. Now

we run a second job with these roots and scan the internuclear distance.

! ano-pVDZ VeryTightSCF NoPop Conv MRCI+Q

%casscf nel 5

norb 5

nroots 5,1

mult 2,4

shiftup 2

end

%paras R = 0.8,2.5,25

end

* xyz 0 2

C 0 0 0

H 0 0 {R}

*

The surfaces obtained in this run are shown in 8.18. You can nicely see the crossing of the 2Σ and 2∆ states

fairly close to the equilibrium distance and also the merging of the 4Σ state with 2Π and 2Σ towards the

asymptote that where C-H dissociates in a neutral C-atom in its 3P ground state and a neutral hydrogen

atom in its 2S ground state. You can observe that once AllSingles is set to true (the default), the default

settings of the MRCI module yield fairly smooth potential energy surfaces.

In many cases one will focus on the region around the minimum where the surface is nearly quadratic. In this

case one can still perform a few (2, 3, 5, . . . ) point polynomial fitting from which the important parameters

can be determined. The numerical accuracy and the behavior with respect to Tsel has to be studied in these

cases since the selection produces some noise in the procedure. We illustrate this with a calculation on the

HF molecule:

! ano-pVDZ VeryTightSCF NoPop Conv MRCI+Q

%paras R = 0.85,1.1,7

end

%casscf nel 8

norb 5

nroots 1 mult 1

shiftup 2.5 shiftdn 2.5 switchstep nr gtol 1e-5
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Figure 8.18: Potential energy surfaces for some low-lying states of CH using the MRCI+Q method

end

%mrci tsel 1e-8

tpre 1e-5

end

* xyz 0 1

F 0 0 0

H 0 0 {R}

*

The output contains the result of a Morse fit:

Morse-Fit Results:

Re = 0.93014 Angstroem

we = 4111.2 cm**-1

wexe = 79.5 cm**-1

Which may be compared with the CCSD(T) values calculated with the same basis set:

Morse-Fit Results:

Re = 0.92246 Angstroem
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we = 4209.8 cm**-1

wexe = 97.6 cm**-1

The agreement between MRCI+Q and CCSD(T) results is fairly good.

8.12.9 Multireference Systems - Ozone

The ozone molecule is a rather classical multireference system due to its diradical character. Let us look at

the three highest occupied and lowest unoccupied MO (the next occupied MO is some 6 eV lower in energy

and the next virtual MO some 10 eV higher in energy):

(a) MO-9 (b) MO-10 (c) MO 11(HOMO) (d) MO 12(LUMO)

Figure 8.19: Frontier MOs of the Ozone Molecule.

These MOs are two σ lone pairs which are high in energy and then the symmetric and antisymmetric

combinations of the oxygen π lone pairs. In particular, the LUMO is low lying and will lead to strong

correlation effects since the (HOMO)2 →(LUMO)2 excitation will show up with a large coefficient. Physically

speaking this is testimony of the large diradical character of this molecule which is roughly represented by the

structure ↑O-O-O↓. Thus, the minimal active space to treat this molecule correctly is a CAS(2,2) space which

includes the HOMO and the LUMO. We illustrate the calculation by looking at the RHF, MP2 MRACPF

calculations of the two-dimensional potential energy surface along the O–O bond distance and the O-O-O

angle (experimental values are 1.2717 Å and 116.78◦).

! ano-pVDZ VeryTightSCF NoPop MRCI+Q Conv

%paras R = 1.20,1.40,21

Theta = 100,150,21

end

%casscf nel 2

norb 2

mult 1

nroots 1

end
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%mrci tsel 1e-8

tpre 1e-5

end

* int 0 1

O 0 0 0 0 0 0

O 1 0 0 {R} 0 0

O 1 2 0 {R} {Theta} 0

*

This is a slightly lengthy calculation due to the 441 energy evaluations required. RHF does not find any

meaningful minimum within the range of examined geometries. MP2 is much better and comes close to the

desired minimum but underestimates the O–O distance by some 0.03 Å. CCSD(T) gives a very good angle

but a O–O distance that is too long. In fact, the largest doubles amplitude is ≈0.2 in these calculations (the

HOMO–LUMO double excitation) which indicates a near degeneracy calculation that even CCSD(T) has

problems to deal with. Already the CAS(2,2) calculation is in qualitative agreement with experiment and the

MRCI+Q calculation then gives almost perfect agreement.

The difference between the CCSD(T) and MRCI+Q surfaces shows that the CCSD(T) is a bit lower than

the MRCI+Q one suggesting that it treats more correlation. However, CCSD(T) does it in an unbalanced

way. The MRCI calculation employs single and double excitations on top of the HOMO-LUMO double

excitation, which results in triples and quadruples that apparently play an important role in balancing the

MR calculation. These excitations are treated to all orders explicitly in the MRCI calculation but only

approximately (quadruples as simultaneous pair excitations and triples perturbatively) in the coupled-cluster

approach. Thus, despite the considerable robustness of CC theory in electronically difficult situations it is

not applicable to genuine multireference problems.

This is a nice result despite the too small basis set used and shows how important it can be to go to a

multireference treatment with a physically reasonable active space (even if is only 2 × 2) in order to get

qualitatively and quantitatively correct results.

8.12.10 Size Consistency

Finally, we want to study the size consistency errors of the methods. For this we study two non-interacting

HF molecules at the single reference level and compare to the energy of a single HF molecule. This should

give a reasonably fair idea of the typical performance of each method (energies in Eh)14:

E(HF) E(HF+HF) |Difference|

CISD+Q -100.138 475 -200.273 599 0.00335

ACPF -100.137 050 -200.274 010 0.00000

ACPF2 -100.136 913 -200.273 823 0.00000

14Most of these numbers were obtained with a slightly older version but will not change too much in the present
version.
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(a) RHF (b) CASSCF(2,2)

(c) MP2 (d) CCSD(T)

(e) MRCI+Q (f) Difference CCSD(T)/MRCI+Q

Figure 8.20: 2D potential energy surface for the O3 molecule calculated with different methods.

AQCC -100.135 059 -200.269 792 0.00032

The results are roughly as expected – CISD+Q has a relatively large error, ACPF and ACPF/2 are perfect

for this type of example; AQCC is not expected to be size consistent and is (only) about a factor of 10 better

than CISD+Q in this respect. CEPA-0 is also size consistent.

8.12.11 Efficient MR-MP2 Calculations for Larger Molecules

Uncontracted MR-MP2 approaches are nowadays outdated. They are much more expensive than internally

contracted e.g. the NEVPT2 method described in section 9.14. Moreover, MR-MP2 is prone to intruder

states, which is a major obstacle for practical applications. For historical reasons, this section is dedicated to

the traditional MR-MP2 approach that is available since version 2.7.0 ORCA. The implementation avoids
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the full integral transformation for MR-MP2 which leads to significant savings in terms of time and memory.

Thus, relatively large RI-MR-MP2 calculations can be done with fairly high efficiency. However, the program

still uses an uncontracted first order wavefunction which means that for very large reference space, the

calculations still become untractable.

Consider for example the rotation of the stilbene molecule around the central double bond

Figure 8.21: Rotation of stilbene around the central double bond using a CASSCF(2,2) reference
and correlating the reference with MR-MP2.

The input for this calculation is shown below. The calculation has more than 500 basis functions and still

runs through in less than one hour per step (CASSCF-MR-MP2). The program takes care of the reduced

number of two-electron integrals relative to the parent MRCI method and hence can be applied to larger

molecules as well. Note that we have taken a “JK” fitting basis in order to fit the Coulomb and the dynamic

correlation contributions both with sufficient accuracy. Thus, this example demonstrates that MR-MP2

calculations for not too large reference spaces can be done efficiently with ORCA (as a minor detail note that

the calculations were started at a dihedral angle of 90 degrees in order to make sure that the correct two

orbitals are in the active space, namely the central carbon p-orbitals that would make up the pi-bond in the

coplanar structure).

#

# Stilbene rotation using MRMP2

#

! def2-TZVP def2/JK RIJCOSX RI-MRMP2

%casscf nel 2

norb 2

end

%mrci maxmemint 2000

tsel 1e-8

end

%paras DIHED = 90,270, 19

end

* int 0 1

C 0 0 0 0.000000 0.000 0.000
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C 1 0 0 1.343827 0.000 0.000

C 2 1 0 1.490606 125.126 0.000

C 1 2 3 1.489535 125.829 {DIHED}
C 4 1 2 1.400473 118.696 180.000

C 4 1 2 1.400488 122.999 0.000

C 6 4 1 1.395945 120.752 180.000

C 5 4 1 1.394580 121.061 180.000

C 8 5 4 1.392286 120.004 0.000

C 3 2 1 1.400587 118.959 180.000

C 3 2 1 1.401106 122.779 0.000

C 11 3 2 1.395422 120.840 180.001

C 12 11 3 1.392546 120.181 0.000

C 13 12 11 1.392464 119.663 0.000

H 1 2 3 1.099419 118.266 0.000

H 2 1 3 1.100264 118.477 179.999

H 5 4 1 1.102119 119.965 0.000

H 6 4 1 1.100393 121.065 0.000

H 7 6 4 1.102835 119.956 180.000

H 8 5 4 1.102774 119.989 180.000

H 9 8 5 1.102847 120.145 180.000

H 10 3 2 1.102271 120.003 0.000

H 11 3 2 1.100185 121.130 0.000

H 12 11 3 1.103001 119.889 180.000

H 13 12 11 1.102704 120.113 180.000

H 14 13 12 1.102746 119.941 180.000

*

8.13 MR-EOM-CC: Multireference Equation of Motion

Coupled-Cluster

The Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) methodology [187–192] has been

implemented in ORCA. The strength of the MR-EOM-CC methodology lies in its ability to calculate many

excited states from a single state-averaged CASSCF solution, the solution of a single set of amplitudes

and an uncontracted MRCI diagonalization, of the final transformed Hamiltonian, over a small manifold of

excited configurations. Hence, a given MR-EOM calculation involves three steps, performed by three separate

modules in ORCA:

1. a state-averaged CASSCF calculation (CASSCF module),

2. the solution of amplitude equations and the calculation of the elements of the similarity transformed

Hamiltonians (MDCI module) and,

3. the uncontracted MRCI diagonalization of the final similarity transformed Hamiltonian (MRCI module).

The current implementation allows for MR-EOM-T|T†-h-v, MR-EOM-T|T†|SXD-h-v and MR-EOM-T|T†|SXD|U-

h-v calculations. A more detailed description of these methods and the available input parameters will be

given in 9.31. We also note that the theoretical details underlying these methods can be found in [192]. In

section 9.31, we will discuss a strategy for the selection of the state-averaged CAS and other steps for setting

up an MR-EOM calculation in detail. Furthermore, we will discuss how spin-orbit coupling effects can be

included in MR-EOM calculations, a projection scheme to aid with convergence difficulties in the iteration of
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the T amplitude equations, an orbital selection scheme to reduce the size of the inactive core and virtual

subspaces in the calculation of excitation energies and a strategy for obtaining nearly size-consistent results

in MR-EOM. The purpose of this section is simply to provide a simple example which illustrates the most

basic usage of the MR-EOM implementation in ORCA.

8.13.1 A Simple MR-EOM Calculation

Let us consider an MR-EOM-T|T†|SXD|U-h-v calculation on formaldehyde. An MR-EOM-T|T†|SXD|U-h-v

calculation is specified via the MR-EOM keyword along with the specification of a state-averaged CASSCF

calculation (i.e. CASSCF(nel, norb) calculation with the number of roots of each multiplicity to be included

in the state-averaging) and the number of desired roots in each multiplicity block for the final MRCI

diagonalization. We note that the CASSCF module is described in sections 8.1.7 and 9.13 and that a

description of the MRCI module is given in sections 8.12 and 9.30. Here, we have a state-averaged CAS(6,4)

calculation, comprised of 3 singlets and 3 triplets and we request 6 singlet roots and 6 triplet roots in our

final MRCI diagonalization (i.e. the roots to be computed in the MR-EOM-T|T†|SXD|U-h-v calculation):

!MR-EOM def2-TZVP VeryTightSCF

%casscf

nel 6

norb 4

mult 1,3

nroots 3,3

end

%mdci

STol 1e-7

end

%mrci

newblock 1 *

nroots 6

refs cas(6,4) end

end

newblock 3 *

nroots 6

refs cas(6,4) end

end

end

* xyz 0 1

H 0.000000 0.934473 -0.588078

H 0.000000 -0.934473 -0.588078

C 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.221104

*
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One can alternatively perform an MR-EOM-T|T†-h-v or MR-EOM-T|T†|SXD-h-v calculation by replacing

the MR-EOM keyword, in the first line of the input above, by MR-EOM-T|Td or MR-EOM-T|Td|SXD,

respectively. Namely, replacing the first line of the input above with

!MR-EOM-T|Td def2-TZVP VeryTightSCF

runs the MR-EOM-T|T†-h-v calculation, while,

!MR-EOM-T|Td|SXD def2-TZVP VeryTightSCF

runs the MR-EOM-T|T†|SXD-h-v calculation.

The final MR-CI diagonalization manifold includes 2h1p, 1h1p, 2h, 1h and 1p excitations in MR-EOM-T|T†-h-
v calculations, 2h, 1p and 1h excitations in MR-EOM-T|T†|SXD-h-v calculations and 1h and 1p excitations in
MR-EOM-T|T†|SXD|U-h-v calculations. Note that in the mdci block, we have set the convergence tolerance
(STol) for the residual equations for the amplitudes to 10−7, as this default value is overwritten with the
usage of the TightSCF, VeryTightSCF, etc. keywords. It is always important to inspect the values of the
largest T, S (i.e. here, we use S to denote the entire set of S, X and D amplitudes) and U amplitudes. If
there are amplitudes that are large (absolute values > 0.15), the calculated results should be regarded with
suspicion. For the above calculation, we obtain:

--------------------

LARGEST T AMPLITUDES

--------------------

8-> 13 8-> 13 0.060329

4-> 17 4-> 17 0.029905

8-> 9 8-> 9 0.028159

8-> 16 8-> 16 0.027265

6-> 20 6-> 20 0.025885

8-> 21 8-> 21 0.025307

4-> 16 4-> 16 0.024802

8-> 12 8-> 12 0.023915

5-> 18 5-> 18 0.023552

8-> 23 8-> 23 0.023384

3-> 16 3-> 16 0.023182

7-> 19 7-> 19 0.023044

8-> 13 4-> 11 0.022009

3-> 19 3-> 19 0.021987

8-> 9 8-> 16 0.021230

8-> 16 8-> 9 0.021230

for the T-amplitudes,
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--------------------

LARGEST S AMPLITUDES

--------------------

4-> 8 8-> 11 0.074044

3-> 8 8-> 9 0.064884

4-> 5 5-> 11 0.045476

3-> 8 8-> 16 0.042656

4-> 7 7-> 11 0.042594

4-> 5 5-> 17 0.042074

4-> 5 8-> 11 0.039960

4-> 8 8-> 17 0.037531

3-> 5 8-> 9 0.035908

4-> 7 7-> 17 0.035764

2-> 6 6-> 19 0.034146

3-> 5 5-> 10 0.033339

2-> 6 6-> 10 0.032690

4-> 6 6-> 11 0.032177

8-> 8 3-> 16 0.031774

2-> 7 7-> 22 0.031238

for the S-amplitudes and,

--------------------

LARGEST U AMPLITUDES

--------------------

3-> 8 3-> 8 0.026128

3-> 8 3-> 5 0.007682

2-> 8 2-> 8 0.006182

3-> 8 2-> 5 0.006154

2-> 8 3-> 5 0.004954

3-> 5 3-> 5 0.004677

4-> 8 4-> 8 0.003988

2-> 8 3-> 8 0.002041

3-> 8 2-> 8 0.002041

2-> 8 2-> 5 0.001818

4-> 8 4-> 5 0.001173

2-> 5 2-> 5 0.001107

4-> 5 4-> 5 0.000714

3-> 7 3-> 7 0.000607

3-> 6 3-> 6 0.000521

3-> 5 2-> 5 0.000365

for the U-amplitudes. Hence, one can see that there are no unusually large amplitudes for this particular

calculation. We note that there can be convergence issues with the T amplitude iterations and

that in such cases, the flag:

! RHF TZVP

%cis nroots 1

end

* int 0 1
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C 0 0 0 0.000000 0.000 0.000

O 1 0 0 1.200371 0.000 0.000

H 1 2 0 1.107372 121.941 0.000

H 1 2 3 1.107372 121.941 180.000

*

should be added to the %mdci block. The convergence issues are caused by the presence of nearly singular

T2 amplitudes and setting the DoSingularPT flag to true activates a procedure which projects out the

offending amplitudes (in each iteration) and replaces them by suitable perturbative amplitudes. For more

information, see the examples in section 9.31.3.

After the computation of the amplitudes and the elements of the similarity transformed Hamiltonians, within

the MDCI module, the calculation enters the MRCI module. For a complete, step by step description of

the output of an MRCI calculation, we refer the reader to the example described in section 8.12.2. Let us

first focus on the results for the singlet states (CI-BLOCK 1). Following the convergence of the Davidson

diagonalization (default) or DIIS procedure, the following results of the MRCI calculation for the singlet

states are printed:

----------

CI-RESULTS

----------

The threshold for printing is 0.3 percent

The weights of configurations will be printed. The weights are summed over

all CSF’s that belong to a given configuration before printing

STATE 0: Energy= -114.321368498 Eh RefWeight= 0.9781 0.00 eV 0.0 cm**-1

0.0137 : h---h---[0222]

0.0756 : h---h---[1221]

0.8879 : h---h---[2220]

STATE 1: Energy= -114.176868150 Eh RefWeight= 0.9765 3.93 eV 31714.2 cm**-1

0.0039 : h---h---[1122]

0.9726 : h---h---[2121]

0.0071 : h---h 4[1222]

0.0085 : h---h 4[2221]

STATE 2: Energy= -113.988050836 Eh RefWeight= 0.9774 9.07 eV 73154.8 cm**-1

0.0044 : h---h---[1212]

0.9730 : h---h---[2211]

0.0063 : h---h 3[1222]

0.0041 : h---h 3[2221]

STATE 3: Energy= -113.963861555 Eh RefWeight= 0.8810 9.73 eV 78463.7 cm**-1

0.7459 : h---h---[1221]

0.0807 : h---h---[2022]

0.0533 : h---h---[2220]

0.0228 : h---h 4[2122]

0.0034 : h---h---[1220]p13

0.0072 : h---h---[1220]p18

0.0236 : h---h---[2120]p11

0.0148 : h---h---[2120]p14

0.0069 : h---h---[2120]p17

0.0056 : h---h---[2120]p20
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0.0098 : h---h---[2210]p19

STATE 4: Energy= -113.931151173 Eh RefWeight= 0.0003 10.62 eV 85642.8 cm**-1

0.0045 : h---h---[0122]p9

0.0089 : h---h---[1121]p9

0.9333 : h---h---[2120]p9

0.0243 : h---h---[2120]p10

0.0080 : h---h---[2120]p12

0.0113 : h---h---[2120]p16

STATE 5: Energy= -113.929056894 Eh RefWeight= 0.6858 10.68 eV 86102.4 cm**-1

0.0061 : h---h---[0222]

0.0918 : h---h---[1221]

0.5785 : h---h---[2022]

0.0048 : h---h---[2202]

0.0047 : h---h---[2220]

0.2904 : h---h 4[2122]

0.0045 : h---h---[2021]p13

For each state, the total energy is given in Eh, the weight of the reference configurations (RefWeight) in the

given state, is provided and the energy differences from the lowest lying state are given in eV and cm−1. Also,

in each case, the weights and a description of the configurations which contribute most strongly to the given

state are also provided. See section 8.12.2 for a discussion of the notation that is used for the description

of the various configurations. In order to avoid confusion, we note that in the literature concerning the

MR-EOM methodology [188–194], the term %active is used to denote the reference weight multiplied by

100%. In general, RefWeight should be larger than 0.9, such that the states are dominated by reference space

configurations. This criterion is satisfied for the first three states and the reference weight of the fourth state is

sufficiently close to 0.9. However, the reference weights of the two higher lying states (especially

state 4) are too small and these states should be discarded as the resulting energies will be

inaccurate (i.e. states with significant contributions from configurations outside the reference

space cannot be treated accurately).

In the case of the triplet states (CI-BLOCK 2), we obtain the following results:

----------

CI-RESULTS

----------

The threshold for printing is 0.3 percent

The weights of configurations will be printed. The weights are summed over

all CSF’s that belong to a given configuration before printing

STATE 0: Energy= -114.190842874 Eh RefWeight= 0.9694 0.00 eV 0.0 cm**-1

0.9691 : h---h---[2121]

0.0079 : h---h 4[1222]

0.0115 : h---h 4[2221]

STATE 1: Energy= -114.106732870 Eh RefWeight= 0.9941 2.29 eV 18460.0 cm**-1

0.9941 : h---h---[1221]

STATE 2: Energy= -114.015150352 Eh RefWeight= 0.9787 4.78 eV 38560.1 cm**-1

0.9786 : h---h---[2211]

0.0050 : h---h 3[1222]

STATE 3: Energy= -113.939308154 Eh RefWeight= 0.0006 6.84 eV 55205.5 cm**-1

0.0044 : h---h---[0122]p9

0.0084 : h---h---[1121]p9
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0.9419 : h---h---[2120]p9

0.0131 : h---h---[2120]p10

0.0043 : h---h---[2120]p12

0.0173 : h---h---[2120]p16

STATE 4: Energy= -113.925573432 Eh RefWeight= 0.4016 7.22 eV 58219.9 cm**-1

0.3862 : h---h---[1122]

0.0154 : h---h---[2121]

0.1721 : h---h 4[1222]

0.4100 : h---h 4[2221]

0.0045 : h---h---[2120]p13

STATE 5: Energy= -113.910484986 Eh RefWeight= 0.0009 7.63 eV 61531.4 cm**-1

0.0089 : h---h---[0122]p10

0.0030 : h---h---[1121]p10

0.0120 : h---h---[2120]p9

0.9407 : h---h---[2120]p10

0.0105 : h---h---[2120]p16

0.0112 : h---h---[2120]p19

0.0030 : h---h---[2120]p22

Here, we see that the first three states have reference weights which are greater than 0.9, while the reference

weights of the final three states are well below 0.9. Hence, the latter three states should be discarded from

any meaningful analysis.

Following the printing of the CI results for the final CI block, the states are ordered according to increasing

energy and the vertical transition energies are printed:

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -114.321368498 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 1 -1 0 0 0.000 0.000 0.0

1 3 -1 0 1 130.526 3.552 28647.1

2 1 -1 1 0 144.500 3.932 31714.2

3 3 -1 1 1 214.636 5.841 47107.1

4 3 -1 2 1 306.218 8.333 67207.1

5 1 -1 2 0 333.318 9.070 73154.8

6 1 -1 3 0 357.507 9.728 78463.7

7 3 -1 3 1 382.060 10.396 83852.6

8 1 -1 4 0 390.217 10.618 85642.8

9 1 -1 5 0 392.312 10.675 86102.4

10 3 -1 4 1 395.795 10.770 86867.0

11 3 -1 5 1 410.884 11.181 90178.5

Furthermore, following the generation of the (approximate) densities, the absorption and CD spectra are

printed:
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------------------------------------------------------------------------------------------

ABSORPTION SPECTRUM

------------------------------------------------------------------------------------------

States Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (D**2) (D) (D) (D)

------------------------------------------------------------------------------------------

0( 0)-> 1( 0) 1 31714.2 315.3 0.000000000 0.00000 0.00000 -0.00000 0.00000

0( 0)-> 2( 0) 1 73154.8 136.7 0.002133136 0.06192 -0.24884 -0.00000 -0.00000

0( 0)-> 3( 0) 1 78463.7 127.4 0.157692550 4.26771 -0.00000 -0.00000 2.06584

0( 0)-> 4( 0) 1 85642.8 116.8 0.025407931 0.62999 0.00000 -0.79372 0.00000

0( 0)-> 5( 0) 1 86102.4 116.1 0.024717322 0.60959 0.00000 0.00000 0.78076

------------------------------------------------------------------------------

CD SPECTRUM

------------------------------------------------------------------------------

States Energy Wavelength R*T RX RY RZ

(cm-1) (nm) (1e40*sgs) (au) (au) (au)

------------------------------------------------------------------------------

0( 0)-> 1( 0) 1 31714.2 315.3 -0.00000 -0.00000 -0.00000 -1.12539

0( 0)-> 2( 0) 1 73154.8 136.7 0.00000 -0.00000 -1.48989 -0.00000

0( 0)-> 3( 0) 1 78463.7 127.4 0.00000 -0.00000 0.00000 0.00000

0( 0)-> 4( 0) 1 85642.8 116.8 -0.00000 -0.71799 0.00000 0.00000

0( 0)-> 5( 0) 1 86102.4 116.1 -0.00000 0.00000 -0.00000 -0.00000

WARNINGS:

• It is important to note that the transition moments and oscillator strengths (and state dipole moments)

have been blindly computed by the MRCI module and currently, no effort has been made to include

the effects of the various similarity transformations in the evaluation of these quantities. Hence these

quantities are only approximate and should only be used as a qualitative aid to determine which states

are dipole allowed or forbidden. Furthermore, since the calculated densities are approximate, so are

the results of the population analysis that are printed before the absorption and CD spectra.

• While both the CASSCF and MRCI modules can make use of spatial point-group symmetry to some

extent, the MR-EOM implementation is currently limited to calculations in C1 symmetry.

8.13.2 Capabilities

The MR-EOM methodology can be used to calculate a desired number of states for both closed- and

open-shell systems from a single state-averaged CASSCF solution. Currently, the approach is is limited

to serial calculations and to smaller systems in smaller active spaces. One should be aware that in the

most cost effective MR-EOM-T|T†|SXD|U-h-v approach (i.e. smallest diagonalization manifold), an MRCI

diagonalization is performed over all 1h and 1p excited configurations out of the CAS, which will inevitably

limit the size of the initial CAS which can be used. We have also implemented an orbital selection scheme

which can be used to reduce the size of the inactive core and virtual subspaces in the calculation of excitation

energies and this can be employed to extend the applicability of the approach to larger systems. The current

implementation can also be used in conjunction with the spin-orbit coupling submodule (9.30.1) of the MRCI

module to calculate spin-orbit coupling effects in MR-EOM calculations to first-order. These and other

features of the current implementation will be discussed in 9.31.
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8.14 Solvation

Several implicit solvation models are implemented in ORCA. A completely integrated implementation of the

conductor-like polarizable continuum model (C-PCM) offers a range of options and has been implemented in

all parts of ORCA. The following calculations can be used to carry out calculations in a polarizable continuum

using a realistic Van-der-Waals cavity:

• Energies of molecules in solution with a finite dielectric constant ε using any HF or DFT method.

• Optimization of molecular structures in solution using any HF or DFT method using analytic gradients.

• Calculation of vibrational frequencies using the analytic Hessian for any HF or DFT method for which

the same quantity is available in vacuum.

• Calculation of solvent effects on response properties like polarizabilities through coupled-perturbed

SCF theory. For magnetic response properties such as the g-tensor the C-PCM response vanishes.

• Calculations of solvent shifts on transition energies using the time-dependent DFT or CIS method.

Here one needs to know the refractive index of the solvent in addition to the dielectric constant.

• First order perturbation estimate of solvent effects on state and transition energies in multireference

perturbation and configuration-interaction calculations.

As a simple example let us look at the solvent effect on the transition energy of the n → π∗ transition in

formaldehyde. We first do a normal CIS calculation:

! RHF TZVP

%cis nroots 1

end

* int 0 1

C 0 0 0 0.000000 0.000 0.000

O 1 0 0 1.200371 0.000 0.000

H 1 2 0 1.107372 121.941 0.000

H 1 2 3 1.107372 121.941 180.000

*

yielding a transition energy of 4.582 eV. Now we repeat the same calculation but with the CPCM model

enabled (which is fairly simple; nothing except the dielectric constant and the refractive index needs to be

input; there are technical parameters which can be defined by the user but this is not necessary in most

applications; all modules will automatically recognize the presence of the CPCM terms automatically).
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! RHF TZVP

%cpcm epsilon 80

refrac 1.33

end

%cis nroots 1

end

* int 0 1

C 0 0 0 0.000000 0.000 0.000

O 1 0 0 1.200371 0.000 0.000

H 1 2 0 1.107372 121.941 0.000

H 1 2 3 1.107372 121.941 180.000

*

This calculation yields:

-------------------------

CALCULATED SOLVENT SHIFTS

-------------------------

State Shift(Eh) Shift(eV) Shift(cm**-1) Shift(nm) ECI(eV) ECI+SHIFT(eV)

-------------------------------------------------------------------

0: -0.0026760 -0.073 -587.3 3.7 4.948 4.875

Note that there are two different types of shift: the first is the difference between the CIS calculation in

the gas phase and the one using the solvated orbitals. This is the difference 4.984− 4.582 eV = 0.402 eV.

This term is called the “slow” term and represents the interaction of the difference density with the frozen

screening charges of the ground state. The second term depends on the instantaneous polarization and is

called the “fast” term. It is given by the extra −0.073 eV printed above thus yielding a total solvent shift

of 0.402− 0.073 eV = 0.329 eV and a final estimate of the transition energy of 4.875 eV in solution (this

is clearly not an accurate value since it is too high as is always found with CIS; the calculated shift is also

somewhat higher compared to accurate MR-CI calculations which give 0.25 eV but it is in the right ballpark;

larger basis sets yield also better results here).

In addition, the Minnesota SMD solvation model is implemented in ORCA. See sections 9.35 and 9.35.3 for

further details on the available solvation models and how to use them.

8.15 Calculation of Properties

8.15.1 Population Analysis and Related Things

Atomic populations and the like are not really a molecular property since they are not observable. They

are nevertheless highly useful for chemical interpretation purposes. ORCA lets you obtain very detailed
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information about the calculated molecular orbitals. Mulliken, Löwdin and Mayer population analysis can be

performed and many useful details can be printed. However, it is also easy to get lost in the output from

such a calculation since you may not be interested in all these details. In this case ORCA lets you turn most

features off. The default is to perform a rather large amount of population analysis.

! HF SVP Mulliken Loewdin Mayer ReducedPOP

* xyz 0 1

C 0 0 0

O 0 0 1.13

*

The Mulliken, Löwdin and Mayer analysis tools should be self-explanatory. If you choose “ReducedPOP” you

will get a reduced orbital population where the percentage contributions per basis function type on each

atom are listed. This is highly useful in figuring out the character of the MOs. You can, however, also

request a printout of the MO coefficients themselves via the output block (section 9.38) or using the keyword

“PrintMOs”

In many cases it is not so interesting to look at the MO coefficients but you want to get a full three dimensional

picture of MOs, electron densities and spin densities. This is relatively easily accomplished with ORCA
through, among other visualization programs, the interface to the gOpenMol and Molekel packages (see

section 9.39 for details).

The following example:

# test populations

! HF SVP XYZFile

%plots Format gOpenMol_bin

MO("CO-4.plt",4,0);

MO("CO-8.plt",8,0);

end

* xyz 0 1

C 0 0 0

O 0 0 1.13

*

produces (after running it through gOpenMol, section 9.39.2) the following output:
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Figure 8.22: The π and π∗ orbitals of the CO molecule obtained from the interface of ORCA to
gOpenMol.

which are the textbook like π and π∗ orbitals of CO respectively. The format gOpenMol bin is the most easy

to use. The alternative format gOpenMol ascii would require you to use the gOpenMol conversion utility.

You can also plot spin densities, electron densities and natural orbitals. See section 9.39.2 for full details.

The command MO("CO-4.plt",4,0); is to be understood as follows: there is an MO to be evaluated on a

grid and the output is stored in the file CI-4.plt. It is MO four of operator 0. Operator zero is the closed-shell

RHF operator. For UHF wavefunctions operator 0 is that for spin-up and operator 1 that for spin-down. For

ROHF you should also use operator 0. There are also some alternative output formats including simple ascii

files that you can convert yourself to the desired format.

In order to use the interface to Molekel you have to choose the format Cube or Gaussian Cube which can be

read directly by molekel. Since the cube files are ASCII files you can also transfer them between platforms.

# test populations

! HF SVP XYZFile

%plots Format Cube

MO("CO-4.cube",4,0);

MO("CO-8.cube",8,0);

end

* xyz 0 1

C 0 0 0

O 0 0 1.13

*

You can now start Molekel and load (via a right mouse click) the XYZ file (or also directly the .cube file).

Then go to the surface menu, select “gaussian-cube” format and load the surface. For orbitals click the “both

signs” button and select a countour value in the “cutoff” field. The click “create surface”. The colour schemes

etc. can be adjusted at will – try it! It’s easy and produces nice pictures. Create files via the “snapshot”

feature of Molekel. Other programs can certainly also deal with Gaussian-Cube files. If you know about

another nice freeware program – please let me know!15

15 The Molekel developers ask for the following citation – please do as they ask:
MOLEKEL 4.2, P. Flukiger, H.P. Lüthi, S. Portmann, J. Weber, Swiss Center for Scientific Computing, Manno
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Figure 8.23: The π and π∗-MOs of CO as visualized by Molekel.

Another thing that may in some situations be quite helpful is the visualization of the electronic structure

in terms of localized molecular orbitals. As unitary transformations among the occupied orbitals do not

change the total wavefunction such transformations can be applied to the canonical SCF orbitals with no

change of the physical content of the SCF wavefunction. The localized orbitals correspond more closely to the

pictures of orbitals that chemists often enjoy to think about. Localized orbitals according to the Pipek-Mezey

(population-localization) scheme are quite easy to compute. For example, the following run reproduces the

calculations reported by Pipek and Mezey in their original paper for the N2O4 molecule. In the output you

will find that the localized set of MOs consists of 6 core like orbitals (one for each N and one for each O), two

distinct lone pairs on each oxygen, a σ- and a π-bonding orbital for each N-O bond and one N-N σ-bonding

orbital which corresponds in a nice way to the dominant resonance structure that one would draw for this

molecule. You will also find a file with the extension .loc in the directory where you run the calculation.

This is a standard GBW file that you can use for plotting or as input for another calculation (warning! The

localized orbitals have no well defined orbital energy. If you do use them as input for another calculation use

GuessMode=CMatrix in the [SCF] block).

#-----------------------------------------

# Localized MOs for the N2O4 molecule

#-----------------------------------------

! HF STO-3G Bohrs

%loc

LocMet PipekMezey # localization method. Choices:

# PipekMezey (=PM)

# FosterBoys (=FB)

T_Core -1000 # cutoff for core orbitals

Tol 1e-8 # conv. Tolerance (default=1e-6)

MaxIter 20 # max. no of iterations (def. 128)

end

(Switzerland), 2000-2006.
S. Portmann, H.P. Lüthi. MOLEKEL: An Interactive Molecular Graphics Tool. CHIMIA (2000), 54, 766-770.

The program appears to be maintained by Ugo Varetto at this time.
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* xyz 0 1

N 0.000000 -1.653532 0.000000

N 0.000000 1.653532 0.000000

O -2.050381 -2.530377 0.000000

O 2.050381 -2.530377 0.000000

O -2.050381 2.530377 0.000000

O 2.050381 2.530377 0.000000

*

If you have access to a version of the gennbo program from Weinhold’s group16 you can also request natural

population analysis and natural bond orbital analysis. The interface is very elementary and is invoked through

the keywords NPA and NBO respectively

# -----------------------------------------

# Test the interface to the gennbo program

# ----------------------------------------------

! HF SVP NPA XYZFile

* xyz 0 1

C 0 0 0

O 0 0 1.13

*

If you choose simple NPA then you will only obtain a natural population analysis. Choosing instead NBO the

natural bond orbital analysis will also be carried out. The program will leave a file jobname.47 on disk. This

is a valid input file for the gennbo program which can be edited to use all of the features of the gennbo

program in the stand-alone mode. Please refer to the NBO manual for further details.

8.15.2 Absorption and Fluorescence Bandshapes using ORCA ASA

Bandshape calculations are nontrivial but can be achieved with ORCA using the procedures described

in section 9.32. Starting from version 2.80, analytical TD-DFT gradients are available which make these

calculations quite fast and applicable without expert knowledge to larger molecules.

In a nutshell, let us look into the H2CO molecule. First we generate some Hessian (e.g. BP86/SV(P)). Then

we run the job that makes the input for the orca asa program. For example, let us calculate the five lowest

excited states:

16 Information about the NBO program can be found at http://nbo6.chem.wisc.edu

http://nbo6.chem.wisc.edu
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#

! aug-cc-pVDZ BHandHLYP TightSCF NMGrad

%tddft nroots 5

end

# this is ASA specific input

%rr states 1,2,3,4,5

HessName "Test-ASA-H2CO-freq.hess"

ASAInput true

end

* int 0 1

C 0 0 0 0 0 0

O 1 0 0 1.2 0 0

H 1 2 0 1.1 120 0

H 1 2 3 1.1 120 180

*

NOTE

• Functionals with somewhat more HF exchange produce better results and are not as prone to “ghost

states” as GGA functionals unfortunately are!

• Calculations can be greatly sped up by the RI or RIJCOSX approximations!

• Analytic gradients for the (D) correction and hence for double-hybrid functionals are NOT available

The ORCA run will produce a file Test-ASA-H2CO.asa.inp that is an input file for the program that

generates the various spectra. It is an ASCII file that is very similar in appearance to an ORCA input file:

#

# ASA input

#

%sim model IMDHO

method Heller

AbsRange 25000.0, 100000.0

NAbsPoints 1024

FlRange 25000.0, 100000.0

NFlPoints 1024

RRPRange 5000.0, 100000.0

NRRPPoints 1024

RRSRange 0.0, 4000.0

NRRSPoints 4000

# Excitation energies (cm**-1) for which rR spectra will
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# be calculated. Here we choose all allowed transitions

# and the position of the 0-0 band

RRSE 58960, 66884, 66602

# full width half maximum of Raman bands in rR spectra

# (cm**-1):

RRS_FWHM 10.0

AbsScaleMode Ext

FlScaleMode Rel

# RamanOrder=1 means only fundamentals. For 2 combination

# bands and first overtones are also considered, for 3

# one has second overtones etc.

RamanOrder 1

# E0 means the adiabatic excitation energy

# EV would mean the vertical one. sprints vertical

# excitations in the TD-DFT output but for the input into

# the ASA program the adiabatic excitation energies are

# estimated. A rigorous calculation would of course in-

# volve excited state geometry optimization

EnInput E0

CAR 0.800

end

# These are the calculated electronic states and transition moments

# Note that this is in the Franck-Condon approximation and thus

# the transition moments have been calculated vertically

$el_states

5

1 32200.79 100.00 0.00 -0.0000 0.0000 -0.0000

2 58960.05 100.00 0.00 0.0000 -0.4219 0.0000

3 66884.30 100.00 0.00 -0.0000 0.4405 0.0000

4 66602.64 100.00 0.00 -0.5217 -0.0000 0.0000

5 72245.42 100.00 0.00 0.0000 0.0000 0.0000

# These are the calculated vibrational frequencies for the totally

# symmetric modes. These are the only ones that contribute. They

# correspond to x, H-C-H bending, C=O stretching and C-H stretching

# respectively

$vib_freq_gs

3

1 1462.948534

2 1759.538581

3 2812.815170

# These are the calculated dimensional displacements for all

# electronic states along all of the totally symmetric modes.

$sdnc

3 5

1 2 3 4 5

1 -0.326244 0.241082 -0.132239 0.559635 0.292190

2 -1.356209 0.529823 0.438703 0.416161 0.602301

3 -0.183845 0.418242 0.267520 0.278880 0.231340
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Before the orca asa program can be invoked this file must be edited. We turn the NAbsPoints variables and

spectral ranges to the desired values and then invoke orca asa:

orca_asa Test-ASA-H2CO.asa.inp

This produces the output:

******************

* O R C A A S A *

******************

--- A program for analysis of electronic spectra ---

Reading file: Test-ASA-H2CO.asa.inp ... done

**************************************************************

* GENERAL CHARACTERISTICS OF ELECTRONIC SPECTRA *

**************************************************************

--------------------------------------------------------------------------------

State E0 EV fosc Stokes shift Effective Stokes shift

(cm**-1) (cm**-1) (cm**-1) (cm**-1)

--------------------------------------------------------------------------------

1: 30457.24 32200.79 0.000000 0.00 0.00

2: 58424.56 58960.05 0.031879 0.00 0.00

3: 66601.54 66884.30 0.039422 0.00 0.00

4: 66111.80 66602.64 0.055063 0.00 0.00

5: 71788.55 72245.42 0.000000 0.00 0.00

--------------------------------------------------------------------------------------------------

BROADENING PARAMETETRS (cm**-1)

--------------------------------------------------------------------------------------------------

Intrinsic Effective

State -------------------------- --------------------------------------------------------

Sigma FWHM

Gamma Sigma FWHM --------------------------- ---------------------------

0K 77K 298.15K 0K 77K 298.15K

--------------------------------------------------------------------------------------------------

1: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.00

2: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.00

3: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.00

4: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.00

5: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.00

Calculating absorption spectrum ...

The maximum number of grid points ... 5840

Time for absorption ... 9.569 sec (= 0.159 min)

Writing file: Test-ASA-H2CO.asa.abs.dat ... done

Writing file: Test-ASA-H2CO.asa.abs.as.dat ... done
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Generating vibrational states up to the 1-th(st) order ... done

Total number of vibrational states ... 3

Calculating rR profiles for all vibrational states up to the 1-th order

State 1 ...

The maximum number of grid points ... 6820

Resonance Raman profile is done

State 2 ...

The maximum number of grid points ... 6820

Resonance Raman profile is done

State 3 ...

The maximum number of grid points ... 6820

Resonance Raman profile is done

Writing file: Test-ASA-H2CO.asa.o1.dat... done

Writing file: Test-ASA-H2CO.asa.o1.info... done

Calculating rR spectra involving vibrational states up to the 1-th(st) order

State 1 ... done

State 2 ... done

State 3 ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.58960.dat ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.58960.stk ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.66884.dat ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.66884.stk ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.66602.dat ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.66602.stk ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.as.58960.dat ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.as.58960.stk ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66884.dat ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66884.stk ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66602.dat ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66602.stk ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.all.xyz.dat ... done

TOTAL RUN TIME: 0 days 0 hours 1 minutes 17 seconds 850 msec

The vibrationally resolved absorption spectrum looks like:
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The fluorescence spectrum of the lowest energy peak (in this case S2 which is not very realistic but for

illustrative purposes it might be enough):

The Resonance Raman excitation profiles of the three totally symmetric vibrational modes can be obtained
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as well:

The dominant enhancement occurs under the main peaks for the C=O stretching vibration which might

not be a big surprise. Higher energy excitations do enhance the C-H vibrations particularly strongly. The

resonance Raman spectra taken at the vertical excitation energies are also calculated:
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In this particular example, the dominant mode is the C=O stretching and the spectra look similar for all

excitation wavelength. However, in “real life” where one has electronically excited states of different nature,

the rR spectra also dramatically change and are then powerful fingerprints of the electronic excitation being

studied – even if the vibrational structure of the absorption band is not resolved (which is usually the case

for larger molecules).

This is a cursory example of how to use the orca asa program. It is much more powerful than described in

this section. Please refer to section 9.32 for a full description of features. The orca asa program can also

be interfaced to other electronic structure codes that deliver excited state gradients and can be used to fit

experimental data. It is thus a tool for experimentalists and theoreticians at the same time!

8.15.3 IR/Raman Spectra, Vibrational Modes and Isotope Shifts

8.15.3.1 IR Spectra

IR spectral intensities are calculated automatically in frequency runs. Thus, there is nothing to control by

the user. Consider the following job17:

! RHF STO-3G TightSCF SmallPrint

! Opt NumFreq

* xyz 0 1

C 0.000000 0.000000 -0.533905

O 0.000000 0.000000 0.682807

H 0.000000 0.926563 -1.129511

H 0.000000 -0.926563 -1.129511

*

which gives you the following output:

-----------

IR SPECTRUM

-----------

Mode freq (cm**-1) T**2 TX TY TZ

-------------------------------------------------------------------

6: 1278.77 6.157280 ( -2.481387 -0.000010 -0.000287)

7: 1395.78 29.682711 ( -0.000003 -5.448182 -0.004815)

8: 1765.08 4.180497 ( 0.000537 -0.022003 2.044508)

9: 2100.53 8.550050 ( 0.000080 0.011990 2.924022)

10: 3498.72 1.843422 ( 0.001027 -0.178764 -1.345907)

11: 3646.23 19.778426 ( 0.000035 4.446922 -0.057577)

The “Mode” indicates the number of the vibration, then the vibrational frequency follows. The value T**2 is

the square of the change of the dipole moment along a given vibrational mode in KM/mole. This number is

17 This and the following jobs in this section are of very poor quality due to the insufficient quality STO-3G basis set
(see section 8.1). However, these jobs execute very rapidly and are therefore adequate for demonstration purposes.
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directly proportional to the intensity of a given fundamental in an IR spectrum and is what is plotted by

orca mapspc.

If you want to obtain a plot of the spectrum then call the small utility program like this:

orca_mapspc Test-NumFreq-H2CO.out ir -w50

The options to the program orca mapspc are:

-wvalue : a value for the linewidth (gaussian shape, fwhm)

-x0value : start value of the spectrum in cm**-1

-x1value : end value of the spectrum in cm**-1

-nvalue : number of points to use

You get a file Test-NumFreq-H2CO.out.ir.dat which contains a listing of intensity versus wavenumber

which can be used in any graphics program for plotting. For example:

Figure 8.24: The predicted IR spectrum of the H2CO molecule using the numerical frequency rou-
tine of ORCA and the tool orca mapspc to create the spectrum.

8.15.3.2 Raman Spectra

In order to predict the Raman spectrum of a compound one has to know the derivatives of the polarizability

with respect to the normal modes. Thus, if a frequency run is combined with a polarizability calculation the

Raman spectrum will be automatically calculated too.

Consider the following example:
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! RHF STO-3G TightSCF SmallPrint

! Opt NumFreq

#

# ... turning on the polarizability calculation

# together with NumFreq automatically gives

# the Raman spectrum

#

%elprop Polar 1

end

* xyz 0 1

c 0.000000 0.000000 -0.533905

o 0.000000 0.000000 0.682807

h 0.000000 0.926563 -1.129511

h 0.000000 -0.926563 -1.129511

*

The output consists of the Raman activity (in Å
4
/AMU) [195] and the Raman depolarization ratios:

--------------

RAMAN SPECTRUM

--------------

Mode freq (cm**-1) Activity Depolarization

--------------------------------------------------

6: 1278.77 0.007349 0.749649

7: 1395.78 3.020010 0.749997

8: 1765.08 16.366586 0.708084

9: 2100.53 6.696490 0.075444

10: 3498.72 38.650431 0.186962

11: 3646.23 24.528483 0.748312

The polarizability derivatives and the Raman intensities will also be added to the .hess file. This allows the

effect of isotope substitutions on the Raman intensities to be calculated.

As with IR spectra you can get a plot of the Raman spectrum using:

orca_mapspc Test-NumFreq-H2CO.out raman -w50
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Figure 8.25: Calculated Raman spectrum for H2CO at the STO-3G level using the numerical fre-
quency routine of ORCA and the tool orca mapspc to create the spectrum.

NOTE:

• The Raman module will only work if the polarizabilities are calculated analytically. This means that

only those wavefunction models for which the analytical derivatives w.r.t. to external fields are available

can be used.

• Raman calculations take significantly longer than IR calculations due to the extra effort of calculating

the polarizabilities at all displaced geometries. Since the latter step is computationally as expensive as

the solution of the SCF equations you have to accept an increase in computer time by a factor of ≈ 2.

8.15.3.3 Resonance Raman Spectra

Resonance Raman spectra and excitation profiles can be predicted or fitted using the procedures described in

section 9.32. An example for obtaining the necessary orca asa input is described in section 8.15.2.

8.15.3.4 NRVS Spectra

If you happen to have iron in your molecule and you want to calculate the nuclear resonant vibrational

scattering spectrum you simply have to run orca vib program on your .hess file and you will get an output

that can be used together with orca mapspc program for vizualisation.
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orca_vib MyJob.hess >MyJob.vib.out

orca_mapspc MyJob.vib.out NRVS

The calculations are usually pretty good in conjunction with DFT frequency calculations. For example,

take the ferric-azide complex from the second reference listed below. As for the calculation of resonance

Raman spectra described in section 9.32 the DFT values are usually excellent starting points for least-square

refinements.

Figure 8.26: Experimental (a, black curve), fitted (a, red) and simulated (b) NRVS spectrum of
the Fe(III)-azide complex obtained at the BP86/TZVP level (T = 20 K). Bar graphs
represent the corresponding intensities of the individual vibrational transitions. The
blue curve represents the fitted spectrum with a background line removed.

Both theory and implementation have been described in detail. [196,197] Here we illustrate the procedure for

getting such plots using a Fe(SH)
1−
4 model complex as an example. One first optimizes and computes the

vibrations of the complex given in one step with the following input (calculations are usually pretty good in

conjunction with DFT frequency calculations and the BP86 functional).

! UKS BP86 def2-TZVP def2/J TightSCF SmallPrint

! Opt Freq

*xyz -1 6

Fe -0.115452 0.019090 -0.059506

S -0.115452 1.781846 1.465006

S -0.115452 -1.743665 1.462801

S -1.908178 -0.072782 -1.518702

S 1.560523 0.154286 -1.656664

H 0.410700 2.760449 0.687716

H -0.674147 -2.708278 0.690223
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H -2.905212 0.345589 -0.699907

H 2.647892 -0.211681 -0.932926

*

From this calculations we get numerous files from which the Hessian file is of importance here. Now we

run the orca vib program on the .hess file and get an output that can be used further with orca mapspc

program to prepare raw data for visualizations:

orca vib Test-FeIIISH4-NumFreq.hess > Test-FeIIISH4-NumFreq.out

orca mapspc Test-FeIIISH4-NumFreq.out NRVS

The latter command creates a file Test-FeIIISH4-NumFreq.nrvs.dat which can be used directly for visual-

ization. The text-file contains data in xy-format which allows the NRVS intensity (y, in atomic units) to be

plotted as a function of the phonon energy (x, in cm−1).

From the given run we obtain the NRVS plot below in which we compare with the theoretical IR spectrum on

the same scale. NRVS reports the Doppler broadening of the Moessbauer signal due to resonant scattering of

phonons (vibrations) dominated by the Fe nuclei movements. This are a valuable addition to IR spectra

where the corresponding vibrations might have very small intensity.

8.15.3.5 Animation of Vibrational Modes

In order to animate vibrational modes and to create “arrow-pictures” you have to use the small utility

program orca pltvib. This program uses an ORCA output file and creates a series of files that can be used

together with any visualization program (here: ChemCraft).

For example:

# NAME = Test-NumFreq-H2CO.inp

! RHF STO-3G TightSCF SmallPrint

! Opt NumFreq

*xyz 0 1

C 0.000000 0.000000 -0.533905

O 0.000000 0.000000 0.682807

H 0.000000 0.926563 -1.129511

H 0.000000 -0.926563 -1.129511

*

From this we get vibrations and transition probabilities (Test-NumFreq-H2CO.out)
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Figure 8.27: Theoretical IR spectrum with the shapes of vibrations dominating the IR intensity
and NRVS scattering

Mode freq (cm**-1) T**2 TX TY TZ

-------------------------------------------------------------------

6: 1284.36 6.411244 ( -2.532043 -0.000000 -0.000000)

7: 1397.40 29.590615 ( 0.000000 -5.439726 0.000000)

8: 1766.60 4.188394 ( -0.000000 -0.000000 2.046557)

9: 2099.20 8.429963 ( -0.000000 -0.000000 2.903440)

10: 3499.11 1.792263 ( -0.000000 -0.000000 -1.338754)

11: 3645.24 19.984096 ( 0.000000 -4.470357 0.000000)

The Test-NumFreq-H2CO.out file can be directly opened with ChemCraft which allows immediate observation

of any vibrations and preparing plots as shown.
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Figure 8.28: Nuclear vibrations for H2CO with the shape of each vibration and its frequency
indicated

We can infer for this example, that say the vibration 1397 cm−1 is a kind of wagging motion of the hydrogen

atoms.

It might be that you can prefer to animate vibrations with the (free) program gOpenMol package; there is a

small utility program orca pltvib. This program uses an ORCA output file and creates a series of files that

can be used together with gOpenMol. You can execute orca pltvib in the following way:

Use:

orca_pltvib Test-NumFreq-H2CO.out [list of vibrations or all]

For example, let us see what the strong mode at 1397 cm−1 corresponds to:

orca_pltvib Test-NumFreq-H2CO.out 7

you will get a file Test-NumFreq-H2CO.out.v007.xyz. Then start up the gOpenMol program and read this

file as a Import->coords in Xmol format. After this go to the Trajectory->Main menu and import the

file again (again in Xmol format). Now you are able to animate the vibration. In order to create a printable

picture press Dismiss and then type lulVectorDemo {4 0.1 black} into the gOpenMol command line

window. What you get is:

which indicates that the vibration is a kind of wagging motion of the hydrogens. (I am sure that you can get

nicer arrows with some playing around with gOpenMol). At the gOpenMol homepage you can find a very

nice tutorial to teach you some essential visualization tricks.
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Figure 8.29: The 1395 cm−1 mode of the H2CO molecule as obtained from the interface of ORCA
to gOpenMol and the orca pltvib tool to create the animation file.

8.15.3.6 Isotope Shifts

Suppose you have calculated a hessian as in the example discussed above and that you want to predict the

effect of substitution with 18O. It would be very bad practice to recalculate the hessian to do this since the

calculation is expensive and the hessian itself is independent of the masses. In this case you can use the small

utility program orca vib. First of all you have to look at the .hess file and edit the masses given there by

hand. For the example given above the .hess file looks like:

$orca_hessian_file

......................

$hessian

12

... the cartesian hessian in Eh/bohr**"

$vibrational_frequencies

12

...the vibrational frequencies (in cm-1) as in the output

$normal_modes

12 12

... the vibrational normal modes in Cartesian displacements

#

# The atoms: label mass x y z

# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

# Here we have changes 15.999 for oxygen into

# 18.0 in order to see the oxygen 18 effects

# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

$atoms

4

C 12.0110 0.000000 0.000000 -1.149571

O 18.0000 -0.000000 -0.000000 1.149695

H 1.0080 -0.000000 1.750696 -2.275041

H 1.0080 -0.000000 -1.750696 -2.275041

$actual_temperature

0.000000

$dipole_derivatives
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12

... the dipole derivatives (Cartesian displacements)

#

# The IR spectrum

# wavenumber T**2 TX TY TY

#

$ir_spectrum

12

... the IR intensities

if you now call:

orca_vib Test-NumFreq-H2CO.hess

you get then printed to standard out the IR spectrum, the vibrational frequencies, the modes, etc. Let us

compare the output of this calculation with the original frequency calculation:

H2C16O H2CO18O Shift

6: 1284.36 1282.82 cm**-1 -1.54

7: 1397.40 1391.74 cm**-1 -5.66

8: 1766.60 1751.62 cm**-1 -14.98

9: 2099.20 2061.49 cm**-1 -37.71

10: 3499.11 3499.02 cm**-1 -0.09

11: 3645.24 3645.24 cm**-1 -0.00

The calculated isotope shifts greatly aid in the identification of vibrations, the interpretation of experiments

and in the judgement of the reliability of the calculated vibrational normal modes. A different way of

analyzing these isotope shifts is to plot the two predicted spectra and then subtract them from another. This

will give you derivative shaped peaks with a zero crossing at the position of the isotope sensitive modes.

8.15.4 Thermochemistry

The second thing that you get automatically as the result of a frequency calculation is a thermochemical

analysis based on ideal gas statistical mechanics. This can be used to study heats of formation, dissociation

energies and similar thermochemical properties. To correct for the breakdown of the harmonic oscillator

approximation for low frequencies, entropic contributions to the free energies are computed, by default, using

the Quasi-RRHO approach of Grimme. [198] To switch-off the Quasi-RRHO method, use:

%freq QuasiRRHO false

CutOffFreq 35

end
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Where the CutOffFreq parameter controls the cut-off for the low frequencies mode (excluded from the

calculation of the thermochemical properties).

Note that the rotational contribution to the entropy is calculated using the expressions given by Herzberg [199]

including the symmetry number obtained from the order of the point group. 18 While this is a good

approximation, one might want to modify the symmetry number or use a different expression [200]. For this

purpose, the rotational constants (in cm−1) of the molecule are also given in the thermochemistry output.

For example let us calculate a number for the oxygen-oygen dissociation energy in the H2O2 molecule. First

run the following job:

#

# Calculate a value for the O-O bond strength in H2O2

#

! RKS B3LYP TZVP TightSCF SmallPrint Grid4 NoFinalgrid

! Opt NumFreq

! bohrs

* xyz 0 1

O -1.396288 -0.075107 0.052125

O 1.396289 -0.016261 -0.089970

H -1.775703 1.309756 -1.111179

H 1.775687 0.140443 1.711854

*

#

# Now the OH radical job

#

$new_job

! UKS B3LYP TZVP TightSCF SmallPrint Grid4 NoFinalgrid

! Opt NumFreq PModel

! bohrs

* xyz 0 2

O -1.396288 -0.075107 0.052125

H -1.775703 1.309756 -1.111179

*

The first job gives you the following output following the frequency calculation:

--------------------------

THERMOCHEMISTRY AT 298.15K

--------------------------

18the corresponding equation for the partition function (assuming sufficiently high temperatures) of a linear molecule

is Qint = kT
σhcB

and for non-linear molecules Qint = 1
σ

√
π

ABC
( kT
hc

)3. A, B and C are the corresponding rotational

constants, σ is the symmetry number. If you want to choose a different symmetry number, ORCA also provides a
table with the values for this entropy contribution for other symmetry numbers. Herzberg reports the following
symmetry numbers for the point groups C1,Ci,Cs: 1; C2,C2v, C2h: 2; C3,C3v,C3h: 3; C4,C4v,C4h: 4;C6, C6v, C6h:
6; D2, D2d, D2h =Vh: 4; D3, D3d, D3h: 6; D4, D4d, D4h: 8; D6, D6d, D6h: 12; S6: 3; C∞v: 1; D∞h: 2;T,Td: 12;
Oh: 24.
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Temperature ... 298.15 K

Pressure ... 1.00 atm

Total Mass ... 34.01 AMU

Throughout the following assumptions are being made:

(1) The electronic state is orbitally nondegenerate

(2) There are no thermally accessible electronically excited states

(3) Hindered rotations indicated by low frequency modes are not

treated as such but are treated as vibrations and this may

cause some error

(4) All equations used are the standard statistical mechanics

equations for an ideal gas

(5) All vibrations are strictly harmonic

------------

INNER ENERGY

------------

The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans)

E(el) - is the total energy from the electronic structure calculation

= E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc)

E(ZPE) - the zero temperature vibrational energy from the frequency calculation

E(vib) - the finite temperature correction to E(ZPE) due to population

of excited vibrational states

E(rot) - is the rotational thermal energy

E(trans)- is the translational thermal energy

Summary of contributions to the inner energy U:

Electronic energy ... -151.54452527 Eh

Zero point energy ... 0.02624039 Eh 16.47 kcal/mol

Thermal vibrational correction ... 0.00044174 Eh 0.28 kcal/mol

Thermal rotational correction ... 0.00141627 Eh 0.89 kcal/mol

Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol

-----------------------------------------------------------------------

Total thermal energy -151.51501060 Eh

Summary of corrections to the electronic energy:

(perhaps to be used in another calculation)

Total thermal correction 0.00327428 Eh 2.05 kcal/mol

Non-thermal (ZPE) correction 0.02624039 Eh 16.47 kcal/mol

-----------------------------------------------------------------------

Total correction 0.02951468 Eh 18.52 kcal/mol

--------

ENTHALPY

--------

The enthalpy is H = U + kB*T

kB is Boltzmann’s constant

Total free energy ... -151.51501060 Eh

Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol

-----------------------------------------------------------------------

Total Enthalpy ... -151.51406639 Eh
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-------

ENTROPY

-------

The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))

S(el) - electronic entropy

S(vib) - vibrational entropy

S(rot) - rotational entropy

S(trans)- translational entropy

The entropies will be listed as multiplied by the temperature to get

units of energy

Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol

Vibrational entropy ... 0.00066248 Eh 0.42 kcal/mol

Rotational entropy ... 0.00752687 Eh 4.72 kcal/mol

Translational entropy ... 0.01734394 Eh 10.88 kcal/mol

-----------------------------------------------------------------------

Final entropy term ... 0.02553329 Eh 16.02 kcal/mol

-------------------

GIBBS FREE ENTHALPY

-------------------

The Gibbs free enthalpy is G = H - T*S

Total enthalpy ... -151.51406639 Eh

Total entropy correction ... -0.02553329 Eh -16.02 kcal/mol

-----------------------------------------------------------------------

Final Gibbs free enthalpy ... -151.53959968 Eh

For completeness - the Gibbs free enthalpy minus the electronic energy

G-E(el) ... 0.00492559 Eh 3.09 kcal/mol

And similarly for the OH-radical job.

------------

INNER ENERGY

------------

Summary of contributions to the inner energy U:

Electronic energy ... -75.73288320 Eh

Zero point energy ... 0.00838485 Eh 5.26 kcal/mol

Thermal vibrational correction ... 0.00000000 Eh 0.00 kcal/mol

Thermal rotational correction ... 0.00094418 Eh 0.59 kcal/mol

Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol

-----------------------------------------------------------------------

Total thermal energy -75.72213790 Eh

Summary of corrections to the electronic energy:

(perhaps to be used in another calculation)

Total thermal correction 0.00236045 Eh 1.48 kcal/mol
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Non-thermal (ZPE) correction 0.00838485 Eh 5.26 kcal/mol

-----------------------------------------------------------------------

Total correction 0.01074531 Eh 6.74 kcal/mol

--------

ENTHALPY

--------

The enthalpy is H = U + kB*T

kB is Boltzmann’s constant

Total free energy ... -75.72213790 Eh

Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol

-----------------------------------------------------------------------

Total Enthalpy ... -75.72119369 Eh

-------

ENTROPY

-------

Electronic entropy ... 0.00065446 Eh 0.41 kcal/mol

Vibrational entropy ... 0.00000000 Eh 0.00 kcal/mol

Rotational entropy ... 0.00256479 Eh 1.61 kcal/mol

Translational entropy ... 0.01636225 Eh 10.27 kcal/mol

-----------------------------------------------------------------------

Final entropy term ... 0.01958150 Eh 12.29 kcal/mol

-------------------

GIBBS FREE ENTHALPY

-------------------

The Gibbs free enthalpy is G = H - T*S

Total enthalpy ... -75.72119369 Eh

Total entropy correction ... -0.01958150 Eh -12.29 kcal/mol

-----------------------------------------------------------------------

Final Gibbs free enthalpy ... -75.74077518 Eh

For completeness - the Gibbs free enthalpy minus the electronic energy

G-E(el) ... -0.00789198 Eh -4.95 kcal/mol

Let us calculate the free energy change for the reaction:

H2O2 -> 2 OH

The individual energy terms are: 2OH(Eh) - H2O(Eh) kcal/mol

Electronic Energy: (-151.465766)-(-151.544525) 49.42

Zero-point Energy: (0.016770)-(0.026240) -5.94
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Thermal Correction(translation/rotation): (0.00472)-(0.002832) 1.18

Thermal Enthalpy Correction: (0.001888)-(0.000944) 0.59

Entropy: -(0.039163)-(-0.025533) -8.55

Final G 36.70

Thus, both the zero-point energy and the entropy terms both contribute significantly to the total free energy

change of the reaction. The entropy term is favoring the reaction due to the emergence of new translational

and rotational degrees of freedom. The zero-point correction is also favoring the reaction since the zero-point

vibrational energy of the O-O bond is lost. The thermal correction and the enthalpy correction are both

small.

TIPs:

• You can run the thermochemistry calculations at several user defined temperatures by providing the

program with a list of temperatures:

%freq Temp 290, 295, 300

end

• Once a Hessian is available you can rerun the thermochemistry analysis at several user defined

temperatures by providing the keyword PrintThermoChem and providing the name of the Hessian file:

! PrintThermoChem

%geom

inhessname "FreqJob.hess" # default: job-basename.hess

end

%freq Temp 290, 295, 300

end

8.15.5 Electrical Properties

A few basic electric properties can be calculated in ORCA although this has never been a focal point of

development. The properties can be accessed straightforwardly through the %elprop block:

! RKS B3LYP SVP SmallPrint TightSCF Grid4

%elprop Dipole true

Quadrupole True

Polar 1 # analytic polarizability through CP-SCF

# possible for SCF runs (HF and DFT)

# = 3: fully numeric

end

* int 0 1
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C 0 0 0 0 0 0

H 1 0 0 1.09 109.4712 0

H 1 2 0 1.09 109.4712 0

H 1 2 3 1.09 109.4712 120

H 1 2 3 1.09 109.4712 240

*

The polarizability is calculated analytically through solution of the coupled-perturbed SCF equations for HF

and DFT runs. For MP2 one can differentiate the analytical dipole moment calculated with relaxed densities.

For other correlation methods only a fully numeric approach is possible.

-------------------------

THE POLARIZABILITY TENSOR

-------------------------

The raw cartesian tensor (atomic units):

12.85800 -0.00001 -0.00000

-0.00001 12.85797 -0.00000

-0.00000 -0.00000 12.85794

diagonalized tensor:

12.85794 12.85797 12.85801

0.00022 -0.24634 0.96918

0.00063 -0.96918 -0.24634

1.00000 0.00067 -0.00005

Isotropic polarizability : 12.85797

As expected the polarizability tensor is isotropic.

The following jobs demonstrate the numeric and analytic calculations of the polarizability:

# ---------------------------------------------

# Numerical calculation of the polarizability

# ---------------------------------------------

! UKS B3LYP/G SVP VeryTightSCF

%elprop Polar 3

EField 1e-5

end

* int 1 2

C 0 0 0 0 0 0

O 1 0 0 1.1105 0 0

*

$new_job

# ---------------------------------------------

# Analytical calculation of the polarizability
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# ---------------------------------------------

! UKS B3LYP/G SVP VeryTightSCF

%elprop Polar 1

Tol 1e-7

end

* int 1 2

C 0 0 0 0 0 0

O 1 0 0 1.1105 0 0

*

Here the polarizability of CO+ is calculated twice – first numerically using a finite field increment of 10−5 au

and then analytically using the CP-SCF method. In general the analytical method is much more efficient,

especially for increasing molecular sizes.

At the MP2 level, polarizabilities can currently be calculated analytically in all-electron calculations, but

with frozen core orbitals the dipole moment has got to be differentiated numerically in order to obtain the

polarizability tensor. This will in general require tight SCF converge in order to not get too much numerical

noise in the second derivative. Also, you should experiment with the finite field increment in the numerical

differentiation process. For example consider the following simple job:

! RHF MP2 SVP VeryTightSCF

%elprop Polar 2

EField 1e-4

end

* int 0 1

C 0 0 0 0 0 0

O 1 0 0 1.130 0 0

*

In a similar way, polarizability calculations are possible with CASSCF. For other correlation methods, where

not even response densities are available, only a fully numeric approach (Polar=3) is possible and requires

obnoxiously tight convergence.

Note that polarizability calculations have higher demands on basis sets. A rather nice basis set for this

property is the Sadlej one (see 9.4.1).

8.15.6 NMR Chemical Shifts and Spin Spin Coupling Constants

NMR chemical shifts at the HF and DFT (standard GGA and hybrid functionals) as well as the RI-MP2 and

double-hybrid DFT (see section 9.36.3.5) levels can be obtained from the EPR/NMR module of ORCA. For

the calculation of the NMR shielding tensor the program utilizes Gauge Including Atomic Orbitals (GIAOs -

sometimes also refered to as London orbitals). [201–203] In this approach, field dependent basis functions are
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introduced, which minimizes the gauge origin dependence and ensures rapid convergence of the results with

the one electron basis set. [204]

The use of the chemical shift module is simple:

# Ethanol - Calculation of the NMR chemical shieldings at the HF/SVP level of theory

! RHF SVP def2/JK Bohrs NMR

* xyz 0 1

C -1.22692181 0.24709455 -0.00000000

C -0.01354839 -0.54677253 0.00000000

H -2.09280406 -0.41333631 0.00000000

H -1.24962478 0.87541936 -0.88916500

H -1.24962478 0.87541936 0.88916500

O 1.09961824 0.30226226 -0.00000000

H 0.00915178 -1.17509696 0.88916500

H 0.00915178 -1.17509696 -0.88916500

H 1.89207683 -0.21621566 0.00000000

*

The output for the shieldings contains detailed information about the para- and diamagnetic contribution,

the orientation of the tensor, the eigenvalues, its isotropic part etc. For each atom, an output block with this

information is given :

--------------

Nucleus 0C :

--------------

Diamagnetic contribution to the shielding tensor (ppm) :

209.678 -10.541 -0.000

-26.566 215.778 0.000

-0.000 0.000 200.386

Paramagnetic contribution to the shielding tensor (ppm):

59.273 18.302 0.000

13.380 6.063 -0.000

0.000 -0.000 -2.770

Total shielding tensor (ppm):

268.951 7.760 -0.000

-13.185 221.841 0.000

0.000 -0.000 197.615

Diagonalized sT*s matrix:

sDSO 200.386 214.435 211.021 iso= 208.614

sPSO -2.770 7.271 58.064 iso= 20.855

--------------- --------------- ---------------

Total 197.615 221.707 269.085 iso= 229.469
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Note that all units are given in ppm and the chemical shieldings given are absolute shieldings (see below). At

the end of the atom blocks, a summary is given with the isotropic shieldings and the anisotropy [205] for

each nucleus:

Nucleus Element Isotropic Anisotropy

------- ------- ------------ ------------

0 C 229.469 59.424

1 C 227.615 62.882

2 H 55.997 12.498

3 H 55.445 15.254

4 H 55.445 15.254

5 O 334.100 110.659

6 H 47.326 27.102

7 H 47.326 27.102

8 H 64.238 32.111

Thus, the absolute, isotropic shielding for the 13C nuclei are predicted to be 229.5 and 227.6 ppm and for
17O it is 334.1 ppm. While basis set convergence using GIAOs is rapid and smooth, it is still recommended

to do NMR calculations with basis sets including tight exponents. However, TZVPP or QZVP should be

sufficient in most cases. [206,207]

An important thing to note is that in order to compare to experiment, a standard molecule for the type of

nucleus of interest has to be chosen. In experiment, NMR chemical shifts are usually determined relative to a

standard, for example either CH4 or TMS for proton shifts. Hence, the shieldings for the molecule of interest

and a given standard molecule are calculated, and the relative shieldigs are obtained by subtraction of the

reference value from the computed value. It is of course important that the reference and target calculations

have been done with the same basis set and functional. This also helps to benefit from error cancellation if

the standard is chosen appropriately (one option is even to consider an “internal standard” - that is to use

for example the 13C shielding of a methyl group inside the compound of interest as reference).

Let us consider an example - propionic acid (CH3-CH2COOH). In databases like the AIST (http://sdbs.

db.aist.go.jp) the 13C spectrum in CDCl3 can be found. The chemical shifts are given as δ1 = 8.9 ppm,

δ2 = 27.6 ppm, δ3 = 181.5 ppm. While intuition already tells us that the carbon of the carboxylic acid group

should be shielded the least and hence shifted to lower fields (larger δ values), let’s look at what calculations

at the HF, BP86 and B3LYP level of theory using the SVP and the TZVPP basis sets yield:

method σ1 σ2 σ3

HF/SVP 191.7 176.6 23.7
HF/TZVPP 183.5 167.1 9.7

B86/SVP 181.9 165.8 26.5
B86/TZVPP 174.7 155.5 7.6
B3LYP/SVP 181.8 165.8 22.9

B3LYP/TZVPP 173.9 155.0 2.9

Looking at these results, we can observe several things - first of all, the dramatic effect of using too small

basis sets, which yields differences of more than 10 ppm. Second, the results obviously change a lot upon

inclusion of electron correlation by DFT and are functional dependent. Last but not least, these values have

http://sdbs.db.aist.go.jp
http://sdbs.db.aist.go.jp
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nothing in common with the experimental ones (they change in the wrong order), as the calculation yields

absolute shieldings like in the table above, but the experimental ones are relative shifts, in this case relative

to TMS.

In order to obtain the relative shifts, we calculate the shieldings σTMS of the standard molecule (TMS

HF/TZVPP: 194.1 ppm, BP86/TZVPP: 184.8 ppm, B3LYP/TZVPP: 184.3 ppm) and by using δmol =

σref − σmol we can evaluate the relative chemical shieldings (in ppm) and directly compare to experiment:

method δ1 δ2 δ3

HF/TZVPP 10.6 27.0 184.4
B86/TZVPP 10.1 29.3 177.2

B3LYP/TZVPP 10.4 29.3 181.4
Exp. 8.9 27.6 181.5

A few notes on the GIAO implementation in ORCA are in order. The use of GIAO’s lead to some fairly

complex molecular one- and two-electron integrals and a number of extra terms on the right hand side of the

coupled-perturbed SCF equations. These contributions can be time consuming to calculate. In the present

ORCA implementation the four-center two-electron GIAO integrals are fairly slow. Hence, we recommend

to only use them for reference type calculations on small molecules. A variety of approximations were

implemented and tested. [208] The most satisfactory of these approximations is the RI-JK approximation.

Hence, it has presently been made the default. This means, that - if you follow the defaults - you have to

provide an auxiliary basis set, even if the SCF calculation is done without any approximation. Please note

that the scaling of RIJK is the same as in the SCF, e.g. fourth power of the system size with a small prefactor.

Hence, for large molecules, these calculations will be time consuming. An alternative for large systems is

the RIJCOSX approximations, which has more favorable scaling. However, the default COSX grids used for

energy calculations are not sufficiently accurate for chemical shifts and !GridX6 NoFinalGridX or !GridX8

NoFinalGridX are recommended to achieve the same accuracy as with the RIJK approximation. The

approximation can be controlled using the GIAO 2el keyword in the eprnmr input block (see section 9.36.3.

It is also emphasized that the user can finely control for which nuclei the shifts are calculated. This works

in exactly the same way as for the hyperfine and quadrupole couplings described in the next section. For

example:

! B3LYP def2-TZVP def2/JK TightSCF

* int 0 1

C 0 0 0 0 0 0

C 1 0 0 1.35 0 0

H 1 2 0 1.1 120 0

H 1 2 3 1.1 120 180

H 2 1 3 1.1 120 0

H 2 1 3 1.1 120 180

*

%eprnmr

Ori = GIAO
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Nuclei = all C { shift }

Nuclei = all H { shift }

end

NMR chemical shifts are also implemented in combination with implicit solvent models, hence the NMR

keyword can be combined with the cpcm input block. Note that for calculations including implicit solvent, it

is highly recommended to used geometries that have also been obtained by optimizing the geometry including

the implicit solvent model.

The indirect spin spin coupling constants observed in NMR spectra of molecules in solution consist of four

contributions: The diamagnetic spin orbit term:

HDSO =
1

2

∑
ikl

( ~Mk × ~rik)( ~Ml × ~ril)
r3
ik r

3
il

(8.12)

The paramagnetic spin orbit term:

HPSO =
∑
ik

~Mk
~lik

r3
ik

(8.13)

The Fermi contact term:

ĤFC =
8 π

3

∑
ik

δ(ri − rk) mk (8.14)

And the spin dipole term:

ĤSD =
∑
ik

mT
k

3 rik r T
ik − r2

ik

r5
ik

si (8.15)

all contributions can be computed at the HF and DFT level of theory using ORCA. For this purpose, the

keyword “ssall” has to be invoked in the eprnmr input block:

!RHF def2-SVP

*xyz 0 1

O 0.00000 0.00000 0.11779

H 0.00000 0.75545 -0.47116

H 0.00000 -0.75545 -0.47116

*

%eprnmr

Nuclei = all O { ssall }

Nuclei = all H { ssall }

end

Results will be given in Hz. Note that the default isotopes used might not be the ones desired for the

calculation of NMR properties, so it is recommended to define the corresponding isotopes using the “ist” flag.
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Furthermore, there is the possibility to restrict the calculation of spin spin coupling constants to couplings of

nuclei within a certain radius (in Ångstrom) using the “SpinSpinRThres” keyword. Here is another example

illustrating both options:

!RHF STO-3G conv

* xyz 0 1

C -1.226922 0.247095 -0.000000

C -0.013548 -0.546773 0.000000

H -2.092804 -0.413336 0.000000

H -1.249625 0.875419 -0.889165

H -1.249625 0.875419 0.889165

O 1.099618 0.302262 -0.000000

H 0.009152 -1.175097 0.889165

H 0.009152 -1.175097 -0.889165

H 1.892077 -0.216216 0.000000

*

%eprnmr nuclei = all C { ssall, ist = 13 };

nuclei = all H { ssall, ist = 1 };

nuclei = all O { ssall, ist = 17 };

SpinSpinRThresh 6.0

end

8.15.7 Hyperfine and Quadrupole Couplings

Hyperfine and quadrupole couplings can be obtained from the EPR/NMR module of ORCA. Since there

may be several nuclei that you might be interested in the input is relatively sophisticated.

An example how to calculate the hyperfine and field gradient tensors for the CN radical is given below:

! UKS PBE0 def2-MSVP SmallPrint TightSCF Grid5

* int 0 2

C 0 0 0 0 0 0

N 1 0 0 1.170 0 0

*

%eprnmr Nuclei = all C { aiso, adip }

Nuclei = 2 { aiso, adip, fgrad }

end

In this example the hyperfine tensor is calculated for all carbon atoms and the nitrogen atom specified by its

number, which in this specific case is equivalent.

WARNINGS:
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• counting of atom numbers starts from 1

• All nuclei mentioned in one line will be assigned the same isotopic mass, i.e. if several nuclei are

calculated, there has to be a new line for each of them.

• You have to specify the Nuclei statement after the definition of the atomic coordinates or the program

will not figure out what is meant by “all”.

The output looks like the following. It contains similar detailed information about the individual contributions

to the hyperfine couplings, its orientation, its eigenvalues, the isotropic part and (if requested) also the

quadrupole coupling tensor.

-----------------------------------------

ELECTRIC AND MAGNETIC HYPERFINE STRUCTURE

-----------------------------------------

-----------------------------------------------------------

Nucleus 0C : A:ISTP= 13 I= 0.5 P=134.1903 MHz/au**3

Q:ISTP= 13 I= 0.5 Q= 0.0000 barn

-----------------------------------------------------------

Raw HFC matrix (all values in MHz):

------------------------------

696.2059 0.0000 0.0000

0.0000 543.3994 0.0000

0.0000 0.0000 543.3994

A(FC) 594.3349 594.3349 594.3349

A(SD) -50.9355 -50.9355 101.8709

---------- ---------- ----------

A(Tot) 543.3994 543.3994 696.2059 A(iso)= 594.3349

Orientation:

X 0.0000000 -0.0000000 -1.0000000

Y -0.8457581 0.5335666 -0.0000000

Z 0.5335666 0.8457581 -0.0000000

Note: Tensor is right-handed

-----------------------------------------------------------

Nucleus 1N : A:ISTP= 14 I= 1.0 P= 38.5677 MHz/au**3

Q:ISTP= 14 I= 1.0 Q= 0.0204 barn

-----------------------------------------------------------

Raw HFC matrix (all values in MHz):

------------------------------

13.2269 -0.0000 -0.0000

-0.0000 -45.5967 -0.0000

-0.0000 -0.0000 -45.5967

A(FC) -25.9889 -25.9889 -25.9889

A(SD) 39.2157 -19.6079 -19.6079

---------- ---------- ----------

A(Tot) 13.2269 -45.5967 -45.5967 A(iso)= -25.9889

Orientation:

X 1.0000000 -0.0000000 -0.0000000

Y -0.0000000 -0.8307391 -0.5566620

Z -0.0000000 0.5566620 -0.8307391



292 8 Running Typical Calculations

Note: Tensor is right-handed

Raw EFG matrix (all values in a.u.**-3):

-0.1833 -0.0000 -0.0000

-0.0000 0.0917 0.0000

-0.0000 0.0000 0.0917

V(El) 0.6468 0.6468 -1.2936

V(Nuc) -0.5551 -0.5551 1.1103

---------- ---------- ----------

V(Tot) 0.0917 0.0917 -0.1833

Orientation:

X 0.0000000 0.0000000 1.0000000

Y -0.7809378 -0.6246088 0.0000000

Z 0.6246088 -0.7809378 0.0000000

Note: Tensor is right-handed

Quadrupole tensor eigenvalues (in MHz;Q= 0.0204 I= 1.0)

e**2qQ = -0.882 MHz

e**2qQ/(4I*(2I-1))= -0.220 MHz

eta = 0.000

NOTE: the diagonal representation of the SH term I*Q*I = e**2qQ/(4I(2I-1))*[-(1-eta),-(1+eta),2]

Another point for hyperfine calculations is that you should normally use basis sets that have more flexibility

in the core region. In the present example a double-zeta basis set was used. For accurate calculations you

need more flexible basis sets. There are several dedicated basis set for hyperfine calculations: (a) the EPR-II

basis of Barone and co-workers. It is only available for a few light atoms (H, B, C, N, O, F). It is essentially

of double-zeta plus polarization quality with added flexibility in the core region and should give reasonable

results (b) The IGLO-II and IGLO-III bases of Kutzelnigg and co-workers. They are fairly accurate but also

only available for some first and second row elements (c) the CP basis for first row transition metals which is

accurate as well. (d) General purpose HF-limit basis sets are the uncontracted Partridge basis sets. They

will probably be too expensive for routine use but are useful for calibration purposes.

For other elements ORCA does not yet have dedicated default basis sets for this situation it is very likely that

you have to tailor the basis set to your needs. If you use the statement Print[p basis] 2 in the %output

block (or PrintBasis in the simple input line) the program will print the actual basis set in input format

(for the basis block). You can then add or remove primitives, uncontract core bases etc. For example, here is

a printout of the carbon basis DZP in input format:

# Basis set for element : C

NewGTO 6

s 5

1 3623.8613000000 0.0022633312

2 544.0462100000 0.0173452633

3 123.7433800000 0.0860412011

4 34.7632090000 0.3022227208

5 10.9333330000 0.6898436475
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s 1

1 3.5744765000 1.0000000000

s 1

1 0.5748324500 1.0000000000

s 1

1 0.1730364000 1.0000000000

p 3

1 9.4432819000 0.0570590790

2 2.0017986000 0.3134587330

3 0.5462971800 0.7599881644

p 1

1 0.1520268400 1.0000000000

d 1

1 0.8000000000 1.0000000000

end;

The “s 5”, for example, stands for the angular momentum and the number of primitives in the first basis

function. Then there follow five lines that have the number of the primitive, the exponent and the contraction

coefficient (unnormalized) in it. Remember also that when you add very steep functions you must

increase the size of the integration grid if you do DFT calculations! If you do not do that your

results will be inaccurate. You can increase the radial grid size by using IntAcc in the Method block or

for individual atoms (section 9.3.2.3 explains how to do this in detail). In the present example the changes

caused by larger basis sets in the core region and more accurate integration are relatively modest – on the

order of 3%, which is, however, still significant if you are a little puristic.

The program can also calculate the spin-orbit coupling contribution to the hyperfine coupling tensor as

described in section 9.36.3.To extract the A tensor from a oligonuclear transition metal complex, the A(iso)

value in the output is to be processed according to the method described in ref. [209].

For the calculation of HFCCs using DLPNO-CCSD it is recommended to use the tailored truncation settings

!DLPNO-HFC1 or !DLPNO-HFC2 in the simple keyword line.

If also EPR g-tensor or D-tensor calculations (see next section) are carried out in the same job, ORCA
automatically prints the orientation between the hyperfine/quadrupole couplings and the molecular g- or

D-tensor. For more information on this see section 9.40.11.

8.15.8 The EPR g-Tensor and the Zero-Field Splitting Tensor

The EPR g-tensor is a property that can be well calculated at the SCF level with ORCA through solution of

the coupled-perturbed SCF equations. Consider the following multi-job input that computes the g-tensor at

three different levels of theory:
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! UHF HF Def2-SVP TightSCF SOMF(1X)

%eprnmr gtensor true ori CenterOfElCharge

end

* int 1 2

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*

$new_job

! UKS LSD Def2-SVP RI SmallPrint PModel SOMF(1X)

%eprnmr gtensor true ori CenterOfElCharge

end

* int 1 2

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*

$new_job

! UKS BP Def2-SVP RI SmallPrint PModel SOMF(1X)

%eprnmr gtensor true ori CenterOfElCharge

end

* int 1 2

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*

The statement ori CenterOfElCharge means that the origin for this gauge-dependent property is to be

taken at the center of electronic charge. Other options can be chosen for the origin which are defined in

section 9.36.3. The SOMF(1X) defines the details of the spin-orbit-coupling operator and are explained in

section 9.36.2 (in the present case an accurate variant is specified). Other choices and additional variables

exist and are explained in detail in section 9.36.2.

The output looks like the following. It contains information on the contributions to the g-tensor (relativis-

tic mass correction, diamagnetic spin-orbit term (= gauge-correction), paramagnetic spin-orbit term (=

OZ/SOC)), the isotropic g-value and the orientation of the total tensor.

-------------------

ELECTRONIC G-MATRIX

-------------------

Diagonalized gT*g matrix (sqrt of eigenvalues taken):

2.0101862 -0.0031528 0.0000000

-0.0031529 2.0079392 0.0000000

0.0000000 0.0000000 2.0021428
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gel 2.0023193 2.0023193 2.0023193

gRMC -0.0003182 -0.0003182 -0.0003182

gDSO(tot) 0.0000725 0.0001471 0.0001485

gPSO(tot) 0.0000692 0.0035675 0.0102602

---------- ---------- ----------

g(tot) 2.0021428 2.0057157 2.0124097 iso= 2.0067561

Delta-g -0.0001765 0.0033964 0.0100905 iso= 0.0044368

Orientation:

X -0.0000000 -0.5763356 0.8172131

Y -0.0000000 -0.8172131 -0.5763356

Z 1.0000000 -0.0000000 -0.0000000

Some notes on GIAO-based g-tensor calculations:

G-tensor calculations using GIAOs are now available for the SCF-level and the RI-MP2 method. A sample

working input might look like the following:

! hf def2-tzvpp rijk nofrozencore verytightscf g-tensor

%maxcore 2000

%basis

auxjk "def2/jk"

end

%eprnmr

tol 1e-10

ori giao

end

*int 0 2

N 0 0 0 0 0 0

O 1 0 0 1.1944 0 0

O 1 2 0 1.1944 134.23 0

*

The default setting for the GIAO two-electron integrals computation is rijk, therefore even if !nori is

chosen for the SCF-procedures, an auxiliary basis set must be provided. There are other options set with

giao 2el in the %eprnmr-block which do not need an auxiliary basis set. Further information can be found

in section 9.36.3.

Concerning the computational time, for small systems, e.g. phenyl radical (41 electrons), the rijk-approximation

is good to use for the SCF-procedures as well as the GIAO two-electron integrals. Going to larger systems, e.g.

chlorophyll radical (473 electrons), the rijcosx-approximation reduces the computational time enormously.

With the COS-approximation it is advisable to use !gridx6 instead of the default grid. The output looks

just the same as for the case without GIAOs, but with additional information on the GIAO-parts.

If the total spin of the system is S >1/2 then the zero-field-splitting tensor can also be calculated and printed.

For example consider the following job on a hypothetical Mn(III)-complex.
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! UKS BP86 def2-SVP def2/J SOMF(1X)

%eprnmr DTensor ssandso

DSOC cp # qro, pk, cvw

DSS uno # direct

end

* int 1 5

Mn 0 0 0 0 0 0

O 1 0 0 2.05 0 0

O 1 2 0 2.05 90 0

O 1 2 3 2.05 90 180

O 1 2 3 2.05 180 0

F 1 2 3 1.90 90 90

F 1 2 3 1.90 90 270

H 2 1 6 1.00 127 0

H 2 1 6 1.00 127 180

H 3 1 6 1.00 127 0

H 3 1 6 1.00 127 180

H 4 1 6 1.00 127 0

H 4 1 6 1.00 127 180

H 5 1 6 1.00 127 0

H 5 1 6 1.00 127 180

*

The output documents the individual contributions to the D-tensor which also contains (unlike the g-tensor)

contributions from spin-flip terms.

Some explanation must be provided:

• The present implementation in ORCA is valid for HF, DFT and hybrid DFT.

• There are four different variants of the SOC-contribution, which shows that this is a difficult property.

We will briefly discuss the various choices.

• The QRO method is fully documented [210] and is based on a theory developed earlier. [211] The QRO

method is reasonable but somewhat simplistic and is superseded by the CP method described below.

• The Pederson-Khanna model was brought forward in 1999 from qualitative reasoning. [212] It also

contains incorrect prefactors for the spin-flip terms. We have nevertheless implemented the method

for comparison. In the original form it is only valid for local functionals. In ORCA it is extended to

hybrid functionals and HF.

• The coupled-perturbed method is a generalization of the DFT method for ZFSs; it uses revised prefactors

for the spin-flip terms and solves a set of coupled-perturbed equations for the SOC perturbation.

Therefore it is valid for hybrid functionals. It has been described in detail. [213]
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• The DSS part is an expectation value that involves the spin density of the system. In detailed calibration

work [214] it was found that the spin-unrestricted DFT methods behave somewhat erratically and that

much more accurate values were obtained from open-shell spin-restricted DFT. Therefore the “UNO”

option allows the calculation of the SS term with a restricted spin density obtained from the singly

occupied unrestricted natural orbitals.

• The DSS part contains an erratic self-interaction term for UKS/UHF wavefunction and canonical

orbitals. Thus, UNO is recommended for these types of calculations. [215] If the option DIRECT is used

nevertheless, ORCA will print a warning in the respective part of the output.

• In case that D-tensor is calculated using the correlated wave function methods such as (DLPNO-

/LPNO-)CCSD, one should not use DSS=UNO option.

8.15.9 Mössbauer Parameters

57Fe Mössbauer spectroscopy probes the transitions of the nucleus between the I = 1
2 ground state and the

I = 3
2 excited state at 14.4 keV above the ground state. The important features of the Mössbauer spectrum

are the isomer shift (δ) and the quadrupole splitting (∆EQ). An idealized spectrum is shown in Figure

8.30.

Figure 8.30: An idealized Mössbauer spectrum showing both the isomer shift, δ, and the quadrupole
splitting, ∆EQ.

The isomer shift measures the shift in the energy of the γ-ray absorption relative to a standard, usually Fe

foil. The isomer shift is sensitive to the electron density at the nucleus, and indirectly probes changes in the

bonding of the valence orbitals due to variations in covalency and 3d shielding. Thus, it can be used to probe

oxidation and spin states, and the coordination environment of the iron.

The quadrupole splitting arises from the interaction of the nuclear quadrupole moment of the excited state

with the electric field gradient at the nucleus. The former is related to the non-spherical charge distribution

in the excited state. As such it is extremely sensitive to the coordination environment and the geometry of

the complex.

Both the isomer shift and quadrupole splitting can be successfully predicted using DFT methods. The isomer

shift is directly related to the s electron density at the nucleus and can be calculated using the formula
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δ = α(ρ0 − C) + β (8.16)

where α is a constant that depends on the change in the distribution of the nuclear charge upon absorption,

and ρ0 is the electron density at the nucleus [216]. The constants α and β are usually determined via linear

regression analysis of the experimental isomer shifts versus the theoretically calculated electron density for a

series of iron compounds with various oxidation and spin states. Since the electron density depends on the

functional and basis set employed, fitting must be carried out for each combination used. A compilation of

calibration constants (α, β and C) for various methods was assembled. [217] Usually an accuracy of better

than 0.10 mm s−1 can be achieved for DFT with reasonably sized basis sets.

The quadrupole splitting is proportional to the largest component of the electric field gradient (EFG) tensor

at the iron nucleus and can be calculated using the formula:

∆EQ =
1

2
eQVzz

(
1 +

η2

3

) 1
2

(8.17)

where e is the electrical charge of an electron and Q is the nuclear quadrupole moment of Fe (approximately

0.16 barns). Vxx, Vyy and Vzz are the electric field gradient tensors and η, defined as

η =

∣∣∣∣Vxx − VyyVzz

∣∣∣∣ (8.18)

is the asymmetry parameter in a coordinate system chosen such that |Vzz| ≥ |Vyy| ≥ |Vxx|.

An example of how to calculate the electron density and quadrupole splitting of an iron center is as follows:

%eprnmr

nuclei = all Fe {fgrad, rho}
end

If the core properties basis set CP(PPP) is employed, one has to increase the radial integration accuracy for

the iron atom, for example:

%basis newgto Fe "CP(PPP)" end

end

%method

SpecialGridAtoms 26

SpecialGridIntAcc 7

end

The output file should contain the following lines, where you obtain the calculated quadrupole splitting

directly and the RHO(0) value (the electron density at the iron nucleus). To obtain the isomer shift one has

to insert the RHO(0) value into the appropriate linear equation (Eq. 8.16).
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Moessbauer quadrupole splitting parameter (proper coordinate system)

e**2qQ = -0.406 MHz = -0.035 mm/s

eta = 0.871

Delta-EQ=(1/2e**2qQ*sqrt(1+1/3*eta**2) = -0.227 MHz = -0.020 mm/s

RHO(0)= 11581.352209571 a.u.**-3 # the electron density at the Fe nucleus.

NOTE:

• Following the same procedure, Mössbauer parameters can be computed with the CASSCF wavefunction.

In case of a state-averaged CASSCF calculation, the averaged density is used in the subsequent

Mössbauer calculation.

8.15.10 Broken-Symmetry Wavefunctions and Exchange Couplings

A popular way to estimate the phenomenological parameter JAB that enters the Heisenberg–Dirac–van

Vleck Hamiltonian which parameterizes the interaction between two spin systems is the “broken-symmetry”

formalism. The phenomenological Hamiltonian is:

HHDvV = −2JAB
~SA
~SB (8.19)

It is easy to show that such a Hamiltonian leads to a “ladder” of spin states from S = SA + SB down to

S = |SA − SB|. If the parameter JAB is positive the systems “A” and “B” are said to be ferromagnetically

coupled because the highest spin-state is lowest in energy while in the case that JAB is negative the coupling

is antiferromagnetic and the lowest spin state is lowest in energy.

In the broken symmetry formalism one tries to obtain a wavefunction that breaks spatial (and spin) symmetry.

It may be thought of as a “poor man’s MC-SCF” that simulates a multideterminantal character within a

single determinant framework. Much could be said about the theoretical advantages, disadvantages, problems

and assumptions that underly this approach. Here, we only want to show how this formalism is applied

within ORCA.

For NA unpaired electrons localized on “site A” and NB unpaired electrons localized on a “site B” one can

calculate the parameter JAB from two separate spin-unrestricted SCF calculations: (a) the calculation for

the high-spin state with S = (NA+NB)
2 and (b) the “broken symmetry” calculation with MS = (NA−NB)

2

that features NA spin-up electrons that are quasi-localized on “site A” and NB spin-down electrons that are

quasi-localized on “site B”. Several formalisms exist to extract JAB: [218–223].

JAB = − (EHS − EBS)

(SA + SB)
2 (8.20)

JAB = − (EHS − EBS)

(SA + SB) (SA + SB + 1)
(8.21)

JAB = − (EHS − EBS)

〈S2〉HS − 〈S2〉BS

(8.22)
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We prefer the last definition (Eq. 8.22) because it is approximately valid over the whole coupling strength

regime while the first equation implies the weak coupling limit and the second the strong coupling limit.

In order to apply the broken symmetry formalism use:

%scf BrokenSym NA,NB

end

The program will then go through a number of steps. Essentially it computes an energy and wavefunction for

the high-spin state, localizes the orbitals and reconverges to the broken symmetry state.

CAUTION: Make sure that in your input coordinates “site A” is the site that contains the

larger number of unpaired electrons!

Most often the formalism is applied to spin coupling in transition metal complexes or metal-radical coupling

or to the calculation of the potential energy surfaces in the case of homolytic bond cleavage. In general,

hybrid DFT methods appear to give reasonable semiquantitative results for the experimentally observed

splittings.

As an example consider the following simple calculation of the singlet–triplet splitting in a stretched Li2

molecule:

#

# Example of a broken symmetry calculation

#

! UKS B3LYP/G SVP TightSCF Grid4 NoFinalGrid

%scf BrokenSym 1,1

end

* xyz 0 3

Li 0 0 0

Li 0 0 4

*

There is a second mechanism for generating broken-symmetry solutions in ORCA. This mechanism uses

the individual spin densities and is invoked with the keywords FlipSpin and FinalMs. The strategy is to

exchange the α and β spin blocks of the density on certain user-defined centers after converging the high-spin

wavefunction. With this method arbitrary spin topologies should be accessible. The use is simple:

#

# Example of a broken symmetry calculation using the "FlipSpin" feature

#

! UKS B3LYP/G SVP TightSCF Grid4 NoFinalGrid

%scf

FlipSpin 1

# Flip spin is a vector and you can give a list of atoms
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# on which you want to have the spin flipped. For example

# FlipSpin 17,38,56

# REMEMBER: counting starts at atom 0!

FinalMs 0

# The desired Ms value of the broken symmetry determinant.

# This value MUST be given since the program cannot determine it by itself.

end

* xyz 0 3

Li 0 0 0

Li 0 0 4

*

Finally, you may attempt to break the symmetry by using the SCF stability analysis feature (see Section 9.9).

The ground spin state can be obtained by diagonalizing the above spin Hamiltonian through ORCA-ECA

utility (see 9.40.13).

8.15.11 Decomposition Path of the Magnetic Exchange Coupling

The Decomposition Path ( [224,225]) is intended to extract various physical contributions to the magnetic

exchange coupling Jab between two magnetic sites A and B. Currently, it is restricted to cases where two

magnetic electrons occupy two orbitals located on two different magnetic sites.

This method is based on two model Hamiltonians, namely the Heisenberg-Dirac-von Vleck Hamiltonian:

HHDvV = −2Jab~SA~SB (8.23)

and the generalized Hubbard Hamiltonian:

HHubbard = K
(
â†A,↑â

†
B,↓â

†
A,↓â

†
B,↑ +H.c.

)
+ t
(
â†A,MS

â†B,MS
+H.c.

)
+ U

∑
i=A,B

n̂i,↑n̂i,↓ (8.24)

with K being the effective exchange integral, t the hopping integral between the two centers A and B, and U

the on-site repulsion energy. From the computational point of view, the method is based on the successive

calculations of several High Spin (HS) and Broken Symmetry (BS) determinants thanks to the Local-SCF

method (see 8.1.14).

CAUTION: The extraction of the Hubbard Hamiltonian parameters is only available for centro-

symmetric systems (Cs symmetry)!

The figure 8.31 shows a schematic representation of the method.
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Figure 8.31: Schematic representation of the Decomposition Path of Magnetic Exchange Coupling.

The starting set of orbitals is obtained from the HS state, calculated in the Restricted Open-shell formalism

(HS,RO). The two singly-occupied orbitals (SOMOs) are localized thanks to the unitary transformation

(Pipek-Mezey method) as implemented in Orca to form the so-called magnetic orbitals. The spin-flip of one

of these magnetic orbitals and the immediate calculation (all orbitals frozen) of the resulting determinant

give access to the BS energy in the Restricted Open-shell formalism (BS,RO). From the energies and S2

values of both the (HS,RO) and (BS,RO) determinants, the direct exchange J0 is easily calculated:

J0 = − EHS,RO − EBS,RO
〈S2〉HS,RO − 〈S2〉BS,RO

(8.25)

The second step only deals with the BS determinant, whose magnetic orbitals are relaxed in the field of the

frozen core (i.e., non-magnetic) orbitals to get the (BS,UFC) solution (UFC stands for Unrestricted with

Frozen Core orbitals). Using the (BS,UFC) and (HS,RO) determinants, one can extract the Kinetic Exchange

∆JKE contribution (from HHDvV ), as well as the Hubbard Hamiltonian parameters t and U .

∆JKE = − EHS,RO − EBS,UFC
〈S2〉HS,RO − 〈S2〉BS,UFC

− J0 (8.26)

|t| = (EHS,RO − EBS,UFC) +Kab√
1− 〈S2〉BS,UFC

(8.27)

U = 2
(EHS,RO − EBS,UFC) +Kab

1− 〈S2〉BS,UFC
− J0 (8.28)

Conversely, in the third step, the core orbitals are relaxed in both the (HS,RO) and (BS,UFC) determinants,

keeping the magnetic orbitals frozen. The resulting Unrestricted with Frozen Magnetic orbitals (UFM)

determinants are used to calculate the core polarization contribution ∆JCP either by

∆JCP = − EHS,UFM − EBS,UFM
〈S2〉HS,UFM − 〈S2〉BS,UMF

− J0 −∆JKE (8.29)
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from [224], or by

∆JCP =
2 (EBS,UFM − ET,UFM )

2−
(
〈S2〉BS,UFC + 〈S2〉BS,UFM

)
/2 + 〈S2〉BS,UFC

(
〈S2〉BS,UFM − 〈S2〉BS,UFC

)
/2

(8.30)

− J0 −∆JKE

from [225]. Finally, the last step of the Decomposition Path is the calculation of the BS and HS Unrestricted

determinants, as routinely obtained from standard magnetic coupling calculations.

The magnetic exchange coupling in the HDvV Hamiltonian representation is given by :

JHDvVTot = J0 + ∆JKE + ∆JCP + ∆JOther (8.31)

and for the generalized Hubbard Hamiltonian by :

JHubbardTot = K +
U −

√
U2 + 16t2

4
(8.32)

with,

K = Kab +
∆JCP

2
(8.33)

The quality of the decomposition can be assessed by comparing the ∆JOther contribution to the magnitude

of JHDvVTot .

The Decomposition Path is activated in Orca using the following input line, that needs to be added to the

(HS,RO) calculation.

%scf

DecompositionPath Effective # Effective or Strict

end

The ”Effective” option corresponds to the calculation of ”effective parameters”, obtained from the UFC and

UFM determinants, in which the subset of relaxed orbitals can mix with all the virtual ones. Conversely, the

”Strict” option corresponds to the ”strict parameters”, in which the occupied magnetic orbitals (resp. the

core orbitals) can mix with their virtual counterparts only. Each binary file of determinants is computed and

named as ”InputName.SpinState.Determinant” (for example, InputName.BS.RO for the Broken Symmetry

Restricted Open-shell determinant from the first step).

8.15.12 Natural Orbitals for Chemical Valence

In ORCA chemical bonds can be analyzed in terms of the electron density rearrangement taking place upon

bond formation. This quantity is defined as the difference between the electron density of an adduct AB

and that of the so-called “supermolecule”, obtained from the antisymmetrized product of the wavefunctions

of the non-interacting A and B fragments. This electron density difference can be analyzed by exploiting

the properties of the Natural Orbitals for Chemical Valence [226] (NOCVs), that are the eigenvectors of the

corresponding one electron density difference matrix. This analysis is available in ORCA for HF and DFT

(only for closed shell systems), as documented in Ref. [227].
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The generation of NOCVs is done in three steps.

In the first step, one has to perform single point energy calculations on the isolated fragments (A and B in

the present example) and save the corresponding .gbw files (A.gbw and B.gbw).

In the second step, one has to generate a .gbw file with the orbitals of both fragments (AB.gbw), using:

orca_mergefrag A.bgw B.gbw AB.gbw

In the third step, one has to run an SCF calculation using the orbitals in the AB.gbw file as starting guess by

using MORead and setting the EDA keyword to true in the SCF block.

! blyp def2-tzvpp verytightscf grid5 moread

%moinp "AB.gbw"

%scf

EDA true

end

*xyz 0 1

---AB coordinates---

*

The orbitals are thus properly orthogonalized and the analysis is then performed. Note that, when the NOCV

analysis is used in conjuction with DFT calculations, a very fine integration grid must be used. With the

grid5 keyword, one obtains results that are typically converged with respect to the integration grid for

standard DFT. For scalar relativistic ZORA calculations, it is advisable to set also IntAcc 6 in the %method

block. If the NOCV analysis is requested but a starting guess in not given, the analysis will be performed

with the default guess used in the SCF calculation, leading to completely different results.

A typical output of the analysis is reported the following:

-----------------------------------------------------------

ENERGY DECOMPOSITION ANALYSIS OF THE SCF INTERACTION ENERGY

-----------------------------------------------------------

Delta Total Energy (Kcal/mol) : -9.998

-----------------------------------------------------------

NOCV/ETS analysis

-----------------------------------------------------------

negative eigen. (e) positive eigen.(e) DE_k (Kcal/mol)

-0.1739401311 0.1739401311 -5.952

-0.0607716293 0.0607716293 -1.180

-0.0420733869 0.0420733869 -1.278
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-0.0288977718 0.0288977718 -0.490

-0.0207403772 0.0207403772 -0.220

-0.0192167553 0.0192167553 -0.219

-0.0126925147 0.0126925147 -0.148

-0.0077091386 0.0077091386 -0.043

-0.0064403861 0.0064403861 -0.329

-0.0042036490 0.0042036490 -0.139

-0.0000000000 0.0000000000 -0.000

Consistency Check Sum_k DE_k : -9.998

NOCV were saved in : jobname.nocv.gbw

The NOCV eigenvalues are printed alongside with the corresponding energy contributions, computed using the

Extended Transition State (ETS) method of Ziegler [226]. The NOCVs, with the corresponding eigenvalues,

are stored in a .gbw file and can be used for subsequent analyses. “Delta Total Energy” is the energy

difference between the reference (the supermolecule) and the converged SCF wavefunction. This quantity is

also called “Orbital Interaction” term in the NOCV/ETS energy decomposition scheme. In order to check if

results are at convergence with respect to the integration grid, one can compare this value with the difference

between the energy of the converged SCF wavefunction and the first step of the SCF iteration. These two

numbers should be identical.

8.16 Local Energy Decomposition

“Local Energy Decomposition” (LED) analysis [228, 229] is a tool for obtaining insights into the nature

of intermolecular interactions by decomposing the DLPNO-CCSD(T) energy into physically meaningful

contributions. For instance, this approach can be used to decompose the DLPNO-CCSD(T) interaction

energy between a pair interacting fragments, as detailed in Section 9.36.5. A useful comparison of this scheme

with alternative ways of decomposing interaction energies is reported in Ref. [227,230].

8.16.1 Closed shell LED

All that is required to obtain this decomposition in ORCA is to define the fragments and specify the !LED

keyword in the simple input line.

LED decomposes separately the reference (Hartree-Fock) and correlation parts of the DLPNO-CCSD(T)

energy. By default, the decomposition of the reference energy makes use of the RI-JK approximation (an

RIJCOSX variant, which has a much more favorable scaling for large systems, is also available, as detailed in

section 8.16.6). Hence, in order to obtain fully consistent results, the initial Hartree-Fock calculation should

be done also with the RI-JK approximation. Otherwise, there will be a slight mismatch between the SCF

energy and that obatined from the decomposition. This may be perfectly acceptable. Note that, for weakly

interacting systems, TightPNO settings are tipically recommended. As an example, the interaction of H20

with the carbene CH2 can be analyzed within the LED framework using the following input file:
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! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 1

C(1) 0.18726407287156 0.08210467619149 0.19811955853244

H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040

H(1) -0.15524644515923 1.12171178448874 0.04316776563623

O(2) -1.47509614629583 -1.29358571885374 2.29818864036820

H(2) -0.87783948760158 -0.98540169212890 1.58987042714267

H(2) -1.22399221548771 -2.20523304094991 2.47014489963764

*

The corresponding output file is reported below. Initially, the program prints information on the fragments
and the assignment of localized MOs to fragments.

===========================================================

LOCAL ENERGY DECOMPOSITION FOR DLPNO-CC METHODS

===========================================================

Maximum Iterations for the Localization .. 300

Tolerance for the Localization .. 1.00e-06

Number of fragments = 2

Fragment 1: 0 1 2

Fragment 2: 3 4 5

Populations of internal orbitals onto Fragments:

0: 1.000 0.000 assigned to fragment 1

1: 0.000 1.000 assigned to fragment 2

2: 1.022 0.009 assigned to fragment 1

3: 0.001 0.999 assigned to fragment 2

4: 0.001 0.999 assigned to fragment 2

5: 1.018 0.000 assigned to fragment 1

6: 1.019 0.000 assigned to fragment 1

7: 0.006 1.013 assigned to fragment 2

8: 0.000 1.014 assigned to fragment 2

The decomposition of the Hatree-Fock energy into intra- and inter-fragment contributions follows. It is based

on the localization of the occupied orbitals.

----------------------------------------

REFERENCE ENERGY E(0) DECOMPOSITION (Eh)

----------------------------------------

Nuclear repulsion = 28.892419005063

One electron energy = -214.312279995212 (T= 114.819509174615, V= -301.385961054225)

Two electron energy = 70.506640231355 (J= 85.289518638085, K= -14.782878406729)

----------------------

Total energy = -114.913220758794

Consistency check = -114.913220758794 (sum of intra- and inter-fragment energies)

Kinetic energy = 114.819509174615
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Potential energy = -229.732729933410

----------------------

Virial ratio = 2.000816164299

-------------------------------------------

INTRA-FRAGMENT REF. ENERGY FOR FRAGMENT 1

-------------------------------------------

Nuclear repulsion = 6.049202823988

One electron energy = -63.575289714212 (T= 38.872920776184, V= -102.448210490396)

Two electron energy = 18.683174399062 (J= 24.487167689898, K= -5.803993290836)

----------------------

Total energy = -38.842912491162

Kinetic energy = 38.872920776184

Potential energy = -77.715833267345

----------------------

Virial ratio = 1.999228041412

-------------------------------------------

INTRA-FRAGMENT REF. ENERGY FOR FRAGMENT 2

-------------------------------------------

Nuclear repulsion = 9.083186370656

One electron energy = -122.991162165397 (T= 75.946588398432, V= -198.937750563829)

Two electron energy = 37.901490344344 (J= 46.870553891525, K= -8.969063547182)

----------------------

Total energy = -76.006485450397

Kinetic energy = 75.946588398432

Potential energy = -151.953073848829

----------------------

Virial ratio = 2.000788673372

----------------------------------------------------

INTER-FRAGMENT REF. ENERGY FOR FRAGMENTs 2 AND 1

----------------------------------------------------

Nuclear repulsion = 13.760029810418

Nuclear attraction = -27.745828115603

Coulomb repulsion = 13.931797056661

----------------------

Sum of electrostatics = -0.054001248523 ( -33.886 kcal/mol)

Two electron exchange = -0.009821568712 ( -6.163 kcal/mol)

----------------------

Total REF. interaction = -0.063822817235 ( -40.049 kcal/mol)

Sum of INTRA-fragment REF. energies = -114.849397941559

Sum of INTER-fragment REF. energies = -0.063822817235

---------------------

Total REF. energy = -114.913220758794
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Afterwards, a first decomposition of the correlation energy is carried out. The different energy contributions

to the correlation energy (strong pairs, weak pairs and triples correction) are decomposed into intra- and

inter-fragment contributions. This decomposition is carried out based on the localization of the occupied

orbitals.

--------------------------------

CORRELATION ENERGY DECOMPOSITION

--------------------------------

--------------------------------------------------

INTER- vs INTRA-FRAGMENT CORRELATION ENERGIES (Eh)

--------------------------------------------------

Fragment 1 Fragment 2

---------------------- ----------------------

Intra strong pairs -0.136528879034 -0.210142256134 sum= -0.346671135168

Intra triples -0.002691240688 -0.002850590631 sum= -0.005541831319

Intra weak pairs -0.000001439607 -0.000002264429 sum= -0.000003704036

Singles contribution -0.000000000689 -0.000000008492 sum= -0.000000009181

---------------------- ----------------------

-0.139221560017 -0.212995119685 sum= -0.352216670522

Interaction correlation for Fragments 2 and 1:

--------------------------------------------------

Inter strong pairs -0.003829220162 ( -2.403 kcal/mol)

Inter triples -0.000538794378 ( -0.338 kcal/mol)

Inter weak pairs -0.000015199341 ( -0.010 kcal/mol)

----------------------

Total interaction -0.004383213881 ( -2.751 kcal/mol)

Sum of INTRA-fragment correlation energies = -0.352216670522

Sum of INTER-fragment correlation energies = -0.004383213881

---------------------

Total correlation energy = -0.356599884403

Afterwards, a summary with the decomposition of the total energy (reference energy + correlation) into intra-

and inter-fragment contributions is printed.

--------------------------------------------

INTER- vs INTRA-FRAGMENT TOTAL ENERGIES (Eh)

--------------------------------------------

Fragment 1 Fragment 2

---------------------- ----------------------

Intra REF. energy -38.842912491162 -76.006485450397 sum= -114.849397941559

Intra Correlation energy -0.139221559329 -0.212995111194 sum= -0.352216670522

---------------------- ----------------------

-38.982134050490 -76.219480561591 sum= -115.201614612081



8.16 Local Energy Decomposition 309

Interaction of Fragments 2 and 1:

-------------------------------------

Interfragment reference -0.063822817235 ( -40.049 kcal/mol)

Interfragment correlation -0.004383213881 ( -2.751 kcal/mol)

----------------------

Total interaction -0.068206031116 ( -42.800 kcal/mol)

Sum of INTRA-fragment total energies = -115.201614612081

Sum of INTER-fragment total energies = -0.068206031116

---------------------

Total energy = -115.269820643197

Hence, the decomposition reported above allows one to decompose all the components of the DLPNO-

CCSD(T) energy into intrafragment and interfragment contributions simply based on the localization of the

occupied orbitals. In order to convert the intra-fragment energy components into contributions to the binding

energy, single point energy calculations must be carried out on the isolated monomers, frozen in the geometry

they have in the adduct, and the corresponding terms must be subtracted. Note that one can also include the

geometrical deformation energy (also called “strain”) by simply computing the energy of the geometrically

relaxed fragments (see Section 9.36.5 for further information).

For the DLPNO-CCSD strong pairs, which tipically dominate the correlation energy, a more sophisticated

decomposition, based on the localization of both occupied orbitals and PNOs, is also carried out and printed.

Accordingly, the correlation energy from the strong pairs is divided into intra-fragment, dispersion and

charge transfer components. Note that, due to the charge transfer excitations, the resulting intra-fragment

contributions (shown below) differ from the ones obtained above.

-----------------------------------------

DECOMPOSITION OF CCSD STRONG PAIRS INTO

DOUBLE EXCITATION TYPES (Eh)

-----------------------------------------

Pipek-Mezey localization is used for localizing PNOs

Intra fragment contributions:

INTRA Fragment 1 -0.133803962

INTRA Fragment 2 -0.209228721

Charge transfer contributions:

Charge Transfer 1 to 2 -0.004627342

Charge Transfer 2 to 1 -0.001365625

Dispersion contributions:

Dispersion 2,1 -0.001474706

Singles contributions:

Singles energy -0.000000009

More detailed information into the terms reported above can be found in Section 9.36.5 and in Ref. [228]

All the individual double excitations contributions constituting the terms reported above can be printed
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by specifying “printlevel 3” in the mdci block. Finally, a summary with the most important terms of the

DLPNO-CCSD energy, which are tipically discussed in standard applications, is printed.

-------------------------------------------------

FINAL SUMMARY DLPNO-CCSD ENERGY DECOMPOSITION (Eh)

-------------------------------------------------

Intrafragment REF. energy:

Intra fragment 1 (REF.) -38.842912491

Intra fragment 2 (REF.) -76.006485450

Interaction of fragments 2 and 1:

Electrostatics (REF.) -0.054001249

Exchange (REF.) -0.009821569

Dispersion (strong pairs) -0.001474706

Dispersion (weak pairs) -0.000015199

Sum of non dispersive correlation terms:

Non dispersion (strong pairs) -0.349025658

Non dispersion (weak pairs) -0.000003704

Note that the “Non dispersion” terms include all the components of the correlation energy except London

dispersion. [230,231]. For the strong pairs, “Non dispersion” includes charge transfer, intrafragment double

excitations and singles contributions. For the weak pairs, it corresponds to the intrafragment correlation

contribution. In order to convert the non dispersion correlation components into contributions to the binding

energy, single point energy calculations must be carried out on the isolated monomers.

8.16.2 Example: LED analysis of intermolecular interactions

The water-carbene example from the previous section will be used to demonstrate how to analyze intermolecular

interactions between two fragments using the LED decomposition (note that all energies are given in a.u. if

not denoted otherwise). As often done in practical applications, we will be using geometries optimized at the

DFT (PBE0-D3/def2-TZVP) level of theory on which DLPNO-CCSD(T) (cc-pVDZ,TightPNO) single point

energies are computed. Not that in practice, basis sets of triple-zeta quality or larger are recommended. In

the first step, the geometries of the dimer and H2O and CH2 are optimized and DLPNO-CCSD(T) energies

are computed to yield Eoptdimer and Eoptmonomers (see Table 8.16.2). Note that for this example, we do not

include any BSSE correction. This way we obtain a binding energy of

Eint = Eoptdimer − Eoptmonomers = −115.269821 − (−39.022368− 76.241022) = −0.006431

which is -4.036 kcal/mol.
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Energy [a.u.] H2O
opt H2O

fixed CHopt
2 CHfixed

2 H2O - CH2

EHF -76.026658 -76.025806 -38.881041 -38.881079 -114.913221
Ec CCSD -0.211431 -0.212046 -0.138454 -0.137987 -0.350519
Ec (T) -0.002933 -0.002969 -0.002873 -0.002864 -0.006081
Etot -76.241022 -76.240820 -39.022368 -39.021931 -115.269821

Table 8.15: Energies of the H2O-CH2 example for illustrating how the different LED contributions

are evaluated. The superscript opt denotes energies of optimized structures, fixed denotes
energies of isolated fragments in the dimer structure. In the last column the energy of
the dimer is reported.

The corresponding numbers in Table 8.16.2 can be found in the energy section of the output. The data for
the first column, for example, can be found after the DLPNO-CCSD iterations and after evaluation of the
perturbative triples correction :

E(0) ... -76.026657676

E(CORR)(strong-pairs) ... -0.211430784

E(CORR)(weak-pairs) ... -0.000000337

E(CORR)(corrected) ... -0.211431121

E(TOT) ... -76.238088797

...

Triples Correction (T) ... -0.002933029

Final correlation energy ... -0.214364150

E(CCSD) ... -76.238088797

E(CCSD(T)) ... -76.241021826

The basic principles and the details of the LED are discussed in section 9.36.5. The first contribution to the

binding energy is the energy penalty for the monomers to distort into the geometry of the dimer

∆Egeo−prep = Eoptmonomers − Efixedmonomers

(see in equation 9.459). This contribution is computed as the difference of the DLPNO-CCSD(T) energy

of the relaxed monomers (Eoptmonomers) and the monomers in the structure of the dimer (Efixedmonomers). The

following energies are obtained:

∆Egeo−prep = (−76.240820 + 76.241022) + (−39.02193 + 39.022368) = 0.000202 + 0.000438 = 0.000640

which amounts to 0.402 kcal/mol. Typically, the triples correction is evaluated separately:

∆E
C−(T )
int = −0.006081− (−0.002969− 0.002864) = −0.000248

This contributes -0.156 kcal/mol. The next terms in equation 9.459 concern the reference energy contributions.

The first one is the electronic preparation in the reference, which is evaluated as the difference of the Intra

REF. energy of the fragments (see previous section) and the reference energy of the separate molecules in

the dimer geometry:

∆Eref.el−prep(H2O) = −76.006486 + 76.025806 = 0.019320
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∆Eref.el−prep(CH2) = −38.842913 + 38.881079 = 0.038166

which amounts to 0.057486 a.u. or 36.073 kcal/mol. The next two contributions stem from the decomposition

of the reference inter-fragment contributions Eref.elstat = −0.054001 (-33.886 kcal/mol) and Eref.exch = −0.009823

(-6.163 kcal/mol) and can be found in directly in the LED output (Electrostatics (REF.) and Exchange

(REF.)). The correlation energy also contains an electronic preparation contribution, but it is typically

included in the correlation contribution ∆EC−CCSDnon−dispersion. Adding the non-dispersive strong and weak

pairs contributions from the LED output (Non dispersion (strong pairs) and Non dispersion (weak

pairs) ) one obtains :

−0.3490257− 0.0000037 = −0.3490294

from which we have to subtract the sum of the corrleation contributions of the monomers in the dimer

geometry

∆EC−CCSDnon−dispersion = −0.349029− (−0.212046− 0.137987) = 0.001004

which yields 0.630 kcal/mol if converted. The dispersive contribution can again be found in the LED output

(Non dispersion (strong pairs) and Non dispersion (weak pairs)) and amounts to EC−CCSDdispersion =

−0.001490 which is -0.935 kcal/mol. So all terms that we have evaluated so far are:

∆E = ∆Egeo−prep + ∆Eref.el−prep + Eref.elstat + Eref.exch + ∆EC−CCSDnon−dispersion + EC−CCSDdispersion + ∆E
C−(T )
int

∆E ∆Egeo−prep ∆Eref.el−prep Eref.elstat Eref.exch ∆EC−CCSDnon−disp. EC−CCSDdisp. ∆E
C−(T )
int

a.u. 0.000640 0.057486 -0.054001 -0.009823 0.001004 -0.001490 -0.000248
kcal/mol 0.402 36.073 -33.886 -6.163 0.630 -0.935 -0.156

which sum to the total binding energies of -0.00643 a.u. or -4.04 kcal/mol that we have evaluated at the

beginning of this section. A detailed discussion of the underlying physics and chemistry can be found in

[229].

8.16.3 Open shell LED

The decomposition of the DLPNO-CCSD(T) energy in the open shell case is carried out similarly to the

closed shell case. [229] An example of input file is shown below.

! uhf dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 3

C(1) 0.32786304018834 0.25137292674595 0.32985672433579

H(1) 0.78308855251826 -0.37244139824620 -0.42204823336026

H(1) -0.19639272865450 1.19309490346756 0.33713773666060

O(2) -1.47005964014997 -1.60804001777555 1.84974416203666

H(2) -0.89305417808014 -1.00736849071095 1.35216686141176

H(2) -1.02515061661047 -1.73931270222718 2.69260529998224

*
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The corresponding output is entirely equivalent to the one just discussed for the closed shell case. However,

the open shell variant of the LED scheme relies on a different implementation than the closed shell one. A

few important differences exist between the two implementations, which are listed below.

• In the closed shell LED the reference energy is tipically the HF energy. Hence, the total energy equals

the sum of HF and correlation energies. In the open shell variant, the reference energy is the energy of

the QRO determinant. Hence, the total energy in this case equals the sum of the energy of the QRO

determinant and the correlation energy.

• The singles contribution is tipically negligible in the closed shell case due to the Brillouin’s theorem.

In the open shell variant, this is not necessarily the case. In both cases, the singles contribution is

included in the “Non dispersion” part of the strong pairs.

• In the UHF DLPNO-CCSD(T) framework we have αα, ββ and αβ pairs. Hence, in the open shell

LED, all correlation terms (e.g. London dispersion) have αα, ββ and αβ contributions. By adding

“printlevel 3” in the mdci block one can obtain information on the relative importance of the different

spin terms.

• The open shell DLPNO-CCSD(T) algorithm can also be used for computing the energy of closed shell

systems by adding the “UHF” keyword in the simple input line of a DLPNO-CCSD(T) calculation.

8.16.4 Dispersion Interaction Density plot

The Dispersion Interaction Density (DID) plot provides a simple yet powerful tool for the spatial analysis

of the London dispersion interaction between a pair of fragments extracted from the LED analysis in

the DLPNO-CCSD(T) framework. [227] A similar scheme was developed for the closed shell local MP2

method. [232] The “dispersion energy density” files necessary for generating the DID plot can be obtained

from a simple LED calculation by adding “DoDIDplot true” in the mdci block.

!DLPNO-CCSD(T) ... LED

%mdci DoDIDplot true end

A series of jobname.dedXY files are generated for each pair of XY fragments. As an example, let us consider

a system for which 3 fragments (fragment1, fragment2 and fragment3) were defined. The program will

generate three dispersion energy density files, one for each fragment pair (jobname.ded21, jobname.ded31,

and jobname.ded32).

These files can be converted to a format readable by standard visualization programs, e.g. a cube file, through

orca plot. To do that, call orca plot with the command:

orca_plot gbwfilename -i

and follow the instructions that will appear on your screen, i.e.:
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1 - Enter type of plot

2 - Enter no of orbital to plot

3 - Enter operator of orbital (0=alpha,1=beta)

4 - Enter number of grid intervals

5 - Select output file format

6 - Plot CIS/TD-DFT difference densities

7 - Plot CIS/TD-DFT transition densities

8 - Set AO(=1) vs MO(=1) to plot

10 - Generate the plot

11 - exit this program

Type “1” for selecting the plot type. A few options are possible:

1 - molecular orbitals

2 - electron density

3 - spin density

4 - natural orbitals

5 - corresponding orbitals

6 - atomic orbitals

7 - mdci electron density

8 - mdci spin density

9 - OO-RI-MP2 density

10 - OO-RI-MP2 spin density

11 - MP2 relaxed density

12 - MP2 unrelaxed density

13 - MP2 relaxed spin density

14 - MP2 unrelaxed spin density

15 - LED dispersion interaction density

Select “LED dispersion interaction density” from the list by typing “15”. Afterwards, choose your favourite

format and generate the file. Note that orca plot will use by default the “jobname.ded21” density file as

input.

8.16.5 Automatic Fragmentation

Starting from ORCA 4.2 it is possible to let the program define the fragments to be used in the LED analysis.

In this case, the program will try to identify all monomers in the system that are not conntected through a

covalent bond and assign a fragment to each of them. The XYZ coordinates of the fragments are reported in

the beginning of the output file. For instance, given the input:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 1

C 0.18726407287156 0.08210467619149 0.19811955853244

H 1.07120465088431 -0.00229078749404 -0.46002874025040

H -0.15524644515923 1.12171178448874 0.04316776563623

O -1.47509614629583 -1.29358571885374 2.29818864036820
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H -0.87783948760158 -0.98540169212890 1.58987042714267

H -1.22399221548771 -2.20523304094991 2.47014489963764

*

The program will automatically identify the H2O and the CH2 fragments. Note that this procedure works for

an arbitrary number of interacting molecules. It is also possible to assign only certain atoms to a fragment

and let the program define the others:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 1

C(1) 0.18726407287156 0.08210467619149 0.19811955853244

H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040

H(1) -0.15524644515923 1.12171178448874 0.04316776563623

O -1.47509614629583 -1.29358571885374 2.29818864036820

H -0.87783948760158 -0.98540169212890 1.58987042714267

H -1.22399221548771 -2.20523304094991 2.47014489963764

*

8.16.6 Additional Features, Defaults and List of Keywords

NOTE: starting from ORCA 4.2 the default localization scheme for the PNOs has changed from PM to FB.

This might cause slight numerical differences in the LED terms with respect to that obtained from previous

ORCA versions. To obtain results that are fully consistent with previous ORCA versions, PM must be

specified (see below).

The following options can be used in accordance with LED.

! DLPNO-CCSD(T) cc-pVDZ cc-pVDZ/C cc-pVTZ/JK RIJK TightPNO LED TightSCF

%mdci

LED 1 # localization method for the PNOs. Choices:

# 1 = PipekMezey

# 2 = FosterBoys (default starting from ORCA 4.2)

PrintLevel 3 # Selects large output for LED and prints the

# detailed contribution

# of each DLPNO-CCSD strong pair

LocMaxIterLed 600 # Maximum number of localization iterations for PNOs

LocTolLed 1e-6 # Absolute threshold for the localization procedure for PNOs

Maxiter 0 # Skips the CCSD iterations and

# the decomposition of the correlation energy
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DoLEDHF true # Decomposes the reference energy in the LED part.

# By default, it is set to true.

end

NOTE: starting from ORCA 4.2 an RIJCOSX implementation of the LED scheme for the decomposition

of the reference energy is also available. This is extremely efficent for large systems. For consistency, the

RIJCOSX variant of the LED is used only if the underlying SCF treatment is performed using the RIJCOSX

approximation, i.e., if RIJCOSX is specified in the simple input line. An example of input follows.

! dlpno-ccsd(t) def2-TZVP def2-TZVP/C def2/j rijcosx verytightscf TightPNO LED

*xyz 0 1

C(1) 0.18726407287156 0.08210467619149 0.19811955853244

H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040

H(1) -0.15524644515923 1.12171178448874 0.04316776563623

O(2) -1.47509614629583 -1.29358571885374 2.29818864036820

H(2) -0.87783948760158 -0.98540169212890 1.58987042714267

H(2) -1.22399221548771 -2.20523304094991 2.47014489963764

*

Fianlly, here are some tips for advanced users.

• The LED scheme can be used in conjuction with an arbitrary number of fragments.

• The LED scheme can be used to decompose DLPNO-CCSD and DLPNO-CCSD(T) energies. At the

moment, it is not possible to use this scheme to decompose DLPNO-MP2 energies directly. However,

for closed shell systems, one can obtain DLPNO-MP2 energies from a DLPNO-CCSD calculation by

adding a series of keywords in the %mdci block: (i) TScalePairsMP2PreScr 0 ; (ii) UseFullLMP2Guess

true; (iii) TCutPairs 10 (or any large value). The LED can be used as usual to decompose the

resulting energy.

• For a closed shell system of two fragments (say A and B), the LED scheme can be used to further

decompose the LED components of the reference HF energy (intrafragment, electrostatics and exchange)

into a sum of frozen state and orbital relaxation correction contributions. More information can be

found in Ref. [227]. To obtain the frozen state terms one has to: (i) generate a .gbw file containing the

orbitals of both fragments (AB.gbw) using orca mergefrag as detailed in section 8.15.12; (ii) run the

LED as usual by using MORead to read the orbitals in the AB.gbw file in conjunction with Maxiter

0 in both the %scf block (to skip the SCF iterations) and the %mdci block (to skip the unnecessary

CCSD iterations).
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8.17 The Hartree-Fock plus London Dispersion (HFLD) method

Starting from ORCA 4.2, the HFLD method [233] can be used for the quantification and analysis of noncovalent

interactions between a pair of user-defined fragments.

The leading idea here is to solve the DLPNO coupled cluster equations while neglecting intramonomer corre-

lation. The LED scheme is then used to extract the London dispersion (LD) energy from the intermolecular

part of the correlation. Finally, the resulting LD energy is used to correct interaction energies computed at

the HF level. Hence, HFLD can be considered as a dispersion-corrected HF approach in which the dispersion

interaction between the fragments is added at the DLPNO-CC level. As such, it is particulartly accurate for

the quantififcation of noncovalent interactions such as those found in H-bonded systems, Frustrated Lewis

Pairs, dispersion and electrostatically bound systems. Larger error are in principle expected for transition

metal complexes or for systems with large polarization contibutions to the interaction.

The efficency of the approach allows the study of noncovalent interactions in systems with several hundreads

of atoms. An input example is reported below.

! HFLD aug-cc-pvdz aug-cc-pvdz/C verytightscf

*xyz 0 1

C(1) 0.18726407287156 0.08210467619149 0.19811955853244

H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040

H(1) -0.15524644515923 1.12171178448874 0.04316776563623

O(2) -1.47509614629583 -1.29358571885374 2.29818864036820

H(2) -0.87783948760158 -0.98540169212890 1.58987042714267

H(2) -1.22399221548771 -2.20523304094991 2.47014489963764

*

In the corresponding output, after the DLPNO-CC iterations and the LED output, the following information

are printed:

---------------------------- ----------------

Inter-fragment dispersion -0.001871725

---------------------------- ----------------

------------------------- --------------------

FINAL SINGLE POINT ENERGY -114.931006288168 ( -114.932878013204 with inter fragment dispersion)

------------------------- --------------------

The total HFLD energy of the adduct is thus -114.932878013204 a.u.. To compute interaction energies, we have

to substract from this value the Hartree-Fock energies of the monomers in the geometry they have in the com-

plex, i.e., -38.884413525379 and -76.040412827089 a.u. for CH2 and H2O, respectively. The total interaction

energy is thus -0.00805 a.u. or -5.1 kcal/mol (the corresponding DLPNO-CCSD(T)/TightPNO/CBS value is

-5.3 kcal/mol. [229]). Note that, to obtain binding energies, the geometric preparation should be added to this

value. This can be computed using a standard computational method, e.g, DFT or DLPNO-CCSD(T).
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Some of the most important aspects of the method are summarized below:

• Fast basis set convergence behavior: typically, HFLD interaction energies are already converged with

aug-cc-pvdz or aug-cc-pvtz basis sets.

• Accuracy: for noncovalent interactions, HFLD tipically provides an accuracy comparable to that of the

DLPNO-CCSD(T) method if default PNO settings are used (for the HFLD scheme, these are defined

as TCutPNO = 3.3 1e-7 and TCutPairs 1e-5). Note that one can specify “NormalPNO” or “TightPNO”

settings in the simple input line. The corresponding DLPNO tresholds would be in this case fully

consistent with those used in the DLPNO-CCSD(T) method. Note that HFLD interaction energies

slightly depend on the choice of the localization scheme used for occupied orbitals and PNOs (default

settings are recommended for all intent and purposes). As the localization iterations for occupied and

virtual orbitals must be fully converged in order to obtain consistent results, in some cases it might

be necessary to increase “LocMaxIter” or “LocMaxIterLed” (see below). Importantly, the method

benefits from the use of tightly converged SCF solutions. A useful diagnostic in this context is the

“Singles energy” term that is printed in the LED part of the output. This term must be smaller than

1e-6. If this is not the case, one should change the settings used for the SCF iterations.

• HF efficency: the calculation of the dispersion correction tipically requires the same time as an HF

calculation. This is true for small as well as for large (e.g. >300 atoms) systems.

• The LED dispersion energy obtained with this approach is often very close to that obtained from a full

DLPNO-CCSD(T) calculation. Hence, the method can be used as a cost-effective alternative to the

DLPNO-CCSD(T)/LED scheme to study the importance of London dispersion in molecular chemistry.

• All the features of the LED scheme (e.g. automatic fragmentation) are also available for the HFLD

method.

• In its current implementation, HFLD is only available for closed-shell systems.

Note that, as HFLD relies on both the DLPNO-CCSD(T) and LED methods, the options of both schemes

can be used in principle in conjuction with HFLD. Some examples are shown below:

! HFLD aug-cc-pVDZ aug-cc-pVDZ/C aug-cc-pVTZ/JK RIJK TightSCF

%mdci

LED 1 # localization method for the PNOs. Choices:

# 1 = PipekMezey

# 2 = FosterBoys (default, recommeded for the HFLD method)

PrintLevel 3 # Selects large output for LED and prints the

# detailed contribution

# of each DLPNO-CCSD strong pair

LocMaxIterLed 600 # Maximum number of localization iterations for PNOs

LocMaxIter 300 # Maximum number of localization iterations for

# occupied orbitals

LocTolLed 1e-6 # Absolute threshold for the localization procedure for PNOs

DoLEDHF true # Decomposes the reference energy in the LED part.

# By default, it is set to false in HFLD for efficency reasons.
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TCutPNO 3.33e-7 # cutoff for PNO occupation numbers.

TCutPairs 1e-5 # cutoff for estimated pair correlation energies

# to be included in the CC treatment

end

8.18 ORCA MM Module

Since version 4.2 ORCA features its own independent MM implementation.

The minimum input necessary for a MM treatment looks as follows.

!MM

%mm

ORCAFFFilename "UBQ.ORCAFF.prms"

end

In this section we discuss the basic keywords and options, i.e.

• the basic structure of the ORCA Forcefield File,

• how to generate the ORCA Forcefield File,

• how to manipulate the ORCA Forcefield File,

• how to speed up MM calculations,

• further MM options and keywords.

Further options important for QM/MM calculations will be discussed in section 8.19.

8.18.1 ORCA Forcefield File

For the MM part of the QM/MM calculation force-field parameters are necessary. ORCA has its own

parameter file format (ORCA forcefield file - ORCAFF.prms), which includes the atom specific parameters

for nonbonded interactions:

• partial charge

• LJ coefficients

and parameters for bonded interactions:

• bonds

• angles

• Urey-Bradley terms
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• dihedrals

• impropers

• CMAP terms (cross-terms for backbone, currently not used)

Individual parameters, like e.g. atomic charge, equilibrium bond length and force constant, ..., can be

conveniently modified directly within the ORCA Forcefield File.

8.18.1.1 How to generate the ORCA Forcefield File

The easiest way to generate a ORCAFF.prms file is currently to convert from psf (protein structure file) files.

Psf files are specific to the CHARMM forcefield and its application via NAMD. Psf files for a specific protein

system can easily be generated by the popular molecular visualization program VMD and its extension

QwikMD, but also with other extensions in the VMD program (e.g. psfgen or fftk). The psf file contains

information on the atom types and on the bonded interactions of all atoms. It does, however, not contain the

parameters that belong to these interactions. These parameteres are stored in specific files, often ending

with prm, but also par or str. The CHARMM parameter files come with VMD installation, can be directly

downloaded, or can be generated with the VMD extension fftk (forcefield toolkit).

Once a ORCAFF.prms file is available, it can be manipulated, i.e. split up into several parts for indi-

vidual molecules, new ORCAFF.prms files can be generated for non-standard molecules, and individual

ORCAFF.prms files can be merged, as described in the following:

8.18.1.1.1 Conversion from psf to ORCAFF.prms: convff The simplest case is when a psf file is

available for a system with standard residues, prepared by e.g. QwikMD, psfgen or other vmd tools. Convert

the psf and prm files to the ORCAFF file with the -convff flag:

Input options:

orca_mm -convff <optional:-verbose> <FFInput> <PSFFILE> <PRMFILE(S)>

Keywords:

<FFInput> = -CHARMM

Example:

orca_mm -convff -CHARMM 1C1E.psf par_all36_prot.prm toppar_water_ions_namd.str

8.18.1.1.2 Divide a forcefield file: splitff If a ORCAFF.prms file should be subdivided into several

files, e.g. if the psf file stems from QWikMD with non-standard molecules included, e.g. a ligand. In that case

first the parameters of the ligand are split from the remaining system, next the ligand needs to be protonated,

then a simple ORCAFF.prms file is generated via orca mm’s makeff option, and finally the ligand’s new

ORCAFF.prms file is added to the main systems file via the above described mergeff option. Note that the

file can only be split into files for nonbonded fragments.

Input options:

https://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/qwikmd/
https://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/
http://www.ks.uiuc.edu/Research/vmd/plugins/fftk/
http://mackerell.umaryland.edu/charmm_ff.shtml
http://www.ks.uiuc.edu/Research/vmd/plugins/fftk/
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orca_mm -splitff <optional:-verbose> <ORCAFFFILE> <A1> <optional:A2> ...

Keywords:

<ORCAFFFILE>= ORCA forcefield file.

<A1> = Atom number of first atom of fragment that should belong

to a new ORCA forcefield file

<A2> = Atom number of first atom of fragment that should belong

to a new ORCA forcefield file

... = More split atoms possible

Note that atoms start counting at 1.

Example:

orca_mm -splitff 1C1E_substrate_noH.ORCAFF.prms 7208

8.18.1.1.3 Merge forcefield files: mergeff If several ORCAFF.prms files are available and should be

merged for an ORCA calculation, e.g. for a standard plus a non-standard molecule.

Input options:

orca_mm -mergeff <optional:-verbose> <ORCAFFFILE1> <ORCAFFFILE2> ...

Keywords:

<ORCAFFFILE1> = First ORCA forcefield file

<ORCAFFFILE2> = Second ORCA forcefield file

... = More ORCA forcefield files possible

Example:

orca_mm -mergeff 1C1E.ORCAFF.prms substrate_withH.ORCAFF.prms

8.18.1.1.4 Create simple force field: makeff The orca mm tool can generate an approximate forcefield

for a molecule, storing it in ORCAFF.prms format. Here, the LJ coefficients are based on UFF parameters

and the partial charges are based on a simple PBE or XTB calculation. The resulting topology is certainly

not as accurate as an original CHARMM topology, but can still be used for an approximate handling of the

molecule. Herewith, the molecule can be part of the QM region (having at least the necessary LJ coefficients),

or part of the MM region as a non-active spectator - being not too close to the region of interest. In the latter

case it is important that the molecule is not active, since bonded parameters are not available. However, it can

still be optimized as a rigid body, see sections 8.2.16 and the usage in QM/MM calculations in section 8.19.4.3,

on MM level, optimizing its position and orientation with respect to the specific environment.

Input options:
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orca_mm -makeff <optional:-verbose> <XYZ/PDBFILE> <optional:-C CHARGE>

<optional:-M MULT> <optional:-nproc N> <optional:-CHARGE_OPTIONS>

Keywords:

<CHARGE> = charge of system

<MULT> = multiplicity of system

<-nproc N> = number of processors (Default 1)

<-CHARGE_OPTIONS> = Structure Charge calculation

<-PBE> input PBE

<-PBEOpt> PBE opt. PBE

<-PBEOptH> PBE H-opt. PBE

<-XTB> input XTB

<-XTBOpt> XTB opt. XTB

<-XTBOptH> XTB H-opt. XTB

<-XTBOptPBE> XTB opt. PBE

<-noChargeCalc> distribute net charge evenly

PBE Opt and SP level: RI-PBE/def2-SVP CPCM(Water), CHELPG charges

XTB Opt and SP level: GFN2-XTB GBSA(Water), Mulliken partial charges

Example:

orca_mm -makeff substrate_withH.xyz -M 2 -XTBOptPBE

Note that ORCA generates bonds based on simple distance rules, which enables ORCA to detect where

to add link atoms between QM and MM atoms, see also section 8.19.7. But the user is advised to treat a

molecule, for which the ORCAFF.prms file was generated with the makeff option, either fully in the QM, or

fully in the MM region, unless the charge distribution has been properly taken care of (due to the need of

integer charges in QM and MM system).

8.18.1.1.5 Get standard hydrogen bond lengths: getHDist For the definition of the link atoms

standard bond lengths between C, N and O and hydrogen are directly set by ORCA but can be modified by

the user, see section 8.19.7. If other atom types are on the QM side of the QM-MM boundary, their distance

to the link atom has to be defined. In this case a file can be provided to ORCA which defines the standard

bond length to hydrogen for all possible atoms. Such a file can be generated via the follwoing command:

Input options:

orca_mm -getHDist <optional:-verbose> <XYZ/PDBFILE>

Example:

orca_mm -getHDist 1C1E.xyz
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This file can then be modified, the required values can be added, and the resulting file can be defined as

input for the QMMM calculation.

8.18.1.2 Alternative Forcefield Input Formats

Instead of reading the ORCAFF.prms file ORCA can also directly read psf and prm files:

%mm

PSFFilename "protein.psf"

PRMFilenames

"par_all36_prot.prm"

"par_all36_solvent.prm"

end

end

In this case ORCA does on-the-fly convert the information from the psf and prm files to the ORCAFF.prms

file. Note that the ORCAFF.prms file is stored and available after the run, so that it can be used and

manipulated for later studies.

An example input for such a calculation would be the following:

!MM L-OptH

%mm

PSFFilename "protein.psf"

PRMFilenames

"par_all36_prot.prm"

"par_all36_solvent.prm"

end

end

*pdbfile 0 1 ubq.pdb

8.18.2 Speeding Up Nonbonded Interaction Calculation

For MM calculations of very large systems with hundreds of thousands of atoms, and for QMMM calculations

with fast QM methods (e.g. XTB, AM1) and / or very small QM systems, the computation of the

nonbonded interactions can become a bottleneck. Different schemes for speeding up the calculation of

nonbonded interactions are available within the ORCA MM implementation. Two schemes truncate long-

range interaction, another scheme can be used for calculations with active regions, i.e. calculations where

only a part of the system is active or optimized. For more information on active regions see section 8.19.4.
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8.18.2.1 Force Switching for LJ Interaction

With force switching for the LJ interaction (described in reference [234]) a smooth switching function is used

to truncate the LJ potential energy smoothly at the outer cutoff distance LJCutOffOuter. If switching is

set to false, the LJ interaction is not truncated at LJCutOffOuter. The parameter LJCutOffInner specifies

the distance at which the switching function starts taking an effect to bring the van der Waals potential to

0 smoothly at the LJCutOffOuter distance, ensuring that the force goes down to zero at LJCutOffOuter,

without introducing discontinuities. Note that LJCutOffInner must always be smaller than LJCutOffOuter.

%mm

SwitchForceLJ true # Use the switch force scheme for the LJ interaction.

# Default: true.

LJCutOffInner 10. # Distance (in Ang). Default: 10 Ang.

LJCutOffOuter 12. # Distance (in Ang). Default: 12 Ang.

end

8.18.2.2 Force Shifting for Electrostatic Interaction

With force shifting for the electrostatic interaction (described in reference [234]) the electrostatic potential is

shifted to zero at the cutoff distance CoulombCutOff. If shifting is set to false, the electrostatic interaction is

not truncated at CoulombCutOff.

%mm

ShiftForceCoulomb true # Use the shift force scheme for the Coulomb interaction.

# Default: true.

CoulombCutOff 12. # Distance (in Ang). Default: 12 Ang.

end

8.18.2.3 Neglecting Nonbonded Interactions Within Non-Active Region

When using active regions (see section 8.19.4) for optimizations and MD runs, the nonbonded interactions at

the MM level can be neglected for those atom pairs, which are both non-active, without loss of accuracy for

the results. Even relative energies between two structures are correct, if the atom positions of the non-active

atoms are identical. For all other cases, i.e. if the positions of atoms in the non-active region differ, the full

nonbonded interaction should be computed in the final single-point energy calculation. By default this option

is switched off.

%mm

Do_NB_For_Fixed_Fixed true # Compute MM-MM nonbonded interaction also for

# non-active atom pairs. Default true.

end



8.18 ORCA MM Module 325

8.18.3 Rigid Water

As TIP3P water might have to be treated as rigid bodies due to its parametrization - please check out the

specifics of the applied force field parametrization - we offer a keyword for the automated rigid treatment of

all active MM waters. The following keyword applies bond and angle constraints to active MM waters in

optimization as well as MD runs:

%mm

Rigid_MM_Water false # Default: false.

end

8.18.4 Available Keywords for the MM module

Here we list all keywords that are accessible from within the mm block and that are relevant to MM, but

also QM/MM calculations. Some of the MM keywords can also be accessed via the qmmm block, see

section 8.19.10.

!MM # or QMMM, as the MM keywords will also affect the MM part of the QMMM calculation

%mm

# Schemes for the truncation of long-range

# Coulomb and LJ interaction:

# The Shift Force scheme for the Coulomb interaction shifts the Coulomb potential

# such that it becomes zero at the cutoff distance.

ShiftForceCoulomb true # Use the shift force scheme for the Coulomb interaction.

# Default: true.

CoulombCutOff 12. # Distance (in Ang). Default: 12 Ang.

# With the Switch Force scheme for the LJ interaction is unchanged up to

# LJCutOffInner. Between LJCutOffInner and LJCutOffOuter a smooth switching function

# is applied onto the LJ potential so that the force goes down to zero at

# LJCutOffOuter, without introducing discontinuities.

SwitchForceLJ true # Use the switch force scheme for the LJ interaction.

# Default: true.

LJCutOffInner 10. # Distance (in Ang). Default: 10 Ang.

LJCutOffOuter 12. # Distance (in Ang). Default: 12 Ang.

DielecConst 1. # dielectric constant used in calc. of electrostatic

# interaction. Default: 1.

Coulomb14Scaling 1. # Scaling factor for electrostatic interaction between

# 1,4-bonded atoms. Default: 1.

PrintLevel 1 # Printing options: Can be 0 to 4, 0=nothing, 1=normal, ...
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# Keywords that can be accessed from the mm as well as the qmmm block.

# For a description see qmmm block.

# Information about topology and force field

ORCAFFFilename "UBQ.ORCAFF.prms"# If available, e.g. from a previous run, or after

# modification, the ORCA Forcefield can be provided.

# If available, PSF and PRM files are ignored.

PSFFilename "protein.psf" # filename of the PSF file (CHARMM topology generated

# e.g. with QwikMD or psfgen) for the system

PRMFilenames # filenames of PRM files (CHARMM) that contain the

"par_all36_prot.prm" # parameters for all the atom types defined in the PSF

"par_all36_solvent.prm" # file. Needs to be provided if PSF file is provided.

end

# Computing MM nonbonded interactions within non-active region.

Do_NB_For_Fixed_Fixed true # Compute MM-MM nonbonded interaction also for

# non-active atom pairs. Default true.

# Optimization and MD of active MM waters

RIGID_MM_WATER false # Default: false.

# Extended active region

ExtendActiveRegion distance # rule to choose the atoms belonging to optRegionExt.

Dist_AtomsAroundOpt 1. # in Angstrom. Default 1 Ang.

OptRegion_FixedAtoms 2 9 end # Default: empty list.

# The following keywords will affect the behavior of MM (without QMMM) calculations,

# but have to be provided via the qmmm block

PrintOptRegion true # Additionally print xyz and trj for opt region

PrintOptRegionExt true # Additionally print xyz and trj for extended opt region

PrintQMRegion true # Additionally print xyz and trj for QM region

PrintPDB true # Additionally print pdb file for entire system, is

# updated every iteration for optimization

end

*pdbfile 0 1 ubq.pdb # structure input via pdb file, but also possible via xyz file

8.19 ORCA QM/MM Implementation

Since version 4.2 ORCA features its own independent QM/MM implementation. This implementation makes

use of a new MM module, which is also available since version 4.2. (The focus in this section is on the

QM/MM implementation, the MM implementation will be discussed in 8.18). The QM/MM feature is
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optimally connected to all other modules and tools available in ORCA allowing the user to handle QM/MM

calculations from a QM/centric perspective in a simple and efficient way, with a focus on simplifying the

process to prepare, set up and run QM/MM calculations.

The minimum input necessary for a QM/MM treatment looks as follows.

!QMMM

%qmmm

QMAtoms {0 1 2 27 28} end

ORCAFFFilename "UBQ.ORCAFF.prms"

end

8.19.1 Overview on Combining QM/MM with other ORCA Features

The QMMM feature can be used together with all other possible ORCA methods:

Single Point Calculations Use all kinds of available electronic structure methods as QM method.

Optimization Use all kinds of geometry optimization with all kinds of constraints, TS optimization, relaxed

surface scans, and the ScanTS feature. Use the L-Opt and L-OptH features including the combination

of all kinds of fragment optimizations (fix fragments, relax fragments, relax only specific elements in

fragments, treat a fragment as a rigid body).

Transition States and Minimum Energy Paths Use all kinds of Nudged-Elastic Band calculations (NEB,

NEB-CI, NEB-TS, inlcuding their ZOOM variants) and Intrinsic reaction coordinate calculations.

Frequency Calculations Use regular Frequency calculations. If required, ORCA automatically switches on

the Partial Hessian Vibrational Analysis (PHVA) calculation.

Molecular Dynamics Use the Molecular Dynamics (MD) module for Born-Oppenheimer MD (BOMD) with

QM/MM in combination with all kinds of electronic structure methods.

Property Calculation All kinds of regular property calculations are available. For electrostatic embedding

the electron density is automatically perturbed by the surrounding point charges.

8.19.2 Overview on Basic Aspects of the QM/MM Feature

In the following, the basic aspects are introduced.

QM atoms The user can define the QM region either directly, as in the example input above, or via flags in

a pdb file. See 8.19.3.

Active atoms The user can choose an active region, e.g. for geometry optimization the atoms that are

optimized, for a frequency calculation the atoms that are allowed to vibrate for the PHVA, or for an

MD run the atoms that are propagated. See 8.19.4 and 8.32.
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Forcefield ORCA has its own forcefield file format (stored in files called basename.ORCAFF.prms). For

a convenient setup the orca mm module offers the option to convert from other forcefield formats.

Currently psf files (protein structure file) from the CHARMM forcefield can be converted to the

ORCA forcefield file format. This can be done either via the orca mm tool, or directly during runtime.

The psf files can be easily prepared with the popular molecular visualizer VMD, together with its

extensions (psfgen, (QwikMD, fftk, which is supposed to work together with ORCA in the near future).

Alternatively, the orca mm module can generate a simple forcefield for small to medium-sized molecules.

For more options, see 8.18.1.

Modification of forcefield parameters Atom and bond specific parameters can be easily modified

within the ORCA forcefield file, allowing the user maximum flexibility in modifying the forcefield,

which might be particularly useful for chemical systems like transition metal complexes. See

8.18.1.

Standard and Non-Standard Ligands Ligands can be easily and flexibly exchanged or added to the

system. Here, the user even does not have to provide a ORCA forcefield or psf file, but ORCA
can prepare a simple and approximate forcefield automatically on-the-fly. See 8.19.9.

Boundary Treatment ORCA automatically detects QM-MM boundaries, i.e. bonds that have to be cut

between QM and MM region. ORCA automatically generates the link atoms and keeps them at their

relative position throughout the run, even allowing to optimize the bond along the boundary. See

8.19.7.

Treatment of Overpolarization ORCA automatically adapts the charges at the QM-MM boundary. See

8.19.7.

Embedding types The electrostatic and mechanical embedding schemes are available. See 8.19.8.

Detailed information on the different available input and runtime options and on all available keywords (see

8.19.10) are given below.

8.19.3 QM Atoms

QM atoms can be defined either directly or via the occupancy column of a pdb file (there is a third option

for ligands, see section 8.19.9).

%qmmm # use either

ActiveAtoms {0:4} end # 1. list of atoms or

Use_QM_InfoFromPDB true # 2. get the definition from the pdb file. Default false.

end # If (2) is set to true, (1) is ignored

*pdbfile 0 1 ubq.pdb

If Use QM InfoFromPDB is set to true, a pdb file should be used for the structural input. QM atoms are

defined via 1 in the occupancy column, MM atoms via 0.

https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/
http://www.ks.uiuc.edu/Research/qwikmd/
http://www.ks.uiuc.edu/Research/vmd/plugins/fftk/
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ubq.pdb:

...

ATOM 327 N ASP A 21 29.599 18.599 9.828 0.00 0.00 P1 N

ATOM 328 HN ASP A 21 29.168 19.310 9.279 0.00 0.00 P1 H

ATOM 329 CA ASP A 21 30.796 19.083 10.566 0.00 0.00 P1 C

ATOM 330 HA ASP A 21 31.577 18.340 10.448 0.00 0.00 P1 H

ATOM 331 CB ASP A 21 31.155 20.515 10.048 1.00 0.00 P1 C

ATOM 332 HB1 ASP A 21 30.220 21.082 9.865 1.00 0.00 P1 H

ATOM 333 HB2 ASP A 21 31.754 21.064 10.801 1.00 0.00 P1 H

ATOM 334 CG ASP A 21 31.923 20.436 8.755 1.00 0.00 P1 C

ATOM 335 OD1 ASP A 21 32.493 19.374 8.456 1.00 0.00 P1 O

ATOM 336 OD2 ASP A 21 31.838 21.402 7.968 1.00 0.00 P1 O

ATOM 337 C ASP A 21 30.491 19.162 12.040 0.00 0.00 P1 C

ATOM 338 O ASP A 21 29.367 19.523 12.441 0.00 0.00 P1 O

...

8.19.4 Active and Non-Active Atoms - Optimization, Frequency Calculation,

Molecular Dynamics and Rigid MM Water

The systems of QM/MM calculations can become quite large with tens and hundreds of thousands of atoms.

In QM/MM calculations the region of interest is usually only a particular part of the system, and it is

common practice to restrict the optimization to a small part of the system, which we call the active part of

the system. Usually this active part consists of hundreds of atoms, and is defined as the QM region plus

a layer around the QM region. The same definition holds for frequency calculations, in particular since

after optimization non-active atoms are not at stationary points, and a frequency calculation would lead

to artifacts in such a scenario. MD calculations on systems with hundreds of thousands of atoms are not

problematic, but there are applications where a separation in active and non-active parts can be important

(e.g. a solute in a solvent droplet, with the outer shell of the solvent frozen). NOTE:

• If no active atoms are defined, the entire system is treated as active.

• The active region definitions also apply to MM calculations, but have to be provided via the qmmm

block.

8.19.4.1 Input Format

Active atoms can be defined either directly or via the B-factor column of a pdb file (there is a third option

for ligands, see section 8.19.9).

%qmmm # use either

ActiveAtoms {0:5 16 21:30} end # 1. list of atoms or

Use_Active_InfoFromPDB true # 2. get the definition from the pdb file.

# Default false.
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end # If (2) is set to true, (1) is ignored

*pdbfile 0 1 ubq.pdb

If Use Active InfoFromPDB is set to true, a pdb file should be used for the structural input. Active atoms

are defined via 1 in the B-factor column, non-active atoms via 0.

ubq.pdb:

...

ATOM 327 N ASP A 21 29.599 18.599 9.828 0.00 0.00 P1 N

ATOM 328 HN ASP A 21 29.168 19.310 9.279 0.00 0.00 P1 H

ATOM 329 CA ASP A 21 30.796 19.083 10.566 0.00 1.00 P1 C

ATOM 330 HA ASP A 21 31.577 18.340 10.448 0.00 1.00 P1 H

ATOM 331 CB ASP A 21 31.155 20.515 10.048 1.00 1.00 P1 C

ATOM 332 HB1 ASP A 21 30.220 21.082 9.865 1.00 1.00 P1 H

ATOM 333 HB2 ASP A 21 31.754 21.064 10.801 1.00 1.00 P1 H

ATOM 334 CG ASP A 21 31.923 20.436 8.755 1.00 1.00 P1 C

ATOM 335 OD1 ASP A 21 32.493 19.374 8.456 1.00 1.00 P1 O

ATOM 336 OD2 ASP A 21 31.838 21.402 7.968 1.00 1.00 P1 O

ATOM 337 C ASP A 21 30.491 19.162 12.040 0.00 0.00 P1 C

ATOM 338 O ASP A 21 29.367 19.523 12.441 0.00 0.00 P1 O

...

Note that in the above example also the QM atoms are defined along with the active atoms.

8.19.4.2 Optimization in redundant internal coordinates

In ORCA ’s QM/MM geometry optimization only the positions of the active atoms are optimized. The forces

on these active atoms are nevertheless influenced by the interactions with the non-active surrounding atoms.

In order to get a smooth optimization convergence for quasi-Newton optimization algorithms in internal

coordinates it is necessary that the Hessian values between the active atoms and the directly surrounding

non-active atoms are available. For that reason the active atoms are extended by a shell of surrounding

non-active atoms which are also included in the geometry optimization, but whose positions are constrained,

see Figure 8.32. This shell of atoms can be automatically chosen by ORCAṪhere are three options available:

Distance (Default) The parameter Dist AtomsAroundOpt controls which non-active atoms are included in

the extension shell, i.e. non-active atoms that have a distance of less than the sum of their VDW radii

plus Dist AtomsAroundOpt are included.

Covalent bonds All (non-active) atoms that are covalently bonded to active atoms are included.

No No non-active atoms are included.
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The user can also provide the atoms for the extension shell manually. This will be discussed in sec-

tion 8.19.4.4.

Figure 8.32: Active and non-active atoms. Additionally shown is the extension shell, which consists
of non-active atoms close in distance to the active atoms. The extension shell is used
for optimization in internal coordinates and PHVA.

The set of active atoms is called the ’optRegion’, and the set of active atoms plus the surrounding non-active

atoms is called ’optRegionExt’. During geometry optimization the following trajectories are stored (which

can be switched off):

basename trj.xyz Entire QM/MM system

basename.QMonly trj.xyz Only QM region

basename.optRegion trj.xyz Only active atoms

basename.optRegionExt trj.xyz Active atoms plus extension

The following files are stored containing the optimized structures - if requested:

basename.pdb Optimized QM/MM system in pdb file format

basename.xyz Optimized QM/MM system

basename.QMonly.xyz Only QM region

basename.optRegion.xyz Only active atoms

basename.optRegionExt.xyz Active atoms plus extension

8.19.4.3 Optimization with the Cartesian L-BFGS Minimizer

For very large active regions the quasi-Newton optimization in internal coordinates can become costly and it

can be advantageous to use the L-Opt or L-OptH feature, see section 8.2.16. For the L-Opt(H) feature there

exist two ways to define the active region:

• via the ActiveAtoms keyword (or the Use Active InfoFromPDB flag) or

• via fragment definition and the different keywords for fragment optimization. Available options are:

FixFrags Freeze the coordinates of all atoms of the specified fragments.
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RelaxHFrags Relax the hydrogen atoms of the specified fragments. Default for all atoms if !L-OptH is

defined.

RelaxFrags Relax all atoms of the specified fragments. Default for all atoms if !L-Opt is defined.

RigidFrags Treat each specified fragment as a rigid body, but relax the position and orientation of

these rigid bodies.

NOTE

• The L-Opt(H) option together with the fragment optimization can be used in order to quickly

preoptimize your system on MM level. E.g. you can optimize the hydrogen positions of the protein

and water atoms, and at the same time relax non-standard molecules, for which no exact bonded

parameters are available, as rigid bodies.

!MM L-OptH

%mm

ORCAFFFilename "DNA_hexamer.ORCAFF.prms"

end

*pdbfile 0 1 protein_ligand.pdb

%geom

Frags # all other atoms belong to fragment 1 by default

2 22307:22396 end # cofactor

3 22397:22423 end # ligand

end

RigidFrags 2 3 end # treat cofactor and ligand as individual rigid bodies

end

8.19.4.4 Frequency Calculation

If all atoms are active, a regular frequency calculation is carried out when requesting !NumFreq. If there

are also non-active atoms in the QM/MM system, the Partial Hessian Vibrational Analysis (PHVA, see

section 9.21.2) is automatically selected. Here, the PHVA is carried out for the above defined optRegionExt,

where the extension shell atoms are automatically used as ’frozen’ atoms. Note that the analytic Hessian

is not available due to the missing analytic second derivatives for the MM calculation. Note that in a new

calculation after an optimization it might happen that the new automatically generated extended active

region is different compared to the previous region before optimization. This means that when using a

previously computed Hessian (e.g. at the end of an optimization or a NEB-TS run) the Hessian does not fit

to the new extended active region. ORCA tries to solve this problem by fetching the information on the

extended region from the hess file. If that does not work (e.g. if you distort the geometry after the Hessian

calculation) you should manually provide the list of atoms of the extended active region. This is done via the

following keyword:
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%qmmm

OptRegion_FixedAtoms {27 1288:1290 4400} end # manually define the

# optRegionExt atoms.

end

Note that ORCA did print the necessary information in the output of the calculation in which the Hessian

was computed:

Fixed atoms used in optimizer ... 27 1288 1289 1290 4400

8.19.4.5 Nudged Elastic Band Calculations

NEB calculations (section 8.2.17) can be carried out in combination with the QM/MM feature in order to

e.g. study enzyme catalysis. When automatically building the extension shell at the start of a QM/MM-NEB

calculation, not only the coordinates of the main input structure (’reactant’), but also the atomic coordinates

of the ’product’ and, if available, of the ’transition state guess’ are used to determine the union of the

extension shell of the active region. For large systems it is advised to use the active region feature for the

NEB calculation. Note that the atomic positions of the non-active atoms of reactant and product and, if

available, transition state guess, should be identical.

8.19.4.6 Molecular Dynamics

If there are active and non-active atoms in the QM/MM system, only the active atoms are allowed to

propagate in the MD run. If all atoms are active, all atoms are propagated. For more information on the

output and trajectory options, see section 9.34.2.

8.19.4.7 Rigid MM Water

As TIP3P water might have to be treated as rigid bodies due to its parametrization - please check out the

specifics of the applied force field parametrization - we offer a keyword for the automated rigid treatment of

all active MM waters. The following keyword applies bond and angle constraints to active MM waters in

optimization as well as MD runs:

Rigid_MM_Water false # Default: false.

8.19.5 Forcefield Input

For the MM part of the QM/MM calculation force-field parameters are necessary. Internally, ORCA uses the

ORCA Forcefield. For a description on the format, how to obtain and manipulate the force field parameters,

see section 8.18.1. Two different input forcefield types are possible: the ORCA forcefield File and psf files

(from VMD’s psfgen or QWikMD).
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8.19.6 ORCA Forcefield File

Here we only show how to use the force The forcefield is provided via the keyword ORCAFFFilename:

%qmmm

ORCAFFFilename "UBQ.ORCAFF.prms"

end

8.19.6.1 Alternative Forcefield Input Formats

The MM module can convert psf files to the ORCAFF.prms file format, see section 8.18.1. Besides that,

ORCA can on during runtime convert the information from the psf and prm files to the ORCAFF.prms

file.

%qmmm

PSFFilename "protein.psf"

PRMFilenames

"par_all36_prot.prm"

"par_all36_solvent.prm"

end

end

Note that the ORCAFF.prms file is stored and available after the run, so that it can be used and manipulated

for later studies.

An example input for such a calculation would be the following:

!QMMM Opt BP86 def2-TZVP def2/J

%qmmm

Use_Active_InfoFromPDB true # get active atoms from pdb file

Use_QM_InfoFromPDB true # get QM atoms from pdb file

PSFFilename "protein.psf"

PRMFilenames

"par_all36_prot.prm"

"par_all36_solvent.prm"

end

end

*pdbfile 0 1 ubq.pdb
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8.19.7 QM-MM Boundary

8.19.7.1 Link Atoms

ORCA automatically generates link atoms based on the information on QM region and on the topology of

the system (based on the ORCAFF.prms or psf file). ORCA places link atoms on the bond between QM and

MM atom.

Bond Length Scaling factor The distance between QM atom and link atom is determined via a scaling

factor (in relation to the QM-MM bond length) that is computed as the ratio of the equilibrium bond length

between QM and hydrogen atom (d0 QM-H) and the equilibrium bond length between QM and MM atom

(d0 QM-MM).

Standard QM-H Bond Length For the equilibrium bond lengths to hydrogen, ORCA uses tabulated

standard values for the most common atoms involved in boundary regions (C, N, O), which can be mod-

ified via keywords as defined further below. ORCA stores these values on-the-fly in a simple file (base-

name.H DIST.prms). If necessary. the user can modify these values atom-specific or add others to the file

and provide this file as input to ORCA see also paragraph 8.18.1.1.5.

%qmmm

# standard equilibrium bond lengths with hydrogen can be modified

Dist_C_HLA 1.09 # d0_C-H

Dist_O_HLA 0.98 # d0_O-H

Dist_N_HLA 0.99 # d0_N-H

# file can be provided which provides the used d0_X-H values specific to all atoms

H_Dist_FileName "QM_H_dist.txt"

end

8.19.7.2 Bonded Interactions at the QM-MM Boundary

The MM bonded interactions within the QM region are neglected in the additive coupling scheme. However,

at the boundary, it is advisable to use some specific bonded interactions which include QM atoms. By default

ORCA neglects only those bonded interactions at the boundary, where only one MM atom is involved, i.e. all

bonds of the type QM1-MM1, bends of the type QM2-QM1-MM1, and torsions of the type QM3-QM2-QM1-

MM1. Other QM-MM mixed bonded interactions (with more than two MM atoms involved) are included.

The user is allowed to include the described interactions, which is controlled via the following keywords:

%qmmm

DeleteLADoubleCounting true # Neglect bends (QM2-QM1-MM1) and torsions

# (QM3-QM2-QM1-MM1). Default true.

DeleteLABondDoubleCounting true # Neglect bonds (QM1-MM1)

end
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8.19.7.3 Charge Alteration

If QM and MM atoms are connected via a bond (defined in the topology file), the charge of the close-by MM

atom (and its neighboring atoms) has to be modified in order to prevent overpolarization of the electron

density of LA and QM region. This charge alteration is automatically taken care of by ORCA . ORCA
provides the most popular schemes that can be used to prevent overpolarization:

CS Charge Shift - Shift the charge of the MM atom away to the MM2 atoms so that the overall charge is

conserved

RCD Redistributed Charge and Dipole - Shift the charge of the MM atom so that the overall charge and

dipole is conserved

Z0 Keep charges as they are. This MM atom will probably lead to overpolarization

Z1 Delete the charge on the MM1 atom (no overall charge conservation)

Z2 Delete the charges on the MM1 atom and on its first (MM2) neighbors (no overall charge conservation)

Z3 Delete the charges on the MM1 atom and on its first (MM2) and second (MM3) neighbors (no overall

charge conservation)

8.19.8 Embedding Types

The following embeding scheme is available:

Electrostatic The electrostatic interaction between QM and MM system is computed at the QM level. Thus,

the charge distribution of the MM atoms can polarize the electron density of the QM region. The LJ

interaction between QM and MM system is computed on the MM level.

%qmmm

Embedding Electrostatic # Electrostatic (Default)

end

8.19.9 Additional Ligands

The above described tasks to generate and merge the forcefield files can also be done during runtime. In

that case ORCA also takes care of merging the structural data. This can be useful for applications where a

protein is modeled together with a ligand in a set of different conformers, or with a set of different ligands,

or when ligands with different substituents or different protonation states are used. The molecules that are

inserted via this option are called ligands in the following, but are not restricted in terms of their chemical

composition.
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8.19.9.1 Input Format for Main System

When adding ligands first the main system needs to be defined. Its structure is provided via the regular

input, and its topology or forcefield has to be provided via the following input keywords:

%qmmm

ORCAFFFilename_Prot "main.ORCAFF.prms" # 1. Use ORCAFFFilename or

# 2. PSFFilename

PSFFilename_Prot "main.psf" # (2) can be used instead of (1) but needs

end # to be accompanied by PRMFilenames

*pdbfile 0 1 prot_wo_ligands.pdb

8.19.9.2 Input Format for Ligands

More than one additional ligand can be defined. ORCA can

• take their forcefield parameters from individual ORCAFF.prms or psf files, or

• can on-the-fly generate approximate non-bonded parameters for the ligands, see paragraph 8.18.1.1.4.

The following keywords for the ligand subblock exist:

ORCAFF ”filename.prm” ORCA forcefield file.

PSF ”filename.psf” psf file for the ligand - If the psf file is provided, the corresponding prm files must be

provided via PRMFilenames. Can be used as an alternative to ORCAFF.prms files.

C <integer> Charge of the ligand. Not necessary if ORCAFF.prms file or PSF are provided (Default 0).

M <integer> Multiplicity of the ligand. Not necessary if ORCAFF.prms file or PSF are provided (Default

1).

QM The ligand is part of the QM region. If the keyword is not given, the ligand is not part of the QM region,

unless it is (i) defined via QMAtoms, or (ii) via the pdb file if the Use QM InfoFromPDB keyword is

set to true.

ACTIVE The ligand is part of the active region. If the keyword is not given, the ligand is not part of the QM

region, unless it is (i) defined via QMAtoms, or (ii) via the pdb file if the Use Active InfoFromPDB

keyword is set to true.

In input format the ligand subblock looks as follows:

%qmmm

Ligands

"ligand1" PSF "PSFfile" ACTIVE end # use psf file for parameter generation,

# Must be accompanied by PRMFilenames,

# full ligand is active

"ligand2" ORCAFF "FFfile" ACTIVE QM end # use ORCA FF file, full ligand is active
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# and in QM region

"ligand4" end # generate simple ORCA FF File with charge 0

# and mult 1. Not active, not QM.

"ligand3" C -1 M 2 end # generate simple ORCA FF File for ligand

# with C=-1 and M=2. Not active, not QM.

"ligand5" ACTIVE QM end # generate simple ORCA FF File, C=0 and M=1,

# part active and QM region

end

end

An example input for such a calculation would be the following:

!QMMM Opt BP86 def2-TZVP def2/J

%qmmm

Use_Active_InfoFromPDB true

Use_QM_InfoFromPDB true

PSFFilename_Prot "prot_wo_ligands.psf"

Ligands

"heme.pdb" ACTIVE QM end

"substrate.xyz" ACTIVE QM end

"Fe4S4.xyz" C 2 M 19 end

"inhibitor.pdb" PSF "inhibitor.psf" ACTIVE end

end

PRMFilenames

"par_all36_prot.prm"

"par_all36_solvent.prm"

"par_all36_cgenff.prm"

end

end

*pdbfile 0 1 prot_wo_ligands.pdb

8.19.10 Available Keywords

Here we list all keywords that are accessible from within the qmmm block and that are relevant to QM/MM

calculations. Some of these keywords can also be accessed via the mm block, see section 8.18.4.

!QMMM

%qmmm

# QM and active region

QMAtoms {0:2 27:28} end # atoms that are to be treated on QM level

ActiveAtoms {0:4} end # atoms that are active

Use_Active_InfoFromPDB false # use the column for B-factor in the input pdb file for
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# the definition of the active atoms, default: false.

Use_QM_InfoFromPDB false # use the column for occupancy in the input pdb file

# for the definition of the QM atoms, default: false.

# Information about topology and force field

ORCAFFFilename "UBQ.ORCAFF.prms"# ORCA forcefield file

PSFFilename "protein.psf" # filename of the PSF file (e.g. from VMD)

PRMFilenames # filenames of PRM files (CHARMM) that contain the

"par_all36_prot.prm" # parameters for all the atom types defined in the PSF

"par_all36_solvent.prm" # file. Need to be provided if PSF file is provided.

end

# Interaction types between QM and MM region

Coupling Additive # Coupling between QM and MM: Options are:

# Additive (Default)

Embedding Electrostatic # Embedding scheme for QM embedded in MM.

# Electrostatic (Default)

# Charge alteration scheme preventing overpolarization.

ChargeAlteration CS # CS (Default)

# RCD

# Z0

# Z1

# Z2

# Z3

# Parameters for placing the shifted and redistributed charges for RCD and CS schemes.

Scale_RCD 0.5 # Defines where on the bond between MM1 and MM2 the

# shifted charge is positioned. Default: midpoint.

Scale_CS 0.06 # Defines where on the bond between MM2 and MM1/MM3 the

# shifted charge is positioned. Default: 0.06 x bond.

# The extended active region, optRegionExt, contains the atoms surrounding the active

# atoms.

ExtendActiveRegion distance # rule to choose the atoms belonging to optRegionExt.

# no - do not use optRegionExt atoms

# cov_bonds - add only atoms bonded covalently to

# active atoms

# distance (default) - use a distance criterion (VDW

# distance plus Dist_AtomsAroundOpt)

Dist_AtomsAroundOpt 1. # in Angstrom (Default 1). Only needed for

# ExtendActiveRegion distance

OptRegion_FixedAtoms {27 1288:1290 4400} end # manually define the optRegionExt

# atoms. Default: empty list.
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# Distance between QM and link atom at boundary.

Dist_C_HLA 1.09 # equilibrium distance between C and H (default 1.09 Ang)

Dist_O_HLA 0.98 # equilibrium distance between O and H (default 0.98 Ang)

Dist_N_HLA 0.99 # equilibrium distance between N and H (default 0.99 Ang)

H_Dist_FileName "QM_H_dist.txt" # filename for a file with all QM-H equilibrium

# distances that is to be used for determining

# the position of LAs

# The entire system can be split up into a main system (prot) and one or several

# ligands. Note that here the PSF or ORCA Forcefield file should be available

# for the main system.

# Options for the ligands are:

# PSF "filename"

# ORCAFF "filename"

# C <integer>

# M <integer>

# QM

# Active

ORCAFFFilename_Prot "main.ORCAFF.prms" # ORCA Forcefield Filename for the main

# system

PSFFilename_Prot "main.psf" # Alternatively, the PSF file can be provided.

Ligands

"ligand1" PSF "PSFfile" ACTIVE end # use psf file for parameter generation,

# full ligand is active, not QM.

"ligand2" ORCAFF "FFfile" ACTIVE QM end # use ORCA FF file, full ligand is active

# and in QM region

"ligand4" end # generate simple ORCA FF File with charge 0

# and mult 1. Not active, not QM.

"ligand3" C -1 M 2 end # generate simple ORCA FF File for ligand

# with C=-1 and M=2. Not active, not QM.

"ligand5" ACTIVE QM end # generate simple ORCA FF File, C=0 and M=1,

# part of active and QM region.

end

PRMFilenames # PRM files need to be provided if PSF files are

"par_all36_prot.prm" # provided for main and/or ligand systems. Here the

"par_all36_solvent.prm" # entire set of used PRM files needs to be defined.

"par_all36_cgenff.prm"

end

# Printing options. All are true by default.

PrintLevel 1 # Can be 0 to 4, 0=nothing, 1=normal, ...

PrintOptRegion true # Additionally print xyz and trj for opt region

PrintOptRegionExt true # Additionally print xyz and trj for extended opt region

PrintQMRegion true # Additionally print xyz and trj for QM region

PrintPDB true # Additionally print pdb file for entire system, is
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# updated every iteration for optimization

# Computing bonded interactions at QM-MM boundary.

DeleteLADoubleCounting true # Neglect bends (QM2-QM1-MM1) and torsions

# (QM3-QM2-QM1-MM1). Default true.

DeleteLABondDoubleCounting true # Neglect bonds (QM1-MM1)

# Computing MM nonbonded interactions within non-active region.

Do_NB_For_Fixed_Fixed true # Compute MM-MM nonbonded interaction also for

# non-active atom pairs. Default true.

# Treats all active water molecules that are treated on MM level as rigid bodies

# in optimization and MD simulation, see section "Rigid Water".

Rigid_MM_Water false # Default false.

end

*pdbfile 0 1 ubq.pdb # structure input via pdb file, but also possible via xyz file

8.20 QM/MM via Interfaces to ORCA

ORCA is easy to interface as a QM engine in pretty much any QM/MM environment, as it will accept a set

of point charges from an external file (see section 9.1.4) and it will return, in a transparent format, all the

required information for computing energies and gradients to the driving program. In our research group we

have experience with four different QM/MM environments: ChemShell, Gromacs, pDynamo and NAMD. In

the following each of the interfaces are described. Is beyond the scope of the manual to be exhaustive, and

only minimal working examples are going to be presented. These will cover mainly the technical aspects with

respect to the QM part of the QM/MM calculation. For the initial preparation of the system the user is

referred to the documentation of the driving program.

8.20.1 ORCA and Gromacs

In cooperation with the developers of Gromacs software package we developed an interface to ORCA. The

interface is available starting with Gromacs version 4.0.4 up to version 4.5.5.

As mentioned above, the initial setup has to be done with the Gromacs. In the QM/MM calculation Gromacs

will call ORCA to get the energy and the gradients of the QM atoms. The interface can be used to perform

all job types allowed by the Gromacs software package, e.g. optimizations, molecular dynamics, free energy.

In addition, for geometry optimizations we have implemented a microiterative scheme that can be requested

by setting the keyword bOpt = yes in the Gromacs .mdp file. This will cause ORCA to perform a QM

geometry optimization every time it is called by Gromacs. During this optimization ORCA will also compute

the Lennard-Jones interaction between the QM and MM atoms, and freeze the boundary atoms. This

microiterative scheme can also be used to perform a transition state optimization. If you are looking for a
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transition state and have a good initial guess for the structure, you can carry out an optimization of the MM

system and at the same time perform a transition state optimization of the QM system with ORCA via the

microiterative scheme. Since it is expensive to calculate the Hessian for each microiterative microiterative

step, the user can tell ORCA to use the (updated) Hessian matrix of the previous step via read temp Hess

in the ORCA input.

In order to allow full flexibility to the user, the information for the QM run are provided in a separate plain

text file, called GromacsBasename.ORCAINFO. When Gromacs writes the input for the ORCA calculation, it

will merge this file with the information on the coordinates, point charges, Lennard-Jones coefficients and

type of calculation (EnGrad, Opt, TSOpt).

Below is a typical example of an input file created by Gromacs, where for each Gromacs optimization step, a

full optimization of the QM-part will be performed by ORCA, instead of just doing the energy and gradient

calculation.

# Optimization step in the Lennard-Jones and point charges field of the MM atoms

! QMMMOpt

# file containing the Lennard Jones coefficients for the Lennard-Jones interaction

%LJCoefficients "temp.LJ"

# file containing the point charges for the electrostatic interaction

%pointcharges "temp.pc"

%geom

# calculate the exact Hessian before the first optimization step

Calc_Hess true

# in case of a TS optimization the updated Hessian of the previous

# TS optimization run is read instead of calculating a new one

read_temp_Hess true

end

NOTES:

• If you are using bOpt or bTS you have to take care of additional terms over the boundary. Either you

can zero out the dihedral terms of the Q2-Q1-M1-M2 configurations, or you can fix the respective Q2

atoms.

• If you want to use the ORCA constraints, you have to also put them in the Gromacs part of the

calculation.

• If there are no bonds between the QM and MM systems, the bOpt optimization of the QM system

might have convergence problems. This is the case if the step size is too large and thus QM atoms come

too close to MM atoms. The convergence problems can be circumvented by adding extra coordinates

and Hessian diagonal values for Cartesian coordinates of selected QM atoms to the set of internal

coordinates. This should be done for only few atoms that are in the boundary region.
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%geom

# add the Cartesian position of atoms 2 and 4 to the

# set of internal coordinates with a diagonal Hessian value of 0.1

Hess_Internal

{C 2 D 0.1}
{C 4 D 0.1}
end

end

8.20.2 ORCA and pDynamo

The interface with the pDynamo library is briefly documented here. It uses the same plain text files to

exchange information between the pDynamo library and ORCA. In order to have simiar functionality as

presented above, we have extended the interface to generate more complex ORCA input files by accepting

verbatim blocks of text. We have also implemented in pDynamo the capability of writing files containing

Lennard-Jones parameters.

A simple example which calculates the QM/MM energy for a small designed peptide in which the side chain

of one amino acid is treated QM is ilustrated below. For this example, a complete geometry optimization is

going to be performed during the ORCA call.

import os

import pCore

import pBabel

import pMolecule

import pMoleculeScripts

# Read the initial coordinates from the .pdb file.

system = pMoleculeScripts.PDBFile_ToSystem(

"1UAO.pdb", modelNumber=1, useComponentLibrary=True)

# Instantiate the required models.

mmmodel = pMolecule.MMModelOPLS("protein")

nbmodel = pMolecule.NBModelORCA()

qcmodel = pMolecule.QCModelORCA(

command=os.getenv("ORCA_COMMAND"),

deleteJobFiles=False, header="bp86 def2-svp qmmmopt/pdynamo",

job="chignolin", run=True)

# Assign the models to the system.

system.DefineMMModel(mmmodel)

system.DefineQCModel(

qcmodel, qcSelection=pCore.Selection([35, 36, 37, 34, 40, 41]))

system.DefineNBModel(nbmodel)

system.electronicState = pMolecule.ElectronicState(

charge=-1, multiplicity=1)

# Print a summary and calculate the energy.

https://sites.google.com/site/pdynamomodeling/tutorials/orca
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system.Summary()

system.Energy()

After the execution of the above Python program, a series of files are going to be created chignolin.inp,

chignolin.pc, chignolin.lj and ORCA is going to be called. The generated ORCA input file is listed

below.

! bp86 def2-svp qmmmopt/pdynamo

% geom

constraints

{C 0 C}

{C 1 C}

end

end

% pointcharges "chignolin.pc"

% ljcoefficients "chignolin.lj"

* xyz -1 1

H -1.0637532468 1.1350324675 2.4244220779

C -0.5230000000 0.6870000000 3.2490000000

C 0.4180000000 1.7240000000 3.8660000000

O -0.0690000000 2.7620000000 4.2830000000

O 1.6090000000 1.4630000000 3.9110000000

H -1.2240000000 0.3460000000 3.9970000000

H 0.0550000000 -0.1510000000 2.8890000000

*

There are few points that have to be raised here. Because the keyword qmmm/pdynamo was specified in the

header variable, the pDynamo library will automatically add the constraint block in the ORCA input,

which will freeze the link atoms and the QM atoms to which they are bound. It will also generate the

chignolin.lj file containing all the Lennard-Jones parameters. The important parts of this file, which is

somewhat different than the one generated by Gromacs, are listed next.

# number of atoms combination rule

138 0

# x y z sigma epsilon id

-6.778000 -1.424000 4.200000 3.250000 0.711280 -1

-6.878000 -0.708000 2.896000 3.500000 0.276144 -1

-5.557000 -0.840000 2.138000 3.750000 0.439320 -1

...

0.433000 0.826000 0.502000 2.960000 0.878640 -1

-0.523000 0.687000 3.249000 3.500000 0.276144 1

0.418000 1.724000 3.866000 3.750000 0.439320 2

-0.069000 2.762000 4.283000 2.960000 0.878640 3
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1.609000 1.463000 3.911000 2.960000 0.878640 4

-2.259000 -0.588000 1.846000 0.000000 0.000000 -1

-1.795000 2.207000 2.427000 2.500000 0.125520 -1

-1.224000 0.346000 3.997000 2.500000 0.125520 5

0.055000 -0.151000 2.889000 2.500000 0.125520 6

-0.311000 2.922000 0.557000 3.250000 0.711280 -1

...

-1.387000 -2.946000 5.106000 2.500000 0.125520 -1

# number of special pairs

22

# atom1 atom2 factor

34 32 0.000000

35 39 0.500000

40 31 0.000000

41 30 0.500000

41 32 0.500000

36 31 0.500000

40 32 0.500000

40 39 0.500000

34 31 0.000000

35 30 0.500000

34 11 0.500000

34 38 0.500000

41 31 0.000000

37 31 0.500000

34 33 0.500000

34 39 0.000000

40 30 0.500000

41 39 0.500000

34 30 0.000000

35 31 0.000000

34 42 0.500000

35 32 0.500000

The second number on the first line refers to the type of combination rule used to calculate the Lennard-Jones

interaction. It is 0 if a geometric average is used (OPLS force field), or 1 for the Lorentz-Berthelot rules

(AMBER force field). The id on the last column is -1 for MM atoms and is equal to the atom number for

the QM atoms. In this case the hydrogen link atom is atom 0. The last block of the file is composed of atom

pairs and a special factor by which their Lennard-Jones interaction is scaled. In general this factor is equal to

1, but for atoms one or two bonds apart is zero, while for atoms three bonds apart depends on the type of

force field, and in this case is 0.5.

After successful completion of the ORCA optimization run, the information will be relayed back the pDynamo

library, which will report the total QM/MM energy of the system. At this point the type QM/MM of

calculation is limited only by the capabilities of the pDynamo library, which are quite extensive.
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8.20.3 ORCA and NAMD

Since version 2.12, NAMD is able to perform hybrid QM/MM calculations. A more detailed explanation of

all available key words, setting up the calculation and information on tutorials and on the upcoming graphic

interface to VMD are available on the NAMD website.

Similar to other calculations with NAMD, the QM/MM is using a pdb file to control the active regions. An

example is shown below, where the sidechain of a histidine protonated at Nε is chosen to be the QM region.

Either the occupancy column or the b-factor column of the file are used to indicate which atom are included

in a QM area and which are treated by the forcefield. In the other column, atoms which are connecting the

QM area and the MM part are indicated similarly. To clarify which column is used for which purpose, the

keywords qmColumn and qmBondColumn have to be defined in the NAMD input.

...

ATOM 1737 CA HSE P 117 14.762 47.946 31.597 1.00 0.00 PROT C

ATOM 1738 HA HSE P 117 14.751 47.579 32.616 0.00 0.00 PROT H

ATOM 1739 CB HSE P 117 14.129 49.300 31.501 1.00 1.00 PROT C

ATOM 1740 HB1 HSE P 117 14.407 49.738 30.518 0.00 1.00 PROT H

ATOM 1741 HB2 HSE P 117 13.024 49.194 31.509 0.00 1.00 PROT H

ATOM 1742 ND1 HSE P 117 13.899 51.381 32.779 0.00 1.00 PROT N

ATOM 1743 CG HSE P 117 14.572 50.261 32.582 0.00 1.00 PROT C

ATOM 1744 CE1 HSE P 117 14.615 52.043 33.669 0.00 1.00 PROT C

ATOM 1745 HE1 HSE P 117 14.356 53.029 34.064 0.00 1.00 PROT H

ATOM 1746 NE2 HSE P 117 15.678 51.318 33.982 0.00 1.00 PROT N

ATOM 1747 HE2 HSE P 117 16.369 51.641 34.627 0.00 1.00 PROT H

ATOM 1748 CD2 HSE P 117 15.706 50.183 33.335 0.00 1.00 PROT C

ATOM 1749 HD2 HSE P 117 16.451 49.401 33.388 0.00 1.00 PROT H

ATOM 1750 C HSE P 117 13.916 47.000 30.775 0.00 0.00 PROT C

ATOM 1751 O HSE P 117 12.965 46.452 31.334 0.00 0.00 PROT O

...

NOTES:

• If one wants to include more than one QM region, integers bigger than 1 can be used to define the

different regions.

• Charge groups cannot be split when selecting QM and MM region. The reason is that non-integer

partial charges may occur if a charge group is split. Since the QM partial charges are updated in every

QM iteration, this may lead to a change in the total charge of the system over the course of the MD

simulation.

• The occupancy and b-factor columns are used for several declarations in NAMD. If two of these come

together in one simulation, the keyword qmParamPDB is used to define which pdb file contains the

information about QM atoms and bonds.

• To simplify the selection of QM atoms and writing the pdb file a set of scripts is planned to be included

in future releases of NAMD.

http://www.ks.uiuc.edu/~rcbernardi/QMMM/
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To run the calculation, the keyword qmForces on must be set. To select ORCA qmSoftware "orca" must

be specified and the path to the executables must be given to qmExecPath, as well as a directory where

the calculation is carried out (qmBaseDir). To pass the method and specifications from NAMD to ORCA
qmConfigLine is used. These lines will be copied to the beginning of the input file and can contain both

simple input as well as block input. To ensure the calculation of the gradient, the engrad keyword should be

used.

The geometry of the QM region including the selected links as well as the MM point charges are copied to the

ORCA inputfile automatically. Multiplicity and charge can be defined using qmMult and qmCharge, although

the latter can be determined automatically by NAMD using the MM parameters. It should be noted at this

point that NAMD is capable to handle more than one QM region per QM/MM calculation. Therefore for

each region, charge and multiplicity are expected. In the case of only one QM region, the input looks like the

following:

qmMult "1 1"

qmCharge "1 0"

Currently, two charge modes are available: Mulliken and CHELPG. They have to be specified in the NAMD

input using QMChargeMode and in the qmConfigLine, respectively. Different embedding schemes, point charge

schemes and switching functions are available, which will be not further discussed here. Another useful tool

worth mentioning is the possibility to call secondary executables before the first or after each QM software

execution using QMPrepProc or QMSecProc, respectively. Both are called with the complete path and name

to the QM input file, allowing e.g. storage of values during an QM/MM-MD.

It is strongly enphasized that at this points both programs are constantly developed further. For the latest

information, either the ORCA forum or the NAMD website should be consulted.

8.21 Excited State Dynamics

ORCA now can also be used to computed dynamic properties involving excited states such as absorption

spectra, fluorescence and phosphorescence rates and spectra, as well as resonant Raman spectra using

the new ORCA ESD module. We do that by solving the Fermi’s Golden Rule-like equation from Quantum

Electrodynamics analytically (see section 9.33), using a path integral approach to the dynamics, as described

in our recent papers [177,235]. The computation of these rates rely on the Harmonic approximation for the

nuclear normal modes, but as long as that holds, the results are quite close to experiment.

The theory can do most of what ORCA ASA can and some more, such as include vibronic coupling in forbidden

transitions (the so-called Herzberg-Teller effect, HT), consider Duschinsky rotations between modes of different

states, solve the equations using different coordinate systems, and etc. There are also seven new different

approaches to obtain the excited state geometry and Hessian, without necessarily having to optimize its

geometry. Many keywords and options are available, but most of the defaults would already give good results,

so let’s get into specific examples starting from the absorption spectrum. Please refer to section 9.33 to a

complete keyword list and details.
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8.21.1 Absorption Spectrum

8.21.1.1 The ideal model, Adiabatic Hessian (AH)

In order to predict absorption or emission rates, including the all vibronic transitions, ideally one needs

both the ground state (GS) and excited state (ES) geometries and Hessians. For instance if you want to

predict the absorption spectrum for benzene, which has one band above 220 nm correponding to a symmetry

forbidden excitation to the S1 state, the steps are straightforward. The GS information can be obtained from

(Sec. 8.2):

!BP86 DEF2-SVP OPT FREQ

* XYZFILE 0 1 BEN.xyz

and the ES from (Sec. 8.4.3):

!BP86 DEF2-SVP OPT FREQ

%TDDFT NROOTS 5

IROOT 1

END

* XYZFILE 0 1 BEN_S1.xyz

Assuming here DFT/TD-DFT, but you can other methods as well (see 8.21.6). Having both Hessians, the

ESD module can be called from:

!BP86 DEF2-SVP TIGHTSCF GRID4 ESD(ABS)

%TDDFT NROOTS 5

IROOT 1

END

%ESD GSHESSIAN "BEN.hess"

ESHESSIAN "BEN_S1.hess"

DOHT TRUE

END

* XYZFILE 0 1 BEN.xyz

IMPORTANT: The geometry MUST be the same as that in the GS Hessian when calling the ESD module.

You can get it from the .xyz file after geometry optimization or directly copy from the .hess file (then using

BOHRS on the input to correct the units, if you got it from the .hess).

You must give both names for the Hessians and set DOHT TRUE here, because the first transition of benzene

is symmetry forbidden with an oscillator strength of 2e-6 and thus all the intensity comes from vibronic
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coupling (HT effect) [235]. In molecules with strongly allowed transitions that usually can be left as FALSE

(the default). Some details about the calculation are printed, the derivatives of the transition dipole are

computed for the HT part and the spectrum is then saved in BASENAME.spectrum as:

Energy TotalSpectrum IntensityFC IntensityHT

10283.479953 1.772142e-02 9.949653e-08 1.772132e-02

10304.423904 1.775852e-02 9.970534e-08 1.775842e-02

10325.367855 1.779563e-02 9.991418e-08 1.779553e-02

...

The first column has the total spectrum, but the contributions from the Frank-Condon part and the Herzberg-

Teller part are also discriminated. As you can see the the FC intensity is less than 1% of the HT intensity

here, so the need to include HT effect. It is important to say that, in theory, the absorbance intensity values

correspond to the experimental ε (in L mol cm−1), and it is dependent on the spectral lineshape. The

TotalSpectrum column can be plotted using any software, obtaining the spectrum named Full AH spectrum

(in blue), in Fig. 8.33 below.
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Figure 8.33: Experimental absorption spectrum for benzene (black on the left) and some predicted
using ORCA ESD at various PES approximations.

The spectrum obtained is very close to the experimental at 298K, even simply using all the defaults and it

could be even better by changing some parameters such as lineshape discussed in detail on Sec. 8.21.2.1 and

Sec. 9.33. Of course, it is not always possible to obtain the ES geometry due to root flipping, or that might

be too costly for larger systems. Then some approximations to the ES Potential Energy Surface (PES) were

developed.

8.21.1.2 The simplest model, Vertical Gradient (VG)

The minimal approximation, called Vertical Gradient (VG), is to assume that the excited state (ES) Hessian

is equal to the GS and extrapolate the ES geometry from the ES gradient and that Hessian using some

step (Quasi-Newton or Augmented Hessian, which is the default here). Also, in this case, the simplest
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Displaced Oscillator (DO) model is used and the calculation should run very fast [235]. To use this level of

approximation, simply give an input like:

!BP86 DEF2-SVP TIGHTSCF GRID4 ESD(ABS)

%TDDFT NROOTS 5

IROOT 1

END

%ESD GSHESSIAN "BEN.hess"

DOHT TRUE

HESSFLAG VG #DEFAULT

END

* XYZFILE 0 1 BEN.xyz

OBS: If no GSHESSIAN is given, it will automatically look for an BASENAME.hess file.

It is of course necessary that you choose one of the methods in ORCA to compute the excited state information,

here we use TD-DFT/TDA and we choose IROOT 1, in order to compute the properties for that first root.

TD-DFT is currently the only method with analytic gradients for excited states so if you choose any other,

NUMGRAD will be automatically enforced. If you choose CPCM, there are only numerical gradients in all

(excited state) cases and NUMGRAD will also be set to TRUE.

If everything is right, after the normal calculation the ESD module starts, ORCA will do the step to get the

ES geometry, compute the derivatives and predict the spectrum. The calculated normalized spectrum can

be seen in Fig. 8.33, in red. Because of the rather simple model, the spectrum is also simpler. That is less

relevant to larger molecules, but still it is clear that some intermediate model would be better.

8.21.1.3 A better model, Adiabatic Hessian After a Step (AHAS)

A reasonable compromise between a full geometry optimization and a simple step with the same Hessian is

to do a step and then recalculate the ES Hessian at that geometry. That is here called Adiabatic Hessian

After Step (AHAS). In our test, it can can be evoked with the follow input:

!BP86 DEF2-SVP TIGHTSCF GRID4 ESD(ABS)

%TDDFT NROOTS 5

IROOT 1

END

%ESD GSHESSIAN "BEN.hess"

DOHT TRUE

HESSFLAG AHAS

END

* XYZFILE 0 1 BEN.xyz
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The spectrum obtained is the green one in Fig. 8.33. As it can be seen, it is really close to the AH, where a full

geometry optimization has been performed. Although it is not set as the default, this is highly recommended

from our experience [235]. Another advantage of this method is that the derivatives of the transition dipole

are simultaneously calculated over cartesian displacements on the ES structure with the numerical Hessian,

and after obtaining the modes they are simply converted.

OBS: The transition dipoles used in our formulation are always those on the geometry of the FINAL state.

For Absorption it is the ES, so in AHAS, the derivatives are already over that geometry. For Fluorescence,

the default is to recompute the derivatives over the GS geometry. Or you can choose to save time and convert

directly from ES to GS setting CONVDER TRUE (although it is an approximation). More details on Sec.

9.33.

8.21.1.4 Other PES options

There also a few other options you can set using HESSFLAG. For instance, one can calculate the vertical

ES Hessian, over the GS geometry and do a step, which is called Vertical Hessian (HESSFLAG VH)

method. This has the advantage that the geometry step is supposed to be better, for we are not assuming

the initial ES Hessian to be equal to the GS one. But you are also very likely to find negative frequencies on

that VH, since you are not on top of the ES minimum. By default, ORCA will turn the negative frequencies

positive, printing a warning if any of them was lower than -300 cm−1. You can also choose to completely

remove them (and the corresponding from the GS), by setting IFREQFLAG REMOVE or leave them as

negative with IFREQFLAG LEAVE under %ESD. Just be aware that an odd number of negative frequencies

might completely disrupt the calculation of the correlation function, so you have to check it.

If your excited state is rather localized and you don’t want to recalculate the whole Hessian, you can also

choose to do a Hybrid Hessian (HH), just recomputing the ES Hessian for some atom list given in

HYBRID HESS under %FREQ (9.22). This HH will then be based on the GS Hessian, but modified at the

selected atoms. You can compute it before or after the step, so there are two variations: Hybrid Hessian

Before Step (HESSFLAG HHBS) or Hybrid Hessian After Step (HESSFLAG HHAS). If you

choose any of these, the derivatives will be recalculated over the modes.

Yet another approach is to check where the ES Hessian is different from the GS one and just recompute the

frequencies that differ. We do that by making a displacement based on the GS Hessian and checking the

change in energy. If the mode was the same, the prediction should be exact. If the difference is above a

certain threshold, then the gradient is calculated and the frequency for that mode is recomputed. The final

ES Hessian is then calculated from the Updated Frequencies (UF) and the old GS ones. The advantage of

this is that you can avoid most of the ES gradient calculations of normal ES Hessian and speed up. The default

is to check for an error in frequencies of about 20%. You can change that with the UPDATEFREQERR

flag, for example, if you want to allow for a larger error of 50%, just set UPDATEFREQERR 0.5 under

%ESD. Again you can do the Upated Frequencies Before Step (HESSFLAG UFBS) or the Updated

Frequencies After Step (UFAS) methods. The transition dipole derivatives are calculated along with

the update.

OBS: All these options apply to Fluorescence and resonant Raman as well.
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8.21.1.5 Duschinsky rotations

The ES modes can given as linear combinations of the GS modes (see Sec. 9.33.1.1) and that is referred on

the literature as Duschinsky rotation [236]. In our formulation used in ORCA ESD, it also possible to account

for that, which is closer to the real situation, although the computation cost increases significantly. You

can allow for that by setting USEJ TRUE, otherwise the default is to set the roration matrix J to unity.

In the case of benzene, the effect is not large, but still one can see that the peak ratio of the AH with the

rotations is closer to the experiment. Feel free to play around with that, in some cases, it might be much

more significant.
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Figure 8.34: Experimental absorption spectrum for benzene (black on the left) and the effect of
Duschinsky rotation on the spectrum.

8.21.1.6 Temperature effects

In our model, the effect of the Bolzmann distribution caused by temperature is completely accounted for in a

exact way [235]. The default temperature is 298.15 K, but you can choose any other by changing TEMP

under %ESD. If you go really close to 0 K, sometimes numerical problems arise. If you need 5 K and it is not

working or want to predict a jet-cooled spectrum, just set TEMP 0, and a set of equations derived for T=0 K

will be used. As can be seen below, at 0 K there are no hot bands and fewer peaks, while at 600 K there are

many more possible transitions due to the population distribuition over the GS.

8.21.1.7 Multistate Spectrum

If you want to predict a spectrum including many different states, the IROOT flag should be ignored in all

modules and the flag STATES under %ESD should be used. For instance, in order to predict the absorption

spectra for pyrene in gas phase, considering the twenty first roots:
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Figure 8.35: Predicted absorption spectrum for benzene at different temperatures.

!B3LYP DEF2-TZVP(-F) DEF2-TZVP/C RIJDX TIGHTSCF GRID4 ESD(ABS)

%TDDFT NROOTS 20

END

%ESD GSHESSIAN "PYR.hess"

ESHESSIAN "PYR_S1.hess"

DOHT TRUE

STATES 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

UNIT NM

END

* XYZFILE 0 1 PYR.xyz

This input would result on the spectra presented in Fig. 8.36. In that case, the individual spectrum for

each state will be saved on a BASENAME.spcetrum.root1, BASENAME.spcetrum.root2, etc. and the full

spectrum, the sum of all, will be saved in BASENAME.spectrum.

OBS: The flag UNIT can be used to control the output unit of the X axis. Its values can be CM-1, NM or

EV and it only affects the OUTPUT, the INPUT should always be in cm−1

8.21.2 Fluorescence Rates and Spectrum

8.21.2.1 General Aspects

The prediction of Fluorescence rates and spectrum can be done in an analogous way to Absorption described

above, but using ESD(FLUOR) on the main input line. You can choose any of the described methods to

obtain the PES by choosing the HESSFLAG accordingly. Now, the main difference is that the transition

dipoles have to be on the geometry of the GS, but everything else is basically the same.
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Figure 8.36: Predicted absorption spectrum for pyrene in gas phase (solid blue) in comparison to
the experiment (dashed grey) at 298 K.

As you can see in Fig. 8.37 below, the Fluorescence spectrum also corresponds very well to the experimental

one [235]. The difference on the Absorption spectrum in Fig. 8.37 from the ones before is because, since the

experiment was made under a solvent, we increased the line width to match the experimental data.

OBS: It is common that the experimental lineshape changes depending on the set up and it can be controlled

from the LINEW flag (in cm−1). There are also four options for the lineshape function, controled with

the LINES flag, DELTA (for a Dirac delta), LORENTZ (default), GAUSS (for a Gaussian) and VOIGT

(a product of Gaussian and Lorenztian). If you want to control the lineshapes for GAUSS and LORENTZ

separately, you can do by setting LINEW for the Lorenztian and INLINEW for the Gaussian (the “I” comes

from Inhomogeneous Line Width).

!BP86 DEF2-SVP TIGHTSCF GRID4 ESD(FLUOR)

%TDDFT NROOTS 5

IROOT 1

END

%ESD GSHESSIAN "BEN.hess"

ESHESSIAN "BEN_S1.hess"

DOHT TRUE

LINES VOIGT

LINEW 75

INLINEW 200

END

* XYZFILE 0 1 BEN.xyz

OBS.: The LINEW and INLINEW are NOT the full width half maximum (FWHM) of these curves. However

they are related to them by: FWHMlorentz = 2× LINEW and FWHMgauss = 2.355× INLINEW . For
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Figure 8.37: Predicted absorption (right) and emission (left) spectrum for benzene in hexane at
298.15 K.

the VOIGT curve, it is a little more complicated but in terms of the other FWHMs, it can be aproximated as

FWHMvoigt = 0.5346× FHWMlorentz +
√

(0.2166× FWHM2
lorentz + FWHM2

gauss).

8.21.2.2 Rates and Examples

When you select ESD(FLUOR) on the main input, the rate will be printed on the output at the end, with

the contributions from FC and HT discriminated. If you use CPCM, it will be multiplied by the square of

the refractive index, following Strickler and Berg [237]. In case you calculate a rate without CPCM and still

want to consider the solvent, don’t forget to multiply the final rate for this factor! Here is part of an output

for a calculation with CPCM(hexane):

...

***Everything is set, now computing the correlation function***

Homogeneous linewidht is: 50.00 cm-1

Number of points: 131072

Maximum time: 1592.65 fs

Spectral resolution: 3.33 cm-1

Temperature used: 298.15 K

Z value: 5.099843e-42

Energy difference: 41049.37 cm-1

Reference transition dipole (x,y,z): (0.00004 0.00000),

(0.00002 0.00000),

(-0.00058 0.00000)
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Calculating correlation function: ...done

Last element of the correlation function: 0.000000,-0.000000

Computing the Fourier Transform: ...done

The calculated fluorescence rate constant is 1.688355e+06 s-1*

with 0.00% from FC and 100.00% from HT

*The rate is multiplied by the square of the refractive index

The fluorescence spectrum was saved in BASENAME.spectrum

In our theory paper, we studied the calculation of Fluorescence rates for the set of molecules presented in Fig.

8.38. The results are summarized in Fig. 8.39 for some of the methods to obtain the PES mentioned.
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Figure 8.38: The set of molecules studied, with rates on Fig. 8.39.

8.21.3 Phosphorescence Rates and Spectrum

8.21.3.1 General Aspects

As with Fluorescence, the Phosphorescence rates and spectrum can be calculated if spin-orbit coupling is

included in the excited state module (please refer to the relevant publication [177]). To get that, ESD(PHOSP)
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Figure 8.39: Predicted emission rates for various molecules in hexane at 298.15 K. The numbers
below the labels are the HT contribution to the rates.

has to be selected on the main input and a GSHESSIAN and a TSHESSIAN must be given. Currently, there

are no methods to extrapolate the triplet state (TS) Hessian, but it can be computed analytically anyway.

You also need to input the adiabatic energy difference between the ground singlet and the ground triplet

at their own geometry (without any ZPE correction) using the DELE flag under %ESD. An input example

using TDDFT is:

!B3LYP DEF2-TZVP(-F) TIGHTSCF RIJCOSX GRID5 GRIDX5 CPCM(ETHANOL) ESD(PHOSP) RI-SOMF(1X)

%TDDFT NROOTS 20

DOSOC TRUE

TDA FALSE

IROOT 1

END

%ESD GSHESSIAN "BIACE.hess"

TSHESSIAN "BIACE_T.hess"

DOHT TRUE

LINEW 200

DELE 17278

END

* XYZFILE 0 1 BIACE.xyz

$NEW_JOB

!B3LYP DEF2-TZVP(-F) TIGHTSCF RIJCOSX GRID5 GRIDX5 CPCM(ETHANOL) ESD(PHOSP) RI-SOMF(1X)

%TDDFT NROOTS 20

DOSOC TRUE

TDA FALSE

IROOT 2



358 8 Running Typical Calculations

END

%ESD GSHESSIAN "BIACE.hess"

TSHESSIAN "BIACE_T.hess"

DOHT TRUE

LINEW 200

DELE 17278

END

* XYZFILE 0 1 BIACE.xyz

...

OBS.: When computing phosphorescence rates, each rate must be requested individually. You may use the

$NEW JOB option, just changing the IROOT, to write everything in a single input.

Here, we set to compute the rate and spectrum for biacetyl, in ethanol at 298 K. The geometries and Hessians

were obtained under vacuum using the regular methods. In order to compute the rate, the flag DOSOC must

be set to TRUE under %TDDFT (Sec 8.4.5), or the respective module, and it is advisable to set a large

number of roots to allow for a good mixing of states. Please also note that we choose here the RI-SOMF(1X)

option for the spin-orbit coupling integrals, but any of the methods available can be used (Sec. 9.36.2).

8.21.3.2 Calculation of rates

As you can see, the predicted spectra for biacetyl (Fig. 8.40) is quite close to the experiment [177, 238]. The

calculation of the Phosphorescence rate is a little more involved, for there are three triplets that contribute

so that the observed rate must be taken as an average of the three:

kphospav =
k1 + k2 + k3

3
(8.34)

To be even more strict and account for the Boltzmann population distribution at a given temperature T

caused by the Zero Field Splitting (ZFS), one should use [239]:

kphospav =
k1 + k2e

−(∆E1,2/kBT ) + k3e
−(∆E1,3/kBT )

1 + e−(∆E1,2/kBT ) + e−(∆E1,3/kBT )
(8.35)

After completion of each calculation, the rates for the three triplets were 5.24 s−1, 0.28 s−1 and 269 s−1.

Using 8.35, the final calculated rate is about 91.50 s−1, while the best experimental value is 102.22 s−1 (at

77K) [240], with 50% deriving from the HT effect.
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Figure 8.40: The experimental (dashed red) and theoretical (solid black, displaced by about 200
cm−1) phosphorescence spectra for biacetyl, in ethanol at 298 K.

8.21.4 Intersystem Crossing Rates (unpublished)

8.21.4.1 General Aspects

Yet another application of the path integral approach is to compute intersystem crossing rates, or non-radiative

transition rates between states of different multiplicities. That can be calculated if one has two geometries,

two Hessians, and the relevant spin-orbit coupling matrix elements.

The input is similar to those discussed above. Here ESD(ISC) should be used on the main input to indicate an

InterSystem Crossing calculation and the Hessians should be given by ISCISHESSIAN and ISCFSHESSIAN

for the initial and final states, respectively. Please, be aware that the geometry used on the input file should

be the same as that of the FINAL state, given through the ISCFSHESSIAN flag. The relevant matrix

elements can be calculated from any method available in ORCA and inputed as SOCME Re,Im under %ESD

where Re and Im are its real and imaginary parts, in cm−1.

As a simple example, one could compute the excited singlet and ground triplet geometries and Hessians for

anthracene using TD-DFT, then compute the SOC matrix elements with a given triplet spin-sublevel by

the same method (see the details below), maybe even using CASSCF, MRCI, STEOM-CCSD or some other

theory level and finally obtain the ISC rates using an input such as:

!ESD(ISC) NOITER

%ESD ISCISHESSIAN "ANT_S1.hess"

ISCFSHESSIAN "ANT_T1.hess"

DELE 11548

SOCME 0.0, 2.33e-5

END

* XYZFILE 0 1 ANT_T1.xyz
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OBS.: The adiabatic energy difference is NOT computed automatically for ESD(ISC), so you must give it

on the input. That is the energy of the initial state minus the energy of the final state, each at its own

geometry.

OBS2.: All the other options concerning change of coordinate system, Duschinsky rotation and etc., are also

available here.

8.21.4.2 ISC, TD-DFT and the HT effect

In the example above, the result is an ISC rate (kISC) smaller than 1s−1, quite different from the experimental

value of 108s−1 at 77K [240]. The reason for that is, in this particular case, because the ISC happens only due

to the Herzberg-Teller effect and so it must be also included. To do that, one has to compute the derivatives

of the SOCMEs over the normal modes and that can be done currently only using CIS/TD-DFT.

When using the %CIS/TDDFT option, you can control the SROOT and TROOT flags to select which are the

singlet and triplet you want to compute the SOCME for, and the TROOTSSL flag to select which specific

triplet spin-sublevel you want to consider (1, 0 or -1).

In practice, to obtain a kISC close enough to the experimental values, one would need to consider all possible

transitions between the initial singlet and all available final states. For anthracene, those are predicted to be

the ground triplet (T1) and the first excited triplet (T2), just as observed from experiment [241], with the

next triplet (T3) being a little too high in energy to be of any relevance (Fig. 8.41 below). An example input

used to calculate the kISC from S1 to T1 at 77K is:

!B3LYP DEF2-TZVP(-F) RIJCOSX TIGHTSCF RI-SOMF(1X) ESD(ISC)

%TDDFT NROOTS 5

SROOT 1

TROOT 1

TROOTSSL 0

DOSOC TRUE

END

%ESD ISCISHESS "ANT_S1.hess"

ISCFSHESS "ANT_T1.hess"

USEJ TRUE

DOHT TRUE

TEMP 77

DELE 11548

END

* XYZFILE 0 1 ANT_T1.xyz

$NEW_JOB

!B3LYP DEF2-TZVP(-F) RIJCOSX TIGHTSCF RI-SOMF(1X) ESD(ISC)

%TDDFT NROOTS 5
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SROOT 1

TROOT 1

TROOTSSL -1

DOSOC TRUE

END

%ESD ISCISHESS "ANT_S1.hess"

ISCFSHESS "ANT_T1.hess"

USEJ TRUE

DOHT TRUE

TEMP 77

DELE 11548

END

* XYZFILE 0 1 ANT_T1.xyz

...

Figure 8.41: Scheme for the calculation of the intersystem crossing in anthracene. The kISC(i)
between the S1 and each triplet is a sum of all transitions to the spin-sublevels and
the actual observed kISCobs, a composite of them. On the right, there is a diagram
for the distribution of excited states with the E(S1)− E(Tn) on the side. Since T3 is
too high in energy, the ISC above T2 can be safely neglected

Then the derivatives of the SOCME are computed and the rates are printed in the end. By doing the same

for the T2 states and summing up all these values, a kISCobs = 1.17× 108s−1 can be predicted, much closer

to the experiment, which has a large error anyway.

OBS.: In cases where the SOCME are relatively large, say SOCME > 5cm−1, the HT effect might be

negligible and a simple Frank-Condon calculation should yield good results. That would be it for the majority

of molecules with heavy atoms, where one would not have to bother about the vibronic coupling.

OBS2.: Always have in mind that there are actually THREE triplet spin-sublevels, and the transitions from

the singlet to all of them should be included.

OBS3.: The ISC rates are extremely sensitive to the energy differences. Please take care when calculating

those. If a better excited state method can be used to predict them, one should consider doing it.
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8.21.5 Resonant Raman Spectrum

8.21.5.1 General Aspects

Using a theoretical framework similar to what was published for Absorption and Fluorescence, we also

developed a method to compute resonant Raman spectra for molecules [242]. In this implementation, one

can also use all the methods to get the ES PES mentioned before using HESSFLAG and include Duschinsky

rotations and even consider the HT effect on top of it. This calculation can be called using ESD(RR) or

ESD(RRAMAN) on the first input line. It is important to mention here that what we calculate here by

default the “Scatering Factor” or “Raman Activity”, as explained by D. A. Long [243].

When using this module, the laser energy can be controlled by the LASERE flag. If no laser energy is given,

the 0-0 energy difference is used by default. It is possible to select several energies by using LASERE 10000,

15000, 20000, etc. and if you do so, a series of files named BASENAME.spectrum.LASERE will be saved.

Also it is possible to select several states of interest using the STATES flag, but not both simultaneously.

As an example, let’s predict the rRaman spectrum of the phenoxyl radical. Again, you need at least a ground

state geometry and Hessian, and then can call the ESD using:

!PBE0 DEF2-SVP TIGHTSCF ESD(RR) RIJCOSX GRID4

%TDDFT NROOTS 5

IROOT 3

END

%ESD GSHESSIAN "PHE.hess"

LASERE 28468

END

* XYZFILE 0 2 PHE.xyz

IMPORTANT: The LASERE used on the input is NOT necessarily the same as the experimental one. It

should be proportional to the theoretical transition energy. So if the experimental 0-0 ∆E is 30000 cm−1 and

the laser is 28000 cm−1, for a theoretical ∆E of 33000 cm−1 you should use a laser energy of 31000 cm−1

to get the corresponding result! At the end of the ESD output, the theoretical 0-0 ∆E is printed for your

information.

OSB.: The actual Raman Intensity collected with any polarization at 90 degrees, the I(π/2; ‖s + ⊥s,⊥i [243]),

can be obtained by setting RRINTES to TRUE under %ESD.

And the result is in Fig. 8.42. In this case, the default method VG was used. If one wants to include solvent

effects, than CPCM(WATER) should be added and the ES gradient will be computed numerically. As can be

seen, there is a sensible difference on the main peak when calculated in water.

It is important to explicit some differences from the ORCA ASA usage here. Using the ESD module, you don’t

need to select which modes you will account for on the spectra, we use all of them. Also, we can only work at

0 K here and the maximum “Raman Order” is 2, which means we will account for all fundamental transitions,

first overtones and combination bands, without hot bands. That should be sufficient for most applications

anyway. If you have a very large system and want to reduce the calculation time, you could ask for RORDER
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Figure 8.42: The theoretical (solid black - vacuum and solid blue - water) and experimental (dashed
red - water) resonant Raman spectrum for the phenoxyl radical.

1 under the %ESD options and only the fundamentals would be accounted for. That might be relevant if you

want to include both Duschinsky rotations and HT effect, when the calculation can get very heavy. Otherwise

the rRaman spectra is printed with the different contributions from “Raman Oder” 1 and 2 separated as:

Energy TotalSpectrum IntensityO1 IntensityO2

0.000000 2.722264e-08 2.722264e-08 8.436299e-30

0.305176 2.824807e-08 2.824807e-08 9.043525e-30

0.610352 2.931074e-08 2.931074e-08 9.693968e-30

...

8.21.5.2 Isotopic Labeling

If you want to simulate the effect of isotopic labeling on the rRaman spectrum, there is no need to recalculate

the Hessian again. You can just go into the Hessian files, change the masses you want for the respective

atoms at the $atoms section (see also Sec. 8.15.3.6) and rerun ESD, such as:
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!PBE0 DEF2-SVP TIGHTSCF GRID4 RIJCOSX ESD(RR) CPCM(WATER)

%TDDFT NROOTS 5

IROOT 3

END

%ESD GSHESSIAN "PHE_WATER_ISO.hess"

ESHESSIAN "PHE_WATER_ISO.ES.hess"

END

* XYZFILE 0 2 PHE_WATER.xyz

As you can see in Fig. 8.43, the difference from the deuterated phenoxyl is clear. The peak around 1000

cm−1 is due to a C-H bend that goes to lower energy after deuteration, and the difference of about 150 cm−1

is just what was found experimentally [244].
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Figure 8.43: The theoretical (solid black - C6H5O and solid blue - C6D5O) and experimental (dashed
red) resonant Raman spectrum for the phenoxyl radical.

OBS: Whenever a ES Hessian is calculated using the HESSFLAG methods, it is saved in a file named

BASENAME.ES.hess. If want to repeat a calculation, just use that as an input and there is no need to

recalculate everything.

8.21.5.3 RRaman and Linewidths

The LINEW and INLINEW keywords control the LINES function that will be used on the calculation of the

correlation function and are related to the lifetime of the intermediate states and energy disordering, it is

NOT what will be used to create the spectrum. The spectral linewidth in this case is independent (but not

the lineshape) and must be set with the RRSLINEW keyword, being 10 cm−1 by default.

Please be aware that the LINEW and INLINEW have a big influence on the final shape of the spectrum and

should be chosen accordingly. The defaults are usually fine, but you might need to change that yourself.
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8.21.6 Tips, Tricks and Troubleshooting

• Currently, the ESD module works optimally with TD-DFT (Sec. 8.4), but also with ROCIS (Sec. 8.4),

EOM/STEOM (Sec. 8.8 and Sec. 8.9) and CASSCF/NEVPT2 (Sec. 8.1.7 and Sec 8.1.8). Of course

you can use any two Hessian files and input a custom DELE and TDIP obtained from any method (see

Sec. 9.33), if your interested only in the FC part.

• If you ask for the HT effect, calculating absorption or emission, you might have phase changes during

the displacements to get the numerical derivatives of the transition dipole moment. There is a phase

correction for TD-DFT and CASSCF, but not for the other methods. Please be aware that phase

changes might lead to errors.

• Please check the K*K value if you have trouble. When it is too large (in general larger than 7), a warning

is printed and that means the geometries might be too displaced and the harmonic approximation

might fail. You can try removing some modes using TCUTFREQ or use a different method for the ES

PES.

• When using the ESD module in general, and particularly if you are calculating derivatives or frequencies,

it is recommended to increase the integration grid for DFT to at least GRID4.

• If using DFT, the choice of functional can make a big difference on the excited state geometry, even if

it is small on the ground state. Hybrid functionals are much better choices than pure ones. In that

case, using RIJCOSX can greatly speed up your calculation.

• In CASSCF/NEVPT2, the IROOT flag has a different meaning from all other modules. In this case,

the ground state is the IROOT 1, the first excited state is IROOT 2 and so on. If your are using a

state-averaged calculation with more than one multiplicity, you need also to set an IMULT to define

the right block, IMULT 1 being the first block, IMULT 2 the second and etc.

• If using NEVPT2 the IROOT should be related to the respective CASSCF root, don’t consider the

energy ordering after the perturbation.

• After choosing any of the HESSFLAG options, a BASENAME.ES.hess file is saved with the geometry

and Hessian for the ES. If derivatives with respect to the GS are calculated, a BASENAME.GS.hess is

also saved. Use those to avoid recalculating everything over and over. If you just want to get an ES

PES, you can set WRITEHESS TRUE under %ESD and the calculation will stop after the Hessians

are ready.

• Although in principle more complete, the AH is not NECESSARILY better, for we rely on the harmonic

approximation and large displacements between geometries might lead to errors. In some cases the

VG, AHAS and so one might be better options.

• If you use these .hess files with derivatives over normal modes in one coordinate system, DO NOT

MIX IT with a different set of coordinates later! They will not be converted.

• Sometimes, low frequencies have displacements that are just too large, or the experimental modes are

too anharmonic and you might want to remove them. It is possible to do that setting the TCUTFREQ

flag (in cm−1), and all frequencies below the given threshold will be removed.

• If you want to change the parameters related to the frequency calculations, you can do that under

%FREQ (Sec. 8.3). The numerical gradient settings are under %NUMGRAD (Sec. 9.21.5).
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• When computing rates, the use of any LINES besides DELTA is an approximation. It is recommended

to compute the rate at much smaller lineshape (such as 10 cm−1) to get a better value, even if the

spectrum needs a larger lineshape than that.

• When in doubt, try setting a higher PRINTLEVEL. some extra printing might help with your particular

problem.

8.22 Compound Methods

Compound Methods is a form of sophisticated scripting language that can be used directly in the input of

ORCA. Using this the user can combine various parts of a normal ORCA calculation to evaluate custom

functions of his own. In order to explain its usage, in detail, we will use an example.

8.22.1 example

Composite methods are protocols composed by more than one calculations that are combined to produce

accurate calculated energies. One such method is the G2(MP2) [245] theory from Curtiss et al.

The G2(MP2) method [245] is defined through the following steps.

E0 = E
[
QCISD(T)/6-311G(d, p)

]
∆MP2 = E

[
MP2/6-311+G(3df, 2p)

]
− E

[
MP2/6-311G(d, p)

]
HLC = −4.81 ∗ 10−3nβ − 0.19 ∗ 10−3na

E(ZPE) = ZPE
[
HF/6-31G(d), 0.893

]
(8.36)

and then

EG2(MP2) = E0 + ∆MP2 + HLC + E(ZPE) (8.37)

For details concerning the protocol please check the referenced article.

The following ORCA input performs all the steps of such a calculation. In the folder, contained in the

downloaded ORCA version, named Contrib there will be files for the G2(MP2), G2(MP2, SV), G2(MP2,SVP)

and W2.2 methods.

# just an initial geometry

* xyz 0 1

Li 0.0000 0.0000 1.386575

Li 0.0000 0.0000 -1.386575

*

%Compound "compoundMethodRunG2_MP2"
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A few notes about this input. First, there is no simple input line, (starting with ”!”) but even if there was

one, it would have been ignored. Then a geometry is provided that will be used for the first actual calculation

that we will run. then there is also a Compound block ”Compound”.

The Compound block has the same structure like all ORCA blocks. It starts with a ”%” and ends with

”End”, if the input is not read from a file. In case the compound directives are in a file, like in the example

above, then simply the filename inside brackets is needed and no final END. In the Compound block one has

two options. It is possible to either give all the informations for the calculations and the manipulation of

the data inside the Compound block or create a normal text file with all the details and let ORCA read it.

The latter option has the advantage that one can use the same file for more than one geometries. In the

previous example we refer ORCA to an external file. The file ”compoundMethodG2 MP2.cmp”, that contains

all necessary informations, is the following:

# This is the G2(MP2) composite method based on:

# L. A. Curtiss et al. J. Chem. Phys 104, 5148, (1996)

#PAY ATTENTION TO THE NUMBER OF VALENCE ELECTRONS

# Define some variables

Variable ESmallMP2, EBigMP2, EQCISDT End

Variable DEMP2 End

Variable Scale, ZPE, ZPEScaled End

Variable aElectrons, bElectrons End

Variable alpha, beta, HLC End

Variable FinalEnergy End

# the ZPE correction from HF

# (Calculation 1)

New_Step

! HF 6-31G(d) VeryTightSCF Opt Freq

STEP_END

Read ZPE = THERMO_ZPE[1] End

# Optimize at the MP2 level with 6-31G(d)

# (Calculation 2)

New_Step

! MP2 6-31G(d) opt NoFrozenCore VeryTightSCF

STEP_END

# The MP2 correlation energy with 6-311G(d,p)

# (Calculation 3)

New_Step

!MP2 6-311G(d,p)

%method

NewNCore Li 2 End

End

Step_End
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Alias_Step SmallMP2 #Just use SmallMP2 instead of 3

# The MP2 correlation energy 6-311+G(3df,2p).

# (Calculation 4)

New_Step

!MP2 6-311+G(3df,2p)

%method

NewNCore Li 2 End

End

Step_End

Alias_Step BigMP2 #Just use BigMP2 instead of 4

#Get MP2 correlation energies from property files.

Read ESmallMP2 = MP2_Corr_Energy[SmallMP2] End

Read EBigMP2 = MP2_Corr_Energy[BigMP2] End

# Calculate the DEMP2 correction

Assign DEMP2 = EBigMP2 - ESmallMP2 End

# The total QCISD(T) energy with 6-311G(d,p)

# (Calculation 5)

New_Step

!QCISD(T) 6-311G(d,p)

%method

NewNCore Li 2 End

End

Step_End

Read EQCISDT = MDCI_Total_Energy[5] End

#For HLC correction we need the number of electrons

Read aElectrons = MDCI_CORR_ALPHA_ELECTRONS[5] End

Read bElectrons = MDCI_CORR_BETA_ELECTRONS[5] End

# The ZPE correction

Assign Scale = 0.893 End

Assign ZPEScaled = Scale*ZPE End

# The HLC correction. The alpha and beta values come from the

# referenced article.

Assign alpha = 4.81 End

Assign beta = 0.19 End

Assign HLC = (-alpha*bElectrons-beta*aElectrons)/1000 End

# Finally sum all contributions

Assign FinalEnergy = EQCISDT + DEMP2 + HLC + ZPEScaled End

END
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Let’s try to analyse now the Compound ”compoundMethodG2 MP2.cmp” file.

The first four lines are general comments. In the compound files, comments are formatted in the same way as

in the normal ORCA input, through the ”#” symbol.

# This is the G2(MP2) composite method based on:

# L. A. Curtiss et al. J. Chem. Phys 104, 5148, (1996)

# PAY ATTENTION TO THE NUMBER OF VALENCE ELECTRONS

Next is the declaration of the variables that we are going to use. The structure of the variable directive is

given in detail in 9.41.1.1. Here we only note, that it is a good practice to declare all of the variables in the

beginning of the file, so that every variable is declared before it is used. One should not forget the final

”End” to finish the definition of variables.

# Define some variables

variable ESmallMP2, EBigMP2, EQCISDT end

variable DEMP2 end

variable Scale, ZPE, ZPEScaled end

variable aElectrons, bElectrons end

variable alpha, beta, HLC end

variable FinalEnergy end

Then we proceed to the actual series of ORCA calculations. We start with two comments concerning the first

calculation. The first comment is a general comment about what the calculation is about (a Hartree-Fock

Optimization-Frequencies) and then have an additional comment concerning the index of the calculation

(Calculation 1 ). For each ORCA calculation the program connects an index. The numbering here starts from

1. Because there can be many calculations it is a good practice to add a comment referring to the index of

the current calculation.

# the ZPE correction from HF

# (Calculation 1)

Next is the directive ”New Step” that introduces a new ORCA calculation. The details for this directive

are given in 9.41.1.2. The most important thing to note for the moment, is that, in order for the compound

block to understand when the input of the current ORCA job finishes, always end the ORCA input with the

directive ”Step End”(for details please see 9.41.1.3). Between the ”New Step” directive and the ”Step End”

directive one can insert a normal ORCA input. In case not otherwise defined the geometry of the calculation

will be the one from the previous calculation.

New_Step

! HF 6-31G(d) VeryTightSCF Opt Freq

STEP_END
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In the previous example the first calculation is a Frequency calculation using HF method with 6-31G(d) basis

set. During this stage ORCA will actually create a separate ORCA Input file named ”basename compound n.inp”,

where ”n” is the index of the calculation. Then it will run it as a normal calculation. The output file will

be redirected to the ”basename.out” file but all other files will have specific names for each step. Most

importantly the property file corresponding to this step will be the ”basename compound n property.txt”.

The next line reads the value of the, already declared, variable ”ZPE” from the property file with the index

1. In order to do so we use the directive Read (for details please see 9.41.1.5).

Read ZPE = THERMO_ZPE[1] End

Please do not forget the final ”END”. In this specific case the ”ZPE” variable corresponds to the Zero Point

Energy. It will read its value from the corresponding property file. There is a number of predefined variables

that the program will recognise and read. The full list of these predefined variables is given in Table 9.25.

Next we have another ORCA calculation (Calculation 2) that will produce the final geometry for the rest of

the calculations.

# Optimize at the MP2 level with 6-31G(d)

# (Calculation 2)

New_Step

! MP2 6-31G(d) NoFrozenCore VeryTightSCF

STEP_END

Next step (Calculation 3) is a calculation with MP2 method using the 6-311G(d,p) basis set. This calculation

will assume the geometry from the previous geometry optimization.

# The MP2 correlation energy with 6-311G(d,p)

# (Calculation 3)

New_Step

!MP2 6-311G(d,p)

%method

NewNCore Li 2 end

end

Step_End

A technical detail, regarding the method itself, is the use of the ”NewNCore” directive. We use it here

because the number of core electrons is not the same among programs and for Li atom, ORCA does not keep

any electrons frozen. In the accompanying *.cmp file that we supply with ORCA we do not use this directive

so one has to choose if he will add this directive or not.

A new feature that is introduced in this step is the ”Alias Step” directive (for details please see 9.41.1.4).

This is a way to replace the number of the step with something that can be more representative of the step,

in this case ”SmallMP2”.
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Alias_Step SmallMP2 # Just use SmallMP2 instead of 3

Then one can use this string instead of the number of the step in combination with the ”Read” directive.

The ”Alias Step” directive works always for the previous step.

Next step (Calculation 4) is again an MP2 calculation but this time using the larger 6-311+G(3df,2p) basis

set. Again after this step we use an alias.

# The MP2 correlation energy 6-311+G(3df,2p).

# (Calculation 4)

New_Step

!MP2 6-311+G(3df,2p)

%method

NewNCore Li 2 end

end

Step_End

Alias_Step BigMP2 # Just use BigMP2 instead of 4

In what follows we use the ”Read” directive to get the values of the correlation energy for the two preceding

MP2 calculations. What is important to notice here, is the use of ”SmallMP2” and ”BigMP2” in the place

of numbers 3 and 4 because we had them previously aliased.

Read ESmallMP2 = MP2_Corr_Energy[SmallMP2] End

Read EBigMP2 = MP2_Corr_Energy[BigMP2] End

In the next step we use the second way we have to assign values to variables. This is the ”Assign” directive

(for details please see 9.41.1.6). Please do not forget the final ”End”. Here we assign to the previously

declared ”DEMP2” variable a value, using the variables ”SmallMP2” and ”BigMP2”.

# Calculate the DEMP2 correction

Assign DEMP2 = EBigMP2 - ESmallMP2 End

We perform one more calculation, (Calculation 5), using QCISD(T) with 6-311G(d,p) and the corresponding

total energy is read from the property file.

# The total QCISD(T) energy with 6-311G(d,p)

# (Calculation 5)

New_Step

!QCISD(T) 6-311G(d,p)

%method

NewNCore Li 2 end

end
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Step_End

Read EQCISDT = MDCI_Total_Energy[5] End

From that point on we read some additional variables and evaluate a few more.

# For HLC correction we need the number of electrons

read aElectrons = MDCI_CORR_ALPHA_ELECTRONS[5] end

read bElectrons = MDCI_CORR_BETA_ELECTRONS[5] end

assign Scale = 0.893 end

assign ZPEScaled = Scale*ZPE end

# The HLC correction. The alpha and beta values come from the

# referenced article.

assign alpha = 4.81 end

assign beta = 0.19 end

assign HLC = (-alpha*bElectrons-beta*aElectrons)/1000 end

Finally we assign the variable ”FinalEnergy” that should produce the G2(MP2) energy for the molecule.

# Finally sum all contributions

assign FinalEnergy = EQCISDT + DEMP2 + HLC + ZPEScaled end

8.22.2 Compound Simple Input

An alternative way to use the compound method is through the simple input line. The syntax there is:

Compound[method name]

currently the only method names that are recognised are ”W2.2”, ”G2(MP2)”, ”G2(MP2,SV)” and

”G2(MP2,SVP)”. A compound calculation using the simple input would look like this:

#Use of compound in simple input

! Compound[G2(MP2)]

*xyz 0 1

Li 0.0 0.0 0.0

Li 0.0 0.0 2.5

*

When one runs the calculation of a compound method using the simple input, ORCA automatically also

generates and stores on disk the corresponding cmp file.
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8.22.3 Compound Output

Information about the Compound block is printed by default in three different places. One is the normal

ORCA output file, the second is a text file named ”basename Summary.txt” and potentially there is a third

file named ”basename CustomSummary.txt”.

8.22.3.1 ORCA Output File

The first part with information about the compound block comes in the normal output file.After all ORCA

calculations have finished, the ORCA output prints a summary of all declared variables. The variables are

printed in the order they were declared. For each variable the ”Variable Name” is the name the user chose,

in the input file, and the ”Value” gives the final numerical value of the variable. In the following we present

the summary of the previous calculation.

----------------------------------------------------------------------------------------------

COMPOUND BLOCK

SUMMARY OF VARIABLES

----------------------------------------------------------------------------------------------

Variable Name Value Evaluation String

------------- ----- -----------------

ESMALLMP2 | -0.0186125748 | TMP2Energy.corrEnergy[3]

EBIGMP2 | -0.0206168937 | TMP2Energy.corrEnergy[4]

EQCISDT | -14.9000433638 | TMDCIEnergy.totalEnergy[5]

DEMP2 | -0.0020043189 | EBIGMP2-ESMALLMP2

SCALE | 0.8930000000 | 0.893

ZPE | 0.0007778815 | TTHERMOEnergy.ZPE[1]

ZPESCALED | 0.0006946482 | SCALE*ZPE

AELECTRONS | 1 | TMDCIEnergy.numOfAlphaCorrEl[5]

BELECTRONS | 1 | TMDCIEnergy.numOfBetaCorrEl[5]

ALPHA | 4.8100000000 | 4.81

BETA | 0.1900000000 | 0.19

HLC | -0.0050000000 | (-ALPHA*BELECTRONS-BETA*AELECTRONS)/1000

FINALENERGY | -14.9063530345 | EQCISDT+DEMP2+HLC+ZPESCALED

****ORCA TERMINATED NORMALLY****

We see that the value we finally get for the total energy is -14.90635. For the same molecule the value the

authors give in the article [245] is -14.90640, so there is a minor deviation of 0.05 mHartree, which we believe

is due to the technical differences of the programs used.

8.22.3.2 Summary File

The second place where ORCA saves results for the compound block is the file ”basename Summary.txt”.

This is a text file with more detailed information concerning the defined variables. Again the ordering follows
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the ordering of the declaration. For the example of paragraph 8.22.1 the last three defined variables look like

this:

-----------------------------------------------

---------------Details of variable-------------

Variable Name : BETA

Variable ORCAName : BETA

Array index : 0

Step index : 5

Geometry Index : -1

Property Index : -1

Is Array : 0

isFunction : 1

isPredefined : 0

Object Name :

Object Member :

evalString : 0.19

Data type : 0

Value : 0.190000

-----------------------------------------------

---------------Details of variable-------------

Variable Name : HLC

Variable ORCAName : HLC

Array index : 0

Step index : 5

Geometry Index : -1

Property Index : -1

Is Array : 0

isFunction : 1

isPredefined : 0

Object Name :

Object Member :

evalString : (-ALPHA*BELECTRONS-BETA*AELECTRONS)/1000

Data type : 0

Value : -0.005000

-----------------------------------------------

---------------Details of variable-------------

Variable Name : FINALENERGY

Variable ORCAName : FINALENERGY

Array index : 0

Step index : 5

Geometry Index : -1

Property Index : -1
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Is Array : 0

isFunction : 1

isPredefined : 0

Object Name :

Object Member :

evalString : EQCISDT+DEMP2+HLC+ZPESCALED

Data type : 0

Value : -14.906353

8.22.3.3 CustomSummary File

The third optional output of compound information is possible through the use of the ”print” directive (for

details please see paragraph 9.41.1.7. If in the cmp file used before we add, before the final end, the following

lines:

print (" ------- Customized printing for G2(MP2) ---------")

print ("The small MP2 energy is: %12.6f While the big MP2 energy

is %12.6f", ESmallMP2, EBigMP2)

print ("The QCISD(T) energy is %12.6f", EQCISDT)

print ("The Final Energy calculated with G2(MP2) is %12.6f", FinalEnergy)

then a new file will be created with the name basename CustomSummary.txt file will be created and it should

contain the following text.

------- Customized printing for G2(MP2) ---------

The small MP2 energy is: -0.018612 While the big MP2 energy is -0.020617

The QCISD(T) energy is -14.900043

The Final Energy calculated with G2(MP2) is -14.906353



376

9 Detailed Documentation

9.1 More on Coordinate Input

We will now enter the detailed discussion of the features of ORCA. Note that some examples are still written

in the “old syntax” but that there is no need for the user to adopt that old syntax. The new one works as

well.

9.1.1 Fragment Specification

The atoms in the molecule can be assigned to certain fragments. This helps to organize the output in the

population analysis section, is used for the fragment optimization feature, for the local energy decomposition

and for multi-level calculations. There are two options to assign atoms to fragments. The first option is

to assign a given atom to a given fragment by putting a (n) directly after the atomic symbol. Fragment

enumeration starts with fragment 1!

%coords

CTyp xyz # the type of coordinates xyz or internal

Charge -2 # the total charge of the molecule

Mult 2 # the multiplicity = 2S+1

coords

Cu(1) 0 0 0

Cl(2) 2.25 0 0

Cl(2) -2.25 0 0

Cl(2) 0 2.25 0

Cl(2) 0 -2.25 0

end

end

In this example the fragment feature is used to divide the molecule into a “metal” and a “ligand” fragment

and consequently the program will print the metal and ligand characters contained in each MO in the

population analysis section.

Alternatively you can assign atoms to fragments in the geom block:
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*xyz -2 2

Cu 0 0 0

Cl 2.25 0 0

Cl -2.25 0 0

Cl 0 2.25 0

Cl 0 -2.25 0

*

%geom

Fragments

1 {0} end # atom 0 for fragment 1

2 {1:4} end # atoms 1 to 4 for fragment 2

end

end

NOTE

• With the second option (geom-fragments) the %geom block has to be written after the coordinate

section.

• geom-fragments also works with coordinates that are defined via an external file.

• For the geom-fragments option the atoms are assigned to fragment 1 if no assignment is given.

9.1.2 Defining Geometry Parameters and Scanning Potential Energy Surfaces

ORCA lets you define the coordinates of all atoms as functions of user defined geometry parameters. By

giving not only a value but a range of values (or a list of values) to this parameters potential energy surfaces

can be scanned. In this case the variable RunTyp is automatically changed to Scan. The format for the

parameter specification is straightforward:

%coords

CTyp internal

Charge 0

Mult 1

pardef

rCH = 1.09; # a C-H distance

ACOH = 120.0; # a C-O-H angle

rCO = 1.35, 1.10, 26; # a C-O distance that will be scanned

end

coords

C 0 0 0 0 0 0

O 1 0 0 {rCO} 0 0

H 1 2 0 {rCH} {ACOH} 0

H 1 2 3 {rCH} {ACOH} 180
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end

end

In the example above the geometry of formaldehyde is defined in internal coordinates (the geometry functions

work exactly the same way with cartesian coordinates). Each geometrical parameter can be assigned as a

function of the geometry parameters by enclosing the function braces, “{}”. For example a function may

look like {0.5*cos(Theta)*rML+R}. Note that all trigonometric functions expect their arguments to be in

degrees and not radians. The geometry parameters are expected to be defined such that the lengths come

out in Ångströms and the angles in degrees. After evaluating the functions the coordinates will be converted

to atomic units. In the example above the variable rCO was defined as a “Scan parameter”. Its value will

be changed in 26 steps from 1.3 down to 1.1 and at each point a single point calculation will be done. At

the end of the run the program will summarize the total energy at each point. This information can then

be copied into the spreadsheet of a graphics program and the potential energy surface can be plotted. Up

to three parameters can be scan parameters. In this way grids or cubes of energy (or property) values as a

function of geometry can be constructed.

If you want to define a parameter at a series of values rather than evenly spaced intervals, the following

syntax is to be used:

%coords

CTyp internal

Charge 0

Mult 1

pardef

rCH = 1.09; # a C-H distance

ACOH= 120.0; # a C-O-H angle

rCO [1.3 1.25 1.22 1.20 1.18 1.15 1.10]; # a C-O distance that will be scanned

end

coords

C 0 0 0 0 0 0

O 1 0 0 {rCO} 0 0

H 1 2 0 {rCH} {ACOH} 0

H 1 2 3 {rCH} {ACOH} 180

end

end

In this example the C-O distance is changed in seven non-equidistant steps. This can be used in order

to provide more points close to a minimum or maximum and fewer points at less interesting parts of the

surface.

A special feature has also been implemented into ORCA - the parameters themselves can be made functions

of the other parameters as in the following (nonsense) example:
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%coords

CTyp internal

Charge 0

Mult 1

pardef

rCOHalf= 0.6;

rCO = { 2.0*rCOHalf };
end

coords

C 0 0 0 0 0 0

O 1 0 0 {rCO} 0 0

O 1 0 0 {rCO} 180 0

end

end

In this example the parameter rCO is computed from the parameter rCOHalf. In general the geometry is

computed (assuming a Scan calculation) by (a) incrementing the value of the parameter to be scanned, (b)

evaluating the functions that assign values to parameters and (c) evaluating functions that assign values

to geometrical variables. Although it is not mandatory it is good practice to first define the static or

scan-parameters and then define the parameters that are functions of these parameters.

Finally ORCA has some special features that may help to reduce the computational effort for surface scans:

%method

SwitchToSOSCF true

# switches the converger to SOSCF

# after the first point. SOSCF may

# converge better than DIIS if the

# starting orbitals are good.

# default = false

ReducePrint true # reduce printout after the first

# point default=true

# The initial guess can be changed after the first

# point. The default is MORead. The MOs of the pre-

# vious point will in many cases be a very good guess

# for the next point. In some cases however, you may

# want to be more conservative and use a general guess.

ScanGuess OneElec # the one electron matrix

Hueckel # the extended Hueckel guess

PAtom # the PAtom guess

PModel # the PAtom guess

MORead # MOs of the prev. point

end

NOTE:



380 9 Detailed Documentation

• You can scan along normal modes of a hessian using the NMScan feature as described in section 9.23.8.9.

• The surface scan options are also supported in conjunction with TD-DFT/CIS or MR-CI calculations

(see section 9.23.8.7).

9.1.3 Mixing internal and Cartesian coordinates

In some cases it may be practical to define some atomic positions in Cartesian and some in internal coordinates.

This can be achieved by specifying all coordinates in the *int block: using “0 0 0” as reference atoms

indicates Cartesian coordinates. Note that for the first atom the flags are “1 1 1”, as “0 0 0” would be the

normal values for internal coordinates. Consider, for example, the relaxed surface scan from section 8.2.8,

where the methyl group is given first in an arbitrary Cartesian reference frame and then the water molecule

is specified in internal coordinates:

! UKS B3LYP SV(P) TightSCF Opt SlowConv

%geom scan B 4 0 = 2.0, 1.0, 15 end end

* int 0 2

# First atom - reference atoms 1,1,1 mean Cartesian coordinates

C 1 1 1 -0.865590 1.240463 -2.026957

# Next atoms - reference atoms 0,0,0 mean Cartesian coordinates

H 0 0 0 -1.141534 2.296757 -1.931942

H 0 0 0 -1.135059 0.703085 -2.943344

H 0 0 0 -0.607842 0.670110 -1.127819

# Actual internal coordinates

H 1 2 3 1.999962 100.445 96.050

O 5 1 2 0.984205 164.404 27.073

H 6 5 1 0.972562 103.807 10.843

*

Internal and Cartesian coordinates can thus be mixed in any order but it is recommended that the first 3

atoms are specified in Cartesian coordinates in order to define a unique reference frame.

9.1.4 Inclusion of Point Charges

In some situations it is desirable to add point charges to the system. In ORCA there are two mechanisms to

add point-charges. If you only want to add a few point charges you can “mask” them as atoms as in the

following (nonsense) input:
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# A water dimer

! BP86 def2-SVP

* xyz 0 1

O 1.4190 0.0000 0.0597

H 1.6119 0.0000 -0.8763

H 0.4450 0.0000 0.0898

Q -0.834 -1.3130 0.0000 -0.0310

Q 0.417 -1.8700 0.7570 0.1651

Q 0.417 -1.8700 -0.7570 0.1651

*

Here the “Q”’s define the atoms as point charges. The next four numbers are the magnitude of the point

charge and its position. The program will then treat the point charges as atoms with no basis functions and

nuclear charges equal to the “Q” values.

If you have thousands of point charges to treat, as in a QM/MM calculation, it is more convenient, and

actually necessary, to read the point charges from an external file as in the following example:

# A water dimer

! BP86 def2-SVP

% pointcharges "pointcharges.pc"

* xyz 0 1

O 1.4190 0.0000 0.0597

H 1.6119 0.0000 -0.8763

H 0.4450 0.0000 0.0898

*

The program will now read the file “pointcharges.pc” that contains the point-charge information and then

call the module orca pc which adds the point charge contribution to the one-electron matrix and the nuclear

repulsion. The file “pointcharges.pc” is a simple ASCII file in the following format:

3

-0.834 -1.3130 0.0000 -0.0310

0.417 -1.8700 0.7570 0.1651

0.417 -1.8700 -0.7570 0.1651

The first line gives the number of point charges. Each consecutive line gives the magnitude of the point

charge (in atomic units) and its position (in Angström units!). However, it should be noted that ORCA
treats point charges from an external file differently than ”Q” atoms. When using an external point charge

file, the interaction between the point charges is not included in the nuclear energy. This behavior originates
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from QM/MM, where the interactions among the point charges is done by the MM program. These programs

typically use an external point charge file when generating the ORCA input. To add the interaction of the

point charges to the nuclear energy, the DoEQ keyword is used either in the simple input or the %method block

as shown below.

# A non QM/MM pointcharge calculation

!DoEQ

% pointcharges "pointcharges.pc"

%method

DoEQ true

end

9.2 Cartesian Index Conventions for EPR and NMR Tensors

The NMR shielding tensor σ and the EPR g and A tensors are in general nonsymmetric matrices. It is

therefore important to know the conventions used with regard to their cartesian indices. These conventions

stipulate the order of the vector–matrix–vector multiplications in the respective spin Hamiltonians. Unless

stated otherwise, ORCA adopts the following conventions:

For the NMR shielding tensor the nuclear Zeeman Hamiltonian assumes the form:

HI = −gNβNB(1− σ)I, (9.1)

where B is the applied magnetic field vector.

For the EPR g and A tensors the EPR spin Hamiltonian assumes the form:

HS = βeBgS + SAI. (9.2)

9.3 Choice of Computational Model

9.3.1 Features Common to All Calculations

The computational model is specified in the block %method. The following choices exist:

%method

Method HFGTO # Hartree-Fock with GTOs (synonym HF)

DFGTO # Density Functional with GTOs (syn. DFT)

MP2 # Second order Moeller-Plesset

CNDO # complete neglect of differential overlap
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INDO # intermediate neglect of d. o.

NDDO # neglect of diatomic d. o.

end

In the case of Hartree-Fock calculations [59] nothing else is required in this block. Density functional

calculations [246,247] need slightly more attention.

The RunType (=type of calculation to be performed) is chosen as follows:

%method

RunTyp Energy # single point calc. (default)

Gradient # single point energy and gradient

Opt # Geometry optimization

MD # Molecular dynamics

Scan # scan of geometric parameters

end

You can tell the main program the explicit names and positions of the other modules. In this way you could

in principle also interface your own programs to ORCA as long as they respect the input/output conventions

used in ORCA (which are, however, reasonably complicated).

%method

#*** the name of the SCF program

ProgSCF "MySCFProg.exe"

#*** the name of the GTO integral program

ProgGTOInt "MyGTOIntProg.exe"

#**** the name of the MP2 module

ProgMP2 "MyProgMP2.exe"

#*** the name of the plot program

ProgPlot "MyPlotProgram.exe"

#*** the name of the SCF gradient program

ProgSCFGrad "MySCFGradientProg.exe"

#*** the name of the geometry relaxation program

ProgGStep "MyProgGStep.exe"

#*** the name of the molecular dynamics program

ProgMD "MyProgMD.exe"

#*** the name of the moment integral program

ProgMom "MyProgMom.exe"

# *** the name of the EPR/NMR module

ProgEPRNMR "MyProgEPRNMR.exe"

#*** the name of the CP-SCF program

ProgCPSCF "MyProgCPSCF.exe"

# *** the name of the CI-singles and TD-DFT module

ProgCIS "MyProgCIS.exe"
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# *** the name of the Relativistics module

ProgREL "MyProgREL.exe"

end

For example, if the executables are all located in the same run directory (and the PATH variable contains

this directory!) use:

%method

ProgSCF "orca_scf.exe"

ProgGTOInt "orca_gtoint.exe"

ProgMP2 "orca_mp2.exe"

ProgPlot "orca_plot.exe"

ProgSCFGrad "orca_scfgrad.exe"

ProgGStep "orca_gstep.exe"

ProgMD "orca_md.exe"

ProgMom "orca_mom.exe"

ProgCPSCF "orca_cpscf.exe"

ProgEPRNMR "orca_eprnmr.exe"

ProgCIS "orca_cis.exe"

ProgRel "orca_rel.exe"

ProgMDCI "orca_mdci.exe"

end

9.3.2 Density Functional Calculations

9.3.2.1 Choice of Functional

Basic Choice of Density Functional. If you are doing a DFT calculation [246, 247], the following

choices for local and gradient corrected density functionals are available (see also simple input keywords in

section 6.2.2):

%method

# Choices for ‘‘Functional’’. If no reference is given,

# look further below for the references for individual

# exchange and correlation parts

Functional

#***************************************

# Local functionals

#***************************************

HFS # Hartree-Fock Slater (Slater exchange only)

XAlpha # The famous old Slater Xa theory

LSD # Local spin density (VWN-5A form)

VWN5 # Local spin density (VWN-5)



9.3 Choice of Computational Model 385

VWN3 # Local spin density (VWN-3)

PWLDA # Local spin density (PW-LDA)

#***************************************

# ‘‘Pure’’ GGA functionals

#***************************************

BNULL # Becke ’88 exchange, no corr.

BVWN # Becke ’88 exchange, VWN-5 corr.

BP # Becke ’88 X-Perdew 86 correlation

PW91 # Perdew-Wang GGA-II ’91 func.

mPWPW # Modified PW with PW correlation

mPWLYP # same with LYP correlation

BLYP # Becke X with LYP correlation

GP # Gill ’96 X, Perdew ’86 corr.

GLYP # Gill ’96 X with LYP correlation

PBE # Perdew-Burke-Ernzerhof

revPBE # Revised PBE (exchange scaling) [248]

RPBE # Revised PBE (functional form of X) [249]

PWP # PW91 exchange + P86 correlation

OLYP # the optimized exchange and LYP

OPBE # the optimized exchange and PBE

XLYP # the Xu/Goddard exchange and LYP

B97-D # Grimme’s GGA including D2 dispersion correction

B97-D3 # Grimme’s GGA including D3 dispersion correction

PW86PBE # as used for vdw-DF and related [250] [251] [252]

RPW86PBE # revised version of the exchange functional [253]

#***************************************

# Meta GGA functionals

#***************************************

M06L # Truhlar’s semi-local functional [254]

TPSS # the TPSS functional

revTPSS # revised TPSS [255] [256]

SCANfunc # Perdew’s SCAN functional [257]

#***************************************

# Hybrid functionals

#***************************************

B1LYP # One parameter Hybrid of BLYP

B3LYP # Three parameter Hybrid of BLYP [258]

B1P # Analogous with Perdew correlation

B3P # Analogous with Perdew correlation

G1LYP # 1 par. analog with Gill 96 X

G3LYP # 3 par. analog with Gill 96 X

G1P # similar with P correlation

G3P # similar with P correlation

PBE0 # 1 parameter version of PBE [259]

PWP1 # 1 parameter version of PWP (analogous to PBE0)
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M06 # Truhlar’s 2006 low-HF hybrid [260]

M06-2X # Truhlar’s 2006 high-HF hybrid [260]

mPW1PW # 1 parameter version of mPWPW (analogous to PBE0)

mPW1LYP # 2 parameter version of mPWLYP (analogous to PBE0)

PW91_0 # 1 parameter version of PW91 (analogous to PBE0)

O3LYP # 3 parameter version of OLYP [261]

X3LYP # 3 parameter version of XLYP [262]

PW6B95 # Hybrid functional by Truhlar [263]

B97 # Becke’s original hybrid

BHANDHLYP # Half-and-half Becke hybrid functional [264]

#***************************************

# Range-Separated Hybrid functionals

#***************************************

wB97 # Head-Gordon’s fully variable DF [127]

wB97X # Head-Gordon’s DF with minimal Fock exchange [127]

wB97X-D3 # Chai’s refit incl. D3 correction [128]

wB97X-V # Head-Gordon’s DF with nonlocal correlation [129]

wB97X-D3BJ # Head-Gordon’s DF with D3BJ correction [131]

CAM-B3LYP # Handy’s fit [125]

LC-BLYP # Hirao’s original application [126]

#***************************************

# Meta Hybrid functionals

#***************************************

TPSSh # hybrid version of TPSS with 10% HF exchange

TPSS0 # hybrid version of TPSS with 25% HF exchange

#***************************************

# Double-Hybrid functionals (mix in MP2)

#***************************************

B2PLYP # Grimme’s 2006 double-hybrid [110]

mPW2PLYP # Schwabe/Grimme improved double-hybrid [111]

B2GP-PLYP # Martin’s refit of B2PLYP [113]

B2K-PLYP # Martin’s refit of B2PLYP [113]

B2T-PLYP # Martin’s refit of B2PLYP [113]

PWPB95 # Recent Grimme double-hybrid [114]

#***************************************

# Range-Separated Double-Hybrid functionals

#***************************************

wB2PLYP # Goerigk’s range-separated DHDF for excitation energies [132]

wB2GP-PLYP # Goerigk’s range-separated DHDF for excitation energies [132]

end

Note that Functional is a compound key. It chooses specific values for the variables Exchange, Correlation

and ACM described below. If given as a simple input keyword, in some cases, it will also activate a dispersion

correction. You can explicitly give these variables instead or in addition to Functional. However, make sure

that you specify these variables after you have assigned a value to Functional or the values of Exchange,
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Correlation and ACM will be reset to the values chosen by Functional.

Empirical Parameters in Density Functionals. Some of the functionals incorporate empirical parameters

that can be changed to improve agreement with experiment. In ORCA there is some freedom to change

functional parameters. Currently there are several parameters that can be changed (other than the parameters

used in the hybrid functionals). The first of these parameters is α of Slaters Xα method. Theoretically

it has a value of 2/3 and this is used in the HFS and LSD functionals. However, exchange is about 10%

underestimated by this approximation (a very large number!) and a value around 0.70-0.75 seems to be better

for molecules. The second parameter is the parameter β for Becke’s gradient corrected exchange functional.

Becke has determined the value 0.0042 by fitting the exchange energies for rare gas atoms. There is some

evidence that with smaller basis sets for molecules a slightly smaller value such as 0.0039 gives improved

results. The final parameter is the value κ occuring in the PBE exchange functional. It has been given the

value 0.804 by Perdew et al. in order to satisfy the Lieb-Oxford bound. Subsequently other workers have

argued that a larger value for this parameter (around 1.2) gives better energetics and this is explored in

the revPBE functional. Note that it also has been shown that while revPBE gives slightly better energetics

it also gives slightly poorer geometries. Within the PBE correlation functional, there is also the βC (not

to be confused with the β exchange parameter in Becke’s exchange functional). Its original value in the

PBE functional is βC = 0.066725, but modified variants exist, e.g., the PBEsol functional, or the PBEh-3c

compound method. Furthermore, the µ parameter in the PBE exchange functional may be modified. In the

original formulation it is related to βC via µ = βC
π2

3 , but has been changed in the latter variants as well.

%method

XAlpha 0.75 # Slater’s alpha parameter (default 2/3)

XBeta 0.0039 # Becke’s beta parameter

# (default 0.0042)

XKappa 0.804 # PBE(exchange) kappa parameter (default 0.804)

CBetaPBE 0.066725 # PBE(correlation) beta (default 0.066725)

XMuePBE 0.21952 # PBE(exchange) mue parameter (default 0.21952)

end

Specifying Exchange and Correlation approximations individually. The following variables are

available for specifying the exchange and correlation approximations individually and to construct user

defined hybrid or “extended” hybrid functionals:

%method

Exchange X_NOX # no exchange

X_SLATER # Slaters local exchange [265] [266]

X_B88 # Becke 88 gradient exchange [267]

X_G96 # Gill 96 gradient exchange [268]

X_PW91 # Perdew-Wang 91 gradient exchange [269] [270]

X_mPW # Adamo-Barone modification of PW [271]

X_PBE # PBE exchange [252]

X_RPBE # RPBE [249]

X_OPTX # Hoe/Cohen/Handy’s optimized exchange [272]

X_X # Xu/Goddard [262]
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X_TPSS # TPSS meta GGA exchange [273]

X_B97D # Grimme’s modified exchange for the B97-D GGA [1]

X_B97BECKE # Becke’s original exchange for the B97 hybrid [274]

X_SCAN # Perdew’s constrained exchange for the SCAN mGGA [257]

Correlation C_NOC # no correlation

C_VWN5 # Local VWN-V parameters [275]

C_VWN3 # Local VWN-III parameters [275]

C_PWLDA # Local PW ’91 [276]

C_P86 # Perdew ’86 correlation [277]

C_PW91 # Perdew-Wang ’91 correlation [269]

C_PBE # PBE correlation [252]

C_LYP # LYP correlation [278]

C_TPSS # TPSS meta-GGA correlation [273]

C_B97D # Grimme’s modified correlation for the B97-D GGA [1]

C_B97BECKE # Becke’s original correlation for the B97 hybrid [274]

C_SCAN # Perdew’s constrained correlation for the SCAN mGGA [257]

# for hybrid functionals. Reference, Becke [264]

ACM ACM-A, ACM-B, ACM-C

# ACM-A: fraction of HF-exchange in hybrid DFT

# ACM-B: scaling of GGA part of DFT exchange

# ACM-C: scaling of GGA part of DFT correlation

# "extended" hybrid functional

ScalLDAC 1.0 # scaling of the LDA correlation part

ScalMP2C 0.0 # fraction of MP2 correlation mixed into

# the density functional

end

Hybrid Density Functionals. The hybrid DFs [264, 279] are invoked by choosing a nonzero value for

the variable ACM. (ACM stands for “adiabatic connection model”). Specifically, these functionals have the

following form:

EXC = aEX
HF + (1− a)EX

LSD + bEX
GGA + EC

LSD + cEC
GGA (9.3)

Here, EXC is the total exchange/correlation energy, EX
HF is the Hartree-Fock exchange, EX

LSD is the local

(Slater) exchange, EX
GGA is the gradient correction to the exchange, EC

LSD is the local, spin-density based

part of the correlation energy and EC
GGA is the gradient correction to the correlation energy. This brings

us to a slightly awkward subject: several hybrid functionals with the same name give different values in

different programs. The reason for this is that they either choose slightly different default values for the

parameters a, b and c and or they differ in the way they treat the local part of the correlation energy. Different

parameterizations exist. The most popular is due to Vosko, Wilk and Nusair (VWN, [275]). However, VWN

in their classic paper give two sets of parameters - one in the main body (parameterization of RPA results;

known as VWN-III) and one in their table 5 of correlation energies (parameterization of the Ceperley/Alder

Monte Carlo results; known as VWN-V). Some programs choose one set, others the other. In addition a

slightly better fit to the uniform electron gas has been produced by Perdew and Wang [276]. The results
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from this fit are very similar to what the parameters VWN5 produce (the fit to the Ceperley Alder results)

whereas VWN3 (fit to the RPA results) produces quite different values. To be short - in ORCA almost all

functionals choose PWLDA as the underlying LDA functional. A special situation arises if LYP is the correlation

functional [278]. LYP itself is not a correction to the correlation but includes the full correlation. It is therefore

used in the B3LYP method as:

EC
B3LYP = EC

LSD + c
(
EC

LYP − EC
LSD

)
(9.4)

In ORCA VWN5 is chosen for the local correlation part. This choice is consistent with the TurboMole

program [280–282] but not with the Gaussian program [283]. However, the user has full control over this

point. You can choose the underlying local part of any correlation functional with the variable LDAOpt:

%method

LDAOpt C_PWLDA

C_VWN5

C_VWN3

end

Specifying C VWN3 for LDAOpt together with Functional=B3LYP should give results very close to the B3LYP

functional as implemented in the Gaussian series of programs1.

In particular for the popular B3LYP functional the following aliases are defined in order to facilitate

comparisons with other major electronic structure packages:

%method

Functional B3LYP # consistent with TurboMole

B3LYP_TM # consistent with TurboMole

# = Functional= B3LYP

# LDAOpt = C_VWN5;

B3LYP_G # consistent with Gaussian

# = Functional= B3LYP

# LDAOpt = C_VWN3;

end

One Parameter Hybrid Density Functionals. A few words on the one parameter hybrid methods

appears in order. Through the underlying LDA dependence of the three parameter hybrids different programs

give different answers because they differ in the underlying LDA. On the other hand, it has recently been

argued from theoretical reasoning that the optimal mixing ratio for DFT and HF exchange is 0.25 [285].

Furthermore numerical calculations have shown that the results of using this fixed ratio and not scaling

the GGA correlation or exchange are as good as the original three parameter hybrids [286]. I personally

sympathize with these ideas because they are based on theory and they remove some arbitrariness from the

hybrid procedures. Also the slightly higher HF-exchange (0.25 in favor of 0.20 used in the original three

1There is some evidence that the version used in the Gaussian program gives miniscule better results in molecular
applications then the TurboMole variant but the differences are very small [284]
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parameter hybrids) is, I believe, in the right direction. Thus the one parameter hybrids have the simple

form:

EXC = EX
DFT + a′

(
EX

HF − EX
DFT

)
+ EC

DFT (9.5)

with a′ = 1
4 which is the same as putting: a = a′, b = 1− a′ and c = 1 in the three parameter hybrids and

this is how it is implemented. The one parameter hybrid PBE0 has been advertised as a hybrid functional of

overall well balanced accuracy [259].

Extended “double-hybrid” functionals. In addition to mixing the HF-exchange into a given DF, Grimme

has proposed to mix in a fraction of the MP2 correlation energy calculated with hybrid DFT orbitals. [110]

Such functionals may be refered to as “extended” hybrid functionals. Grimme’s expression is:

EXC = aEHFX + (1− a)EDFTX + (1− c)EDFTC + cEMP2
C (9.6)

Such functionals can be user-defined in ORCA as follows:

%method

ScalHFX = a

ScalDFX = 1-a

ScalGGAC = 1-c

ScalLDAC = 1-c

ScalMP2C = c

end

Grimme recommends the B88 exchange functional, the LYP correlation functional and the parameters a=0.53

and c=0.27. This gives the B2PLYP functional which appears to be a fair bit better than B3LYP based on

Grimme’s detailed evaluation study.

Presently, this methodology covers single points, analytic gradients (hence all forms of geometry optimization,

relaxed scans, and transition state searches), and frequencies and other second derivatives (without the frozen

core approximation in the MP2 part). Note that you need to choose %mp2 density relaxed end in order

to get the correct response density which is consistent with first order properties as analytic derivatives.

By default this density is not calculated since its construction adds significant overhead to the calculation.

Therefore you have to specifically request it if you want to look at the consistent density. You can also choose

%mp2 density unrelaxed end which would give you the unrelaxed (expectation value like) density of the

method at considerably less computational cost. However, this is not recommended since the changes to the

relaxed density are considerable in our experience and the unrelaxed density has a much weaker theoretical

status than its relaxed counterpart.

Range-separated hybrid functionals. ORCA supports functionals based on the error function splitting

of the two-electron operator used for exchange as first realized by Hirao and coworkers [124]:

r−1
12 = erfc(µ · r12) · r−1

12︸ ︷︷ ︸
SR

+ erf(µ · r12) · r−1
12︸ ︷︷ ︸

LR

(9.7)
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where erf(x) = 2√
π

∫ x
0

exp(−t2)dt and erfc(x) = 1− erf(x). Note that the splitting is only applied to exchange;

one-electron parts of the Hamiltonian, the electron-electron Coulomb interaction and the approximation for

the DFT correlation are not affected. Later, Handy and coworkers generalized the ansatz to: [125]

r−1
12 =

1− [α+ β · erf(µ · r12)]

r−1
12︸ ︷︷ ︸
SR

+
α+ β · erf(µ · r12)

r−1
12︸ ︷︷ ︸
LR

(9.8)

The splitting has been described in graphical form (according to Handy and coworkers), along the terminology

of ORCA, in Figure 9.1:

0 ∞
r
12

0%

20%

40%

60%

80%

100%

α, ACM-A

β, RangeSepScal

ACM-B

DFT exchange

exact exchange

Figure 9.1: Graphical description of the Range-Separation ansatz. The gray area corresponds to
Hartree-Fock exchange. α and β follow Handy’s terminology. [125]

The splitting has been used to define the ωB97 family of functionals where the short-range part (SR) is

described by DFT exchange and the long-range part by exact exchange/Hartree-Fock exchange. The same is

true for CAM-B3LYP and LC-BLYP. It is possible to use a fixed amount of Hartree-Fock exchange (EXX)

and/or a fixed amout of DFT exchange in this ansatz.

Functional Keyword fixed EXX variable part µ/bohr-1 fixed DFT-X Reference

ωB97 WB97 — 100% 0.40 — [127]

ωB97X WB97X 15.7706% 84.2294% 0.30 — [127]

ωB97X-D3 WB97X-D3 19.5728% 80.4272% 0.25 — [128]

ωB97X-V WB97X-V 16.7% 83.3% 0.30 — [129]

ωB97X-D3BJ WB97X-D3BJ 16.7% 83.3% 0.30 — [131]

CAM-B3LYP CAM-B3LYP 19% 46% 0.33 35% [125]

LC-BLYP LC-BLYP — 100% 0.33 — [126]

The currently available speed-up options are RIJONX and RIJCOSX. Otherwise, integral-direct single-

point calculations, calculations involving the first nuclear gradient (i.e. geometry optimizations), frequency

calculations, TDDFT, TDDFT nuclear gradient, and EPR/NMR calculations are the only supported job

types thus far. In principle, it is possible to change the amount of fixed Hartree-Fock exchange (ACM-A) and

the amount of variable exchange (RangeSepScal) and µ, though this is not recommended. The amount of

fixed DFT Exchange (ACM-B) can only be changed for CAM-B3LYP and LC-BLYP. In other words, ACM-B
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is ignored by the ωB97 approaches, because no corresponding µ-independent exchange functional has been

defined.

! RKS CAM-B3LYP SVP RIJONX def2/J

%method

RangeSepEXX True # must be set

RangeSepMu 0.25 # should not be set to 0.0 or below

RangeSepScal 0.7 # should sum to 1 with ACM-A and ACM-B

ACM 0.2, 0.1, 1.0 # ACM-A, ACM-B, ACM-C

end

* xyz 0 1

H 0.0 0.0 0.0

H 0.0 0.0 0.7

*

Note: For information on the ACM formalism, see preceding section called “Specifying Exchange and

Correlation approximations individually”. While it is technically possible to choose an exchange functional

that has no µ-dependence, this makes conceptually no sense.

9.3.2.2 Libxc Functionals

Since ORCA 4.2 it is possible to use the functionals provided by Libxc2 within the ORCA framework. The

Libxc version used by ORCA is printed at the beginning of the output (at the time of writing: version 4.2.3).

For reference, see [287].

The complete list of functionals available via the Libxc interface can always be inpected by typing at the

command line

orca -libxcfunctionals

The list of functionals has the following form:

Functionals available via LibXC:

No.: ID / Name

0: 1 / lda_x

1: 2 / lda_c_wigner

2: 3 / lda_c_rpa

3: 4 / lda_c_hl

4: 5 / lda_c_gl

5: 6 / lda_c_xalpha

6: 7 / lda_c_vwn

2https://tddft.org/programs/libxc/

https://tddft.org/programs/libxc/
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7: 8 / lda_c_vwn_rpa

8: 9 / lda_c_pz

9: 10 / lda_c_pz_mod

10: 11 / lda_c_ob_pz

11: 12 / lda_c_pw

12: 13 / lda_c_pw_mod

13: 14 / lda_c_ob_pw

14: 15 / lda_c_2d_amgb

15: 16 / lda_c_2d_prm

16: 17 / lda_c_vbh

17: 18 / lda_c_1d_csc

18: 19 / lda_x_2d

19: 20 / lda_xc_teter93

20: 21 / lda_x_1d

...

Correlation functionals carry a ’ c ’ in their names, exchange functionals an ’ x ’, whereas combined

exchange correlation functionals carry an ’ xc ’.

Specification of Libxc functionals follows along the lines of the standard ORCA style:

%method

method dft

functional hyb_gga_xc_b3lyp

end

or in the case of separate specifications

%method

method dft

exchange mgga_x_m06_l

correlation mgga_c_m06_l

end

The Libxc interface does not provide the flexibility of the standard ORCA functional definitions, that is, it is

not possible to modify internal function parameters. All functionals are supposed to be used as they are.

At this time there are restrictions for the Libxc interface in ORCA namely

1. 2nd derivatives are not supported for Meta-GGAs

2. CAM like funcionals are not supported

3. Double-hybrid functionals are not supported
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9.3.2.3 Choice of Integration Grid

The next subject of importance for the DFT calculation is the size of the integration grid for numerical

integration. Three-dimensional numerical quadrature is necessary due to the complicated analytical form of

the exchange-correlation potential (and energy). The expressions for these quantities are so complicated that

there is no hope of finding analytical solutions to the required integrals and some numerical approximation,

commonly three-dimensional numerical integration, is necessary. The numerical integration [288–293] is a

major step in any DFT calculation and if the RI approximation [291–297] is used for the Coulomb part it

usually dominates the total wall clock time.

Accuracy. The good news about the numerical integration is that the effort only increases approximately

linearly with the molecular size such as to make calculations on relatively large molecules not prohibitive

[290, 298–300]. The bad news about numerical integration is that it is not trivial to make it highly accurate.

Especially if you choose relatively small grids it is advisable to check that the results are converged (say to at

least ≈1 mEh) by reconverging the calculation with a larger grid (Grid) and higher radial integral accuracy

(IntAcc). As a rule of thumb the error in the numerically integrated total electron density is on the same

order of magnitude as the error in the numerically integrated XC energy [289]3. Therefore the program prints

this information each iteration (Num. Int. El. : . . . ).

Rotational Invariance. Through the very fact that a grid is used, the total energy depends on the

molecular orientation which is of course unphysical [301, 302]. Unless the integration grid is large enough

to make the dependence negligible it is therefore not a good idea to calculate closely related molecules in

grossly different orientations. This unpleasant feature arises because ORCA does not yet have a “standard

orientation” for molecules like other programs. Note that other programs also have that rotational variance

problem but they hide it through employment of a standard orientation. Grid free methods to integrate

the XC part are known [303–305] and they remove these problems. However, they will probably not be

implemented in the near future into ORCA because they have a less favorable computational scaling than

the numerical integration, requiring a large additional O(N3) diagonalization at each iteration.

Choice of Grid. Several default grids are available in ORCA. They are chosen by specifying the variable

Grid.

%method

Grid 0 # product grid

1 # Lebedev 50 (not recommended)

2 # Lebedev 110 points (default for SCF iterations)

3 # Lebedev 194 points (more accurate)

4 # Lebedev 302 points (default for FinalGrid)

5 # Lebedev 434 points (large)

6 # Lebedev 590 points (larger)

7 # Lebedev 770 points (very large)

end

Like Functional, Grid is merely a compound variable that affects several other variables that control the

details of grid design. Any of these variables can be specified after Grid in order to change the default values.

3Actually, the XC energy and potential are somewhat smoother than the density itself leading to the expectation
that the error in the density is a pessimistic estimate of the error in the XC energy.
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In general the grid consists of a series of radial shells around each atom and an angular grid for each radial

shell.

Specifying Grid parameters Individually. A particular radial integration method4 is determined by

specifying RadialGrid. In my hands, the default, GaussChebyshev [289,306], is the most efficient and it is

not recommended to change to EulerMcLaurin [290, 298–300] integration. The number of radial points is

determined by the parameter IntAcc. From IntAcc the number of radial shells for a given atom is computed

as (taken from Krack and Köster [306] ε = 10−IntAcc):

nrad (A) = −5 (3 log ε− nA + 8) (9.9)

where nA is the row of the periodic table of element A. The defaults for IntAcc range from ≈3.7 to ≈5.5.5 It

is not recommended to go below 3.5. AngularGrid specifies the largest angular grid to be used (see below).

If SimpleGrid is chosen a product integration is performed over the angular variables with a Gauss-Legendre

integration for θ and equally spaced points for ϕ [290, 298–300]. This integration is useful because it is open

ended - the number of points can be increased ad infinitum. It is however, difficult to imagine situations

where the largest Lebedev grid is still too small. The Lebedev grids [307–313] are generally more efficient

(theoretically by a factor 1.5). For the SimpleGrid the parameter NThetaMax is the number to multiply nrad

with to obtain the maximum number of θ points for a given atom. The number of ϕ points is automatically

chosen for a given θ based on a recommendation by Treutler and Ahlrichs and avoids crowding of points near

the poles [289].

Finally BFCut and WeightCut are thresholds. If a gridpoint has a weight smaller than WeightCut it is simply

neglected (Becke scheme). If the weight scheme is chosen according to Weight AtomXC, the grid point is also

neglected if it gives a contribution of <WeightCut to the promolecular density which is constructed from a

superposition of spherically symmetric atomic densities. BFCut determines when to neglect the contribution

of a given basis function to a given gridpoint or the contribution of a given basis function product to the

total density at a given gridpoint. There was extensive experimentation with these values and they should

probably not be changed. In particular, the results may be quite sensitive to WeightCut (larger values are

not recommended) but should be quite stable with BFCut (smaller values should not change the energy

appreciably but may significantly raise the computation time).

%method

RadialGrid GaussChebyshev # (default)

EulerMcLaurin

AngularGrid Lebedev50 # =1

Lebedev110 # =2

Lebedev194 # =3 (default)

Lebedev302 # =4

Lebedev434 # =5

Lebedev590 # =6

4For the experts - ORCA always uses the mapping M3 and also the atomic size adjustments of Treutler and Ahlrichs
in the radial integration.

5In general it is usually the angular integration that limits the accuracy. Thus it is a questionable strategy to choose
a small angular grid and then increase IntAcc to a large value.
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Lebedev770 # =7

SimpleGrid # =0

IntAcc 5.0 # determines no. of radial points

NThetaMax 0.7 # only for AngularGrid=0

GridPruning 0 # no Pruning

1 # Grid pruning algorithm 1

2 # Grid pruning algorithm 2 (no longer there)

3 # Grid pruning algorithm 3 (default)

4 # Adaptive grid pruning (no longer there)

WeightScheme Weight_Becke # default. The Becke weight scheme

Weight_AtomXC # Choose weights from

# superposition of atomic

# exchange densities. Good choice

# for DFT!

HGridReduced true # Reduce grids for H and He by one

# unit (recommended)

BFCut 1e-10 # basis fcn. cut. Is adjusted according to

# convergence tolerances

WeightCut 1e-14 # grid weight cut. default: 1e-14

end

Grid pruning. Like most other programs ORCA “prunes” the angular grids [290,298–300]. It is well known

that the radial shells close to the nucleus need less angular grid points to achieve high accuracy while those

in the bonding region need larger angular grids. Taking this into account one can save large numbers of grid

points (and therefore computation time) by using smaller angular grids close to the nuclei. There was some

experimentation with this feature and the defaults should probably not be changed.

• GridPruning=3 Here the radial integration is divided into five domains that defined through the

numbers γ1 to γ4 [290,298–300]. There are spheres defined by γiRmax, where Rmax is Clementi’s radius

of the outermost valence orbital [314]. The angular grids are used in order ng-3, ng-2, ng-1, ng, ng-1

where ng is the size of the largest angular grid. For example for AngularGrid=4 the Lebedev grids

with 50, 110, 194, 302, 194 points are used in the domains one to five. In my experience this leads to

significant reduction in the number of points as well as small errors (on the order of some µEh) relative

to the unpruned grids of the same size.

Default Grids Having specified the individual parameters, the default grids are characterized by the

following settings:

Gridc AngularGrid IntAcc H,Hed Li-Ned Na-Ard K-Krd

0 SimpleGrid 4.34a 30 35 40 45

1 Lebedev50 4.34 30 35 40 45

2 Lebedev110 4.34 30 35 40 45

3 Lebedev194 4.34 30 35 40 45

4 Lebedev302 4.67 30 35 40 45

5 Lebedev434 5.01 35 40 45 50
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6 Lebedev590 5.34 40 45 50 55

7 Lebedev770 5.67 45 50 55 60

a NThetaMax=0.4 for Grid 0.

b The choice of IntAcc was such that there is no further improvement in the accuracy with more radial points

c for all grids GridPruning=3, RadialGrid=GaussChebyshev, HGridReduce=true (except grid 0)

d Number of radial points

If no value for Grid is specified in the input, Grid=2 is used for the SCF iterations and Grid=4 for the final

energy (vide infra).

Multigrid feature. The TurboMole developers [280–282] have advocated a method where the SCF iterations

are done with a small grid and gradients and final energies are evaluated on a larger, more accurate grid [289].

Overall this gives a substantial improvement in speed with no significant loss in accuracy as long as the

smaller grid for the SCF iterations is large enough such that it does not produce significant errors in the final

density.

Using the multigrid feature in ORCA is essentially very easy:

%method

FinalGrid 4 # grid to use for the final energy

# evaluation

end

The grid parameters of the final grid can also be individually specified:

%method

RadialGrid_fin GaussChebyshev

AngularGrid_fin Lebedev434

IntAcc_fin 5.0

NThetaMax_fin 0.7

GridPruning_fin 0

WeightScheme_fin Weight_Becke

HGridReduced_fin true

end

By default the multigrid feature is used and the final grid defaults to grid 4. If you do not want to use the

multigrid feature you have to specify:

%method

UseFinalGrid false

End

Or

! NoFinalGrid

CAUTION:
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• if you use a large grid (i.e. Grid=6) and forget to turn off the multigrid feature the energies you get

are only as accurate as Grid 4.

Post-SCF-GGA Option. For many molecules the cost of evaluating the XC energy and potential on a

three dimensional grid will dominate the overall computational cost. At the GGA level (functionals other than

the local density approximation, LSD and HFS, that incorporate the density gradient) it is often found that

the self-consistent electron distribution is rather similar to that obtained from a LSD calculation. However,

LSD calculations need a little bit less time because the derivatives of the basis functions at the grid points

are not needed. It may therefore be a sensible approach to calculate the self-consistent electron and spin

densities at the LSD level and then obtain the final total energy at the GGA level. This was advocated by the

ADF developers.

This feature is invoked in ORCA by using:

%method

PostSCFGGA true

end

What this does is to use the PWLDA local approximation in the SCF iterations and obtain the final energy at

whatever functional was chosen in the input file.

More recent test calculations reveal that the performance gain from using this feature is truly

minimal while the errors introduced in the final energies are large. Further use of this feature

is therefore strongly discouraged.

SpecialGrid Option. Sometimes you will like to increase the integration accuracy for some atoms that

need special care while it is not necessary to enlarge the grid generally. This situation for example arises

when the basis set contains very steep functions on a few atoms that are required in order to calculate core

properties such as isotropic hyperfine couplings. ORCA provides you with a basic mechanism to increase the

radial integration accuracy for a few atoms while maintaining the chosen grid for all others.

%method

# a maximum of 64 assignments can be made

# in = 0 : no changes are made

# in > 0 : the grid will be changed for all atoms with

# atomic number=in to IntAcc=an

# in < 0 : only the specific n’th atom will have its

# IntAcc value changed to an

SpecialGridAtoms i1, i2, i3,...,in;

SpecialGridIntAcc a1,a2,a3,...,an;

end

9.3.2.4 Using the RI-J Approximation to the Coulomb Part

A very useful approximation that greatly speeds up DFT calculations unless the molecule gets very large

is the so called “RI-approximation” [291–297]. RI stands for “Resolution of the identity”. In short, charge
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distributions arising from products of basis functions are approximated by a linear combination of auxiliary

basis functions.

φi (~r)φj (~r) ≈
∑
k

cijk ηk(r) (9.10)

There are a variety of different possibilities to determine the expansion coefficients cijk . A while ago Almlöf

and coworkers [315] have shown that for the approximation of electron repulsion integrals the best choice is

to minimize the residual repulsion6.

Define:

Rij ≡ φi (~r)φj (~r)−
∑
k

cijk ηk (~r) (9.11)

and

Tij =

∫ ∫
Rij (~r)

1

|~r − ~r′|Rij (~r) d3rd3r′ (9.12)

and determine Tij =
∫ ∫

Rij (~r) 1
|~r−~r′|Rij (~r) d3rd3r′, leading to

cij = V−1tij (9.13)

where:

tijk =
〈
φiφj

∣∣r−1
12

∣∣ ηk〉 (9.14)

Vij =
〈
ηi
∣∣r−1

12

∣∣ ηj〉 (9.15)

Thus an ordinary two electron integral becomes:

〈
φiφj

∣∣r−1
12

∣∣φkφl〉 ≈∑
p,q

cijp c
kl
q Vpq (9.16)

=
∑
p,q

Vpq
∑
r

(
V−1

)
pr
tijr
∑
s

(
V−1

)
qs
tkls

=
∑
r,s

(
V−1

)
rs
tijr t

kl
s (9.17)

6But note that the basic theory behind the method is known for a long time, at least since the late sixties have
methods similar to the RI approximation been used, mainly in the context of “approximate ab initio methods”
such as LEDO, PDDO and MADO but also in density functional theory in the mid and late seventies by Baerends,
Dunlap and others [291–293,297]
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and the total Coulomb energy becomes (P is the total density matrix):

EJ =
∑
i,j

∑
k,l

PijPkl
〈
φiφj

∣∣r−1
12

∣∣φkφl〉 (9.18)

≈
∑
i,j

∑
k,l

PijPkl
∑
r,s

(
V−1

)
rs
tijr t

kl
s

=
∑
r,s

(
V−1

)
rs

∑
i,j

Pijt
ij
r︸ ︷︷ ︸

Xr

∑
k,l

Pklt
kl
s︸ ︷︷ ︸

Xs

(9.19)

In a similar way the Coulomb contribution to the Kohn-Sham matrix is calculated. There are substantial

advantages from this approximation: the quantities to be stored are the matrix V−1 which depends only on

two indices and the three index auxiliary integrals tijr . This leads to a tremendous data reduction and storage

requirements relative to a four index list of repulsion integrals. Furthermore the Coulomb energy and the

Kohn-Sham matrix contributions can be very quickly assembled by simple vector/matrix operations leading

to large time savings. This arises because each auxiliary basis function ηk (~r) appears in the expansion of

many charge distributions φi (~r)φj (~r). Unfortunately a similar strategy is less easily (or with less benefit)

applied to the Hartree-Fock exchange term. In addition, the two and three index electron repulsion integrals

are easier to compute than the four index integrals leading to further reductions in processing time.

If the auxiliary basis set {η} is large enough, the approximation is also highly accurate. Since any DFT

procedure already has a certain, sometimes sizable, error from the noise in the numerical integration of the

XC part it might be argued that a similarly large error in the Coulomb part is perfectly acceptable without

affecting the overall accuracy of the calculation too much. Furthermore the errors introduced by the RI

method are usually much smaller than the errors in the calculation due to basis set incompleteness in the

first place. I therefore recommend the use of the RI procedure for pure DFs. However, one should probably

not directly mix absolute total energies obtained from RI and non-RI calculations because the error in the

total energy accumulates and will rise with increasing molecular size while the errors in the relative energies

will tend to cancel.

There are several choices for AUX basis sets described in the next section which depend on the choice of the

primary GTO basis used to expand the molecular orbitals7.

In ORCA all that is needed to invoke the RI approximation is to type:

%method

RI on # do use the RI-J approximation

off # do not use the RI-J approximation

end

7 It probably should be noted that a slightly awkward step in the procedure is the inversion of the auxiliary integral
matrix V which can easily become very large. Matrix inversion is an O(N3) process such that for large molecules
this step takes some real time. However, in ORCA this is only done once during the calculation whereas other
programs that constrain the fit to also exactly reproduce the number of electrons need to perform a similar process
each iteration. Starting from Version 2.2.09 ORCA implements Cholesky decomposition in favor of matrix inversion
which removes any bottleneck concerning the solution of the linear equation system.
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Recall:

• If you use RI you must specify an auxiliary basis set in the %basis section. Do not rely on the program

to make an automatic choice for you.

9.3.2.5 The Split-RI-J Coulomb Approximation

There is an improved version of the RI-algorithm that has been implemented in version 2.2.09. This algorithm

yields the same Coulomb energy as the standard RI-algorithm but is significantly faster if the basis set

contains many high angular momentum functions (d-, f-, g-functions). For small basis sets there is virtually no

difference between the two algorithms except that Split-RI-J uses more memory than standard RI. However,

calculations with ca. 2000 basis functions need about 13 MB extra for Split-RI-J which is a trivial requirement

on present day hardware.

The Split-RI-J algorithm is invoked with:

! Split-RI-J

Split-RI-J is presently only available for SCF calculations. The gradient, coupled-perturbed Kohn-Sham and

TD-DFT modules will use the standard RI approximation instead.

NOTE:

• The Split-RI-J algorithm is the default if RI is turned on via ! RI. If you do not want to use Split-RI-J

please insert the keyword ! NoSplit-RI-J

9.3.2.6 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJONX)

The RI approximation can be used, although with less benefit, for hybrid DFT and Hartree-Fock (RHF

and UHF) calculations. In this case a different algorithm8 is used that allows a fair approximation to the

Hartree-Fock exchange matrix. It can be difficult to make this approximation highly accurate. It is, however,

usefully fast compared to direct SCF if the molecule is “dense” enough. There are special auxiliary basis sets

for this purpose (see section 6.3).

%method

RI on # do use the RI approximation

end

%basis

Aux "def2/JK"

end

8 This algorithm was described by Kendall and Früchtl [294].
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NOTE: There has been little experimentation with this feature. It is provided on an experimental basis

here.

Another feature that was implemented is to use the RI method for the Coulomb term and the standard

treatment for the exchange term. This method is called RIJONX because the exchange term should tend

towards linear scaling for large molecules. You can use this feature for Hartree-Fock and hybrid DFT

calculation by using:

%method

RI on # do use the RI approximation

RIFlags 1 # ...but treat exchange exactly

end

# equivalently use the following keyword AND DON’T FORGET

# TO ASSIGN AN AUXILIARY BASIS SET!

! RIJONX

The requirements for the auxiliary basis are the same as for the normal RI-J method.

9.3.2.7 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX)

The aim of this approximation is to efficiently compute the elements of exchange-type matrices:9

Kµν =
∑
κτ

Pκτ (µκ|ντ) (9.20)

where P is some kind of density-type matrix (not necessarily symmetric) and the two-electron integrals are

defined over the basis set {ϕ} by:

(µκ|ντ) =

∫
µ(r1)κ(r1)ν(r2)τ(r2)r−1

12 dr1dr2 (9.21)

The approximation pursued here can be written as follows:

Kµν ≈
∑
g

Xµg

∑
τ

Aυτ (rg)
∑
κ

PκτXκg (9.22)

Here the index g refers to grid points rg and:

Xκg = w1/2
g κ(rg) (9.23)

9 The theory of this approach together with all evaluations and implementation details is described in [108]. References
to earlier work can also be found there
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Aυτ (rg) =

∫
ν(r)τ(r)

|r− rg|
dr (9.24)

where wg denotes the grid weights. Thus, the first integration is carried out numerically and the second one

analytically. Note that this destroys the Hermitian character of the two-electron integrals.

Equation 9.22 is perhaps best evaluated in three steps:

Fτg = (PX)τg (9.25)

Gνg =
∑
τ

Aντ (rg)Fτg (9.26)

Kµν = (XG+)µν (9.27)

As such the equations are very similar to the pseudo-spectral method extensively developed and discussed by

Friesner and co-workers since the mid 1980s and commercially available in the Jaguar quantum chemistry

package. The main difference at this point is that instead of Xκg there appears a least-square fitting operator

Qκg in Friesner’s formulation. Note that an analogue of the fitting procedure has also been implemented in

ORCA, which however does not need specially optimized grids as in Friesner’s pseudospectral method. The

basic idea is to remove the grid errors within the basis set by “fitting” the numerical overlap to the analytical

one. Due to its nature, overlap fitting is supposed to work better with larger basis sets.

Given the exchange matrix, the exchange energy is given by (a sum over spin cases is left out here for

simplicity):

EX =
1

2

∑
µν

PµνKµν(P) (9.28)

Assuming that EX refers to the nonrelativistic, variational SCF exchange energy, the derivative with respect

to parameter λ can be re-arranged to the following form:

∂EX
∂λ

≈ 2
∑
g

∑
µν

∂Fµg
∂λ

Gνg (9.29)

with:

∂Fµg
∂λ

= w1/2
g

∑
κ

Pκµ
∂Xµg

∂λ
(9.30)

In this formulation, the gradient arises as a minor modification of the exchange matrix formation code.

In particular, the derivatives of the analytic integrals are not needed, merely the derivatives of the basis

functions on the grid.
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In our implementation, we have defined grids of increasing quality. Higher and more accurate (and more

expensive) grids for the COSX approximation are chosen by increasing n from 1 to 9 in

! GridXn

From version 2.9, overlap fitting is used by default. This means that there might be some differences with

respect to previous versions. Firstly, smaller grids are used by default. The old default grid can be retained

by typing

! GridXOLD

If consistency with previous versions of ORCA is desired, overlap fitting can be removed using the keyword

!NoSFitting. Note that overlap fitting yields better results as the basis and/or the grid increases. It was

adapted as the default procedure with the smallest reliable grid, but it is compatible with all possible grids.

Grids tested in the overlap fitting paper are available as !GridXS1 and !GridXS2. [316] The latter grid is the

default.

For expert users, the grid parameters for the exchange grids can be even more finely controlled:

%method

IntAccX Acc1, Acc2, Acc3

GridX Ang1, Ang2, Ang3

XCorrection Corr1, Corr2, Corr3

UseFinalGridX true

end

There are three grids involved: the smallest grid (Acc1, Ang1) that is used for the initial SCF iterations, the

medium grid (Acc2, Ang2) that is used until the end of the SCF and the largest grid (Acc3, Ang3) that is

used for the final energy and the gradient evaluations. UseFinalGridX turns this last grid on or off. “Accn”

refers to the radial integration accuracy, GridX refers to the angular grid resolution and XCorrection (=0 or

1) refers to the method used for correcting the grid error. For “0” no one-center correction is applied, for

“1” a one-center correction is computed analytically for the two-electron integrals. Note that in cases where

convergence difficulties arise, it is advisable to increase the smallest grid to a larger value, or even equal to

the medium grid using the Acc1, Ang1 parameters.

To modify the overlap fitting parameters

%method

UseSFitting false # equals to NoSFitting in the simple

# input. Default is true.

UseQGradFit true # uses the SCF fitting matrix for

# gradient calculations. Default

# is false.

end
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Note that overlap fitting works for HF and MP2 gradients as well without specifying any additional keyword.

The UseQGradFit parameter merely uses the same fitting matrix for the gradients as for the energy calculation.

However, this does not save significant time, neither is it more accurate, therefore it is turned off by default.

9.3.2.8 Choice of the COSX Grid and Convergence Issues

Other then the !Gridn (where n is an integer number) keywords used to specify the DFT integration grids,

the grid structures used for HF exchange evaluation, called by the keywords !GridXn have also been discussed

in previous chapters. The purpose of this chapter is to give a more specific introduction into the properties of

COSX grids, and discuss some more common problems while using these.

As a start, it will be useful to relate the simple keywords GridXn, to the method block keywords detailed

above. Sometimes it is necessary to increase the grids using the method block parameters directly, as they

provide a more flexible control over the grid size. For some of the default grid the simple keyword and the

equivalent method block parameters are given below

!GRIDXS2

%method

GridX 1,1,2

IntAccX 3.34,3.67,4.01

end

The full list of predefined grid combinations is given in Table 9.2. Note that the simple input keywords also

define the MP2-specific COSX grids, discussed in sections 9.11.5 and 9.11.6. See also section 9.8 for details

related to the use of COSX in the CPSCF equations.

Table 9.2: Predefined COSX Grid keywords

Keyword Guess SCF Final energy MP2 gradient MP2 2nd derivatives

%method block GridX[0] IntAccX[0] GridX[1] IntAccX[1] GridX[2] IntAccX[2] GridX[3] IntAccX[3] GridX[4] IntAccX[4]

%mp2 block GridX IntAccX KC GridX KC IntAccX

!GridXold 1 3.34 1 4.01 3 4.34 4 4.34 2 3.34

!GridXS1 1 3.67 2 4.01 none 4 4.34 2 3.34

!GridXS2 1 3.34 1 3.67 2 4.01 4 4.34 2 3.34

!GridX1 1- 3.34 1- 3.67 2 3.34 3 3.34 1 3.34

!GridX2 1- 3.34 1 3.34 2 3.34 3 3.34 1 3.34

!GridX3 1 3.34 1 3.67 1 4.34 2 4.34 1 3.67

!GridX4 1 3.34 1 4.01 3 4.34 4 4.34 2 3.34

!GridX5 1 3.67 1 4.01 3 4.67 4 4.67 3 3.34

!GridX6 1 3.67 2 4.01 3 4.34 5 4.34 4 4.34

!GridX7 1 3.67 2 4.01 4 4.34 5 4.34 4 4.34

!GridX8 1 3.67 3 4.01 4 4.34 5 4.34 4 4.34

!GridX9 1 4.01 3 4.67 4 4.67 5 4.67 4 4.34

!MP2GridX1 3 4.34

!MP2GridX2 4 4.34

!MP2GridX3 4 5.01

!KCGrid1 1- 3.34

!KCGrid2 1 3.34

!KCGrid3 2 3.34

!KCGrid4 3 3.34

Symptoms of convergence issues: Erratic convergence behavior, often starting from the first SCF step,

or possibly setting in at a later stage, producing crazy energy values, with “megahartree” jumps. If overlap
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fitting is on, the following error message may also be encountered: “Error in Cholesky inversion of numerical

overlap”.

Convergence issues may arise when the chosen grid has difficulties in representing the basis set. This is the

“grid equivalent” of a linear dependence problem, discussed in 9.4.5. It should also be mentioned that the

grid related problem discussed here often goes hand in hand with basis set linear dependence, although not

necessarily. The most straightforward way of dealing with these is to increase the size of the integration grid.

This however, is not always desirable or possible, and in the remainder of this chapter some other methods

will be discussed.

One way to avoid the Cholesky inversion issue is to turn overlap fitting off (!NoSFitting), however, this

means that the numerical problems are still present, only they are ignored. Due to the fact that overlap

fitting operates with the numerical overlap, and its inverse, it is more sensitive to linear dependence issues,

and turning off the fitting procedure may lead to convergence. This may be a pragmatic, but by no means

clean solution, since it relies on the assumption that the numerical errors are small.

On the other hand, overlap fitting also gives a similar tool to deal with linear dependence issues as the

one discussed in 9.4.5 for basis sets. The eigenvalues of the numerical overlap can be inspected similarly,

and small values can be screened out. There is unfortunately no universal way to determine this screening

parameter, but see 9.4.5 for typical values.

The parameters influencing the method used for inversion and obtaining the fitting matrix are

%method

SFitInvertType Cholesky # Use Cholesky inversion. Default

Cholesky_Q # Cholesky + full Q matrix

Diag # Inversion via diagonalization

Diag_Q # Diag + full Q matrix

SInvThresh 1e-8 # inversion threshold for Diag and Diag_Q, default 1 e-8

end

By default, the inversion procedure proceeds through Cholesky decomposition as the fastest alternative.

Ideally the overlap matrix is non-singular, as long as the basis set is not linear dependent. For singular

matrices the Cholesky procedure will fail. It should be noted at this point that the numerical overlap can

become linear dependent even if the overlap of basis functions is not, and so a separate parameter will be

needed to take care of grid related issues. To achieve this, a diagonalization procedure (Diag) can be used

instead of Cholesky with the corresponding parameter to screen out eigenvectors belonging to eigenvalues

below a threshold (SInvThresh). For both Cholesky and diagonalization procedures a “full Q” approach

is also available (Cholesky Q and Diag Q), which corresponds to the use of a more accurate (untruncated)

fitting matrix.

9.3.2.9 Improved Analytical Evaluation of the Coulomb Term: Split-J

ORCA features a method that gives the exact Coulomb term at significantly reduced computational cost.

It can most profitably be applied to the case where no HF exchange is present. Thus if you use LDA or

GGA functionals and you do not want to apply the RI approximation (perhaps because you use a special
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basis set for which no fit-set is available), the Split-J is an attractive alternative to the traditional evaluation.

The advantages of Split-J increase with the quality of the basis set used, i.e. if you have basis sets with

high-angular momentum functions split-J can be more effective by a factor of 2-5 compared to the traditional

evaluation. For smaller basis sets (i.e. SV(P) and the like) the advantages are smaller but still significant.

However, Split-J is also significantly slower than RI-J (but recall that Split-J is exact while RI-J is an

approximation).

A small job that uses the Split-J feature is shown below:

! RKS LSD TZVPP TightSCF Direct

%scf jmatrix 1 # turns on the Split-J feature

end

*int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

9.3.2.10 The Standard Computational Levels

WARNING: The keywords below no longer change the basis set for the calculation. The

default basis set is def2-SVP and any changes to it must be specified explicitly! This makes

these keywords somewhat less helpful and their use is discouraged.

Standard calculation levels are defined below

Calculation-Level

Parameter
Quick

DFT

Quick

Opt

Medium

Opt

Good

Opt
Acc Opt

DFT

Energy

DFT

En-

ergy+

RunTyp Energy Opt Opt Opt Opt Energy Energy

Functional BP BP BP BP BP B3LYP B3LYP

RI On On on on on off1 off1

SCFConv Loose Tight Tight Tight Tight Normal Normal

GeoConv - Normal Normal Normal Tight - -

Grid2 2/3 2/4 2/4 3/5 4/5 4/5 4/5

1 – The RI approximation can be used in these calculations by using ! RIJONX in the input

2 – The first and second number refer to the dual-grid feature of ORCA

You can easily override these defaults by simply typing the appropriate keyword that changes one of the settings

given above (for example if you want MediumOpt but with the PBE functional simply give ! MediumOpt

PBE).
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9.3.2.11 Treatment of Dispersion Interactions with DFT-D3

Introduction

DFT-D3 is an atom-pairwise (atom-triplewise) dispersion correction which can be added to the KS-DFT

energies and gradient [2]:

EDFT-D3 = EKS-DFT + Edisp (9.31)

Edisp is then the sum of the two- and three-body contributions to the dispersion energy: Edisp = E(2) +E(3).

The most important is the two-body term which is given at long range by:

Edisp = −
∑
A<B

∑
n=6,8

sn
CABn
rnAB

(9.32)

CABn denotes the averaged (isotropic) nth-order dispersion coefficient for atom pair AB, and rAB is their

internuclear distance. sn is a functional-dependent scaling factor (see below). In the general case, an adequate

damping function must be employed.

Damping Functions

In order to avoid near singularities for small rAB , the dispersion contribution needs to be damped at short

distances. One possible way is to use rational damping as proposed by Becke and Johnson [317–319]:

E(2) = −
∑
A<B

∑
n=6,8

sn
CABn

rnAB + f(RAB0 )n
(9.33)

with [319]

RAB0 =

√
CAB8

CAB6

(9.34)

and

f(RAB0 ) = a1R
AB
0 + a2. (9.35)

Damping the dispersion contribution to zero for short ranges (as in Ref. [2]) is also possible:

E(2) = −
∑
A<B

∑
n=6,8

sn
CABn
rnAB

fd,n(rAB) (9.36)

with

fd,n =
1

1 + 6( rAB
sr,nRAB0

)−αn
(9.37)
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Note that the RAB0 used with this damping are from Ref. [2]. For more information on the supported damping

functions, see Ref [120]. In the ORCA program the dispersion correction with zero damping is invoked by

the keyword ! D3ZERO. The default is the recommended variant with Becke-Johnson damping and is invoked

by the keyword ! D3BJ or simply ! D3.

Three-body term

It is possible to calculate the three-body dispersion contributions with DFT-D3, according to

E(3) = −
∑

A<B<C

CABC9 (3 cos θa cos θb cos θc + 1)

(rABrBCrCA)3
fd,(3)(rABC), (9.38)

where θa, θb and θc are the internal angles of the triangle formed by rAB , rBC and rCA. The C9 coefficient is

approximated by

CABC9 ≈ −
√
CAB6 CAC6 CBC6 . (9.39)

The three-body contribution has a small effect on medium-sized molecules and is damped according to

equation 9.38. The damping function fd,(3)(rABC) is similar to the one shown in equation 9.37 with rABC

being the geometric mean of rAB , rBC and rCA. It can be used with both variants of the E(2) term. However,

the three-body term itself will always be calculated using the zero damping scheme. Adding the three-body

correction has proven to give quite accurate results for the thermochemistry of supramolecular systems [198].

In the ORCA program, the dispersion correction with zero damping and the three-body contribution is

invoked by the keyword ! D3ZERO ABC. Becke-Johnson damping for E(2) and zero damping for E(3) is invoked

by ! D3BJ ABC.

Options

Note that correcting Hartree-Fock (HF) is only parameterized with BJ-damping. For a constantly updated

list of supported functionals, check the website of the Grimme group [320]. If there is a functional on this

website that is parametrized, but the parameters are not implemented into the ORCA program yet, you can

specify the parameters manually as shown below (using the respective parameters from Ref. [320]). In the

same fashion, one could also use own parameters but this is not recommended.

Important: GGA and hybrid functionals should only be used with s6 = 1.0 to ensure asymptotically correct

behaviour. Double-hybrid functionals already account for parts of the dispersion interaction and should

therefore be used with s6 < 1.0. Within the “%method” block it is possible to change the parameters s6, a1,

s8 and a2 for the variant with Becke-Johnson damping.

! d3bj b2plyp

%method

D3S6 0.64

D3A1 0.3065

D3S8 0.9147

D3A2 5.0570

end
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The variant with zero damping offers the parameters s6, rs6, s8 and α6.

! d3zero blyp

%method

D3S6 1.0

D3RS6 1.094

D3S8 1.682

D3alpha6 14

end

If a geometry optimization is performed (! opt) then the program automatically calls the DFT-D3 gradient.

There are also special functional parameters, which were optimized for triple-zeta basis sets. This option is is

only available with zero damping and can be invoked by the keywords ! D3ZERO D3TZ. Preliminary results

in the SI of Ref. [2] indicate that results are slightly worse than with the default parameters and QZVP type

basis sets. This option should be carefully tested for future use in very large computations.

Example input files

In the following, we list some example input files. A computation using the DFT-D3 dispersion correction

with BJ-damping using the D3BJ keyword may look like this. As it is the default, the use of the keyword D3

is identical.

! pbe svp d3bj

* xyz 0 1

C 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.400000

O 0.000000 0.000000 -1.400000

*

The output for the dispersion correction in the ORCA output will look like this:

-------------------------------------------------------------------------------

DFT DISPERSION CORRECTION

DFTD3 V2.1 Rev 6

USING Becke-Johnson damping

-------------------------------------------------------------------------------

The default PBE functional is recognized

Active option DFTDOPT ... 4

molecular C6(AA) [au] = 156.562480

DFT-D V3

parameters

s6 scaling factor : 1.0000
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a1 scaling factor : 0.4289

s8 scaling factor : 0.7875

a2 scaling factor : 4.4407

ad hoc parameters k1-k3 : 16.0000 1.3333 -4.0000

Edisp/kcal,au: -0.563071585638 -0.000897311593

E6 /kcal : -0.390909076

E8 /kcal : -0.172162510

% E8 : 30.575598941

------------------------- ----------------

Dispersion correction -0.000897312

------------------------- ----------------

------------------------- --------------------

FINAL SINGLE POINT ENERGY -188.137098479095

------------------------- --------------------

Edisp is given as the “Dispersion correction”. It will be automatically included into the singlepoint energy.

As discussed above, the parameters s6, a1, s8 and a2 may be defined manually by:

! pbe svp d3bj

%method

D3S6 1.0

D3A1 0.4289

D3S8 0.7875

D3A2 4.4407

end

*xyz 0 1

C 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.400000

O 0.000000 0.000000 -1.400000

*

The calculation of the same system with D3ZERO is invoked by:

! pbe svp d3zero

*xyz 0 1

C 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.400000

O 0.000000 0.000000 -1.400000

*

In the same fashion as above, the s6, rs6, s8 and the exponent α6 can be defined by the user. The next

example shows this along with the call for the three-body correction using ABC:
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! pbe svp d3zero abc

%method

D3S6 1.0000

D3RS6 1.2170

D3S8 0.7220

D3ALPHA6 14.0

end

*xyz 0 1

C 0.000000 0.000000 0.000000

O 0.000000 0.000000 1.400000

O 0.000000 0.000000 -1.400000

*

9.3.2.12 DFT Calculations with the Non-Local, Density Dependent Dispersion Correction:

DFT-NL

Accounting for the missing van der Waals (vdW, dispersion) forces in standard Kohn – Sham Density

Functional Theory (DFT) has become essential in many studies of chemical and physical electronic structure

problems. Common approaches use atom pair-wise additive schemes such as the popular DFT-D3 [2,120]

method, which is also available in ORCA by invoking the keyword “! D3” (for more information see section

9.3.2.11).

A different route is followed by the van der Waals Density Functional (vdW-DF) as pioneered by Langreth

and Lundquist [253]. These methods use as input to compute the Non-Local (NL) dispersion contribution

only the electron density. The recently developed vdW functional VV10 of Vydrov and Van Voorhis [321]

currently seems to be the most promising candidate for a general and accurate electronic structure method.

We use the term DFT-NL for any (hybrid)GGA density functional in combination with the non-local part of

the VV10 functional with an optimized parameter b, which will be defined below. The performance of these

methods has been evaluated in Ref. [322] using the GMTKN30 [114,323,324] database and the S66 set [325].

The performance of weak hydrogen bonds were evaluated in Ref. [326].

We recommend the DFT-D3 dispersion correction in general and the DFT-NL method for checking purposes

by single-point calculations. DFT-NL and DFT-D3 perform very similar but NL is to be preferred for metallic

systems or when the basic electronic structure changes significantly (e.g. oxidations or ionizations). Because

the NL correction increases the computational cost in particular of GGA treatments using RI significantly,

it is more useful in combination with hybrid functionals (and RI-JK or RIJCOSX techniques) where the

computational overhead is marginal if it is done non-self-consistently (see below).

The total exchange-correlation (XC) energy of VV10 type functionals is defined in eq. 9.40. It is composed

of standard exchange (X) and correlation (C) parts and the non-local (NL) term, which covers (mainly)

long-range dispersive energy:

EDFT-NL
XC = E

(hybrid)GGA
X + EGGA

C + EVV10
C-NL (9.40)
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The NL term is given by the following double-integral:

EVV10
C-NL =

∫
drρ(r)

[
β +

1

2

∫
dr′ρ(r′)ϕ(r, r′)

]
(9.41)

where ρ is the total electron density, and the definition of the kernel ϕ(r, r′) and β is as follows (in a.u.):

ϕ (r, r′) = − 3
2gg′(g+g′) g (r) = ω0 (r)R2 + κ(r) R = |r − r′|

ω0 (r) =

√
C
∣∣∣∇ρ(r)ρ(r)

∣∣∣4 + 4π
3 ρ(r) κ (r) = b 3π

2

[
ρ(r)
9π

]1/6
β = 1

32

[
3
b2

]3/4
In the original definition, the short-range attenuation parameter b appearing in κ and β was fitted to the S22

set [327] of non-covalent interactions (b = 5.9 for the rPW86PBE GGA). The other parameter C = 0.0093

appearing in ω0, which determines the long-range behavior, was set to its original value. Other DFT-NL

functionals are constructed analogously. For a detailed discussion of the derivation of the formulas and their

physical meaning and basis see the references given and those given therein.

The defined energy of the non-local DFT-NL exchange-correlation functional can computed non-self-

consistently based on a converged SCF density but a self-consistent treatment is also possible. We take

B3LYP as an example.

In our implementation of the non-self-consistent B3LYP-NL functional, in the first step a self-consistent

B3LYP computation is performed. In the second step the optimized electron density from the B3LYP

computation is taken as input for the energy calculation of the non-local part. This procedure is invoked

by the combination of the keywords “! B3LYP NL”. Use of the keywords “ ! B3LYP SCNL” would request

a self-consistent treatment in which orbitals and density are optimized in the presence the full B3LYP-NL

exchange-correlation potential (see below). According to many test calculations, an SCNL treatment is rarely

necessary for normal energy evaluations.

The computation of the double-integral given in eq. 9.41 requires using an integration grid, just like for

normal exchange-correlation functionals. The grid size is used analogously to the regular grids available in

the ORCA program and can be specified by invoking the keyword “! vdwgridX”, where “X” can be 1, 2, 3,

4, 5, 6, or 7. The default grid size is “! vdwgrid2”. In test calculations we found, that going beyond grid

size of 3 is not necessary in normal applications.

In the following we compute the energy of an argon dimer at the distance of 3.76 Å with the def2-TZVP basis

set using the B3LYP hybrid functional as an example with the non-self-consistent variant of the DFT-NL

dispersion correction. The original VV10 method is based on the rPW86PBE GGA.

! B3LYP NL

! def2-TZVP def2/JK RIJK grid4 vdwgrid2 nofinalgrid nososcf nopop

*xyz 0 1

Ar 0.0 0.0 0.0

Ar 0.0 0.0 3.76

*
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The DFT-NL output for this example is shown below:

-------------------------------------------------------------------------------

DFT-NL dispersion correction

-------------------------------------------------------------------------------

SC Energy -1054.960659618

NL parameter b = 4.80

NL Energy 0.209416556

SC+NL Energy -1054.751243062

NL done in 0.3 sec

-------------------------------------------------------------------------------

----------------

TOTAL SCF ENERGY

----------------

Total Energy : -1054.75124306 Eh -28701.24047 eV

Components:

Nuclear Repulsion : 45.59931263 Eh 1240.82038 eV

Electronic Energy : -1100.35055569 Eh -29942.06085 eV

NL Energy : 0.20941656 Eh 5.69851 eV

Here we find the B3LYP total energy (“SC Energy”) of -1054.9607 Eh, the parameter b = 4.8, the non-local

contribution (“NL Energy”) of 0.2094 Eh and the final total energy (“SC+NL Energy”) of -1054.7512 Eh,

which is the sum of the SC and NL energy. In the “Components” section the non-local-contribution is listed

separately (“NL Energy”) in order to be consistent with the “! SCNL” option (see below).

In the current version of ORCA there are seven GGA and hybrid functionals available, which can be used

with the DFT-NL method. The GGA functionals are rPW86PBE (b = 5.9), BLYP (b = 4.0) and revPBE

(b = 3.7). The hybrid functionals are B3LYP (b = 4.8), B3PW91 (b = 4.5), revPBE0 (b = 4.3) and revPBE38

(b = 4.7). In addition, we also added the non-local term to Hartree-Fock (HF) with a parameter of b = 3.9.

The parameter C was not changed. All these functionals are ready to use by invoking the keyword “! DF

NL”, where DF stands for the seven density functionals. Hartree-Fock is invoked with the keyword “! HF

NL”.

Head-Gordon’s wB97X-V functional [129] is a reparametrized version of the range-separated wB97X and

wB97X-D3 methods, which makes use of the nonlocal VV10 kernel to capture London-dispersion effects

(b = 6.0 and C = 0.01; note that C is, unlike for the other functionals, changed for wB97X-V). Note that in

our implementation the keyword wB97X-V evaluates the VV10 kernel in a post-SCF way, i.e. the only the

semi-local exchange-correlation part is converged self-consistently and the resulting density is then used to

assess the VV10-type energy contribution. A recent study showed that this may save computer time but does

not have any effect on the resulting relative energies. [131]. The keyword “NL” does not have to be specified

in this case and the VV10 kernel is evoked automatically. If a user wishes to carry out fully self-consistent

calculations with wB97X-V, the “SCNL” keyword has to be specified.

Also the range-separated meta-GGA hybrid wB97M-V [130] and the meta-GGA B97M-V [328] are available.

In the spirit of wB97X-V, the VV10 (NL) correction is called automatically in the post-SCF way.
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B97M-D3BJ, wB97X-D3BJ, and wB97M-D3BJ are efficient DFT-D3(BJ) corrected variants of the B97M-V,

wB97X-V and wB97M-V functionals. wB97X-D3BJ should not be confused with wB97X-D3, which is a

wB97X version specifically designed for the DFT-D3 correction with zero damping.

All DFT-NL methods can be used for closed-shell and open-shell systems.

All density functionals that are available in ORCA (but for which no b parameter has been determined yet)

can also be used with the DFT-NL method by providing a value for the parameter b as shown here:

%method

NLb 5.0

End

For example, for the functional BP86 the parameter b has not been fitted yet and, therefore, using the

option “! BP86 NL” will give an error, but by providing a parameter b (5.0 just as an example!) one can

use this functional in combination with the DFT-NL dispersion correction. Users who want to use such new

combinations might contact the Grimme group.

! BP86 NL

! def2-TZVP def2/J RI grid4 vdwgrid2 nofinalgrid nososcf nopop

%method

NLb 5.0

end

*xyz 0 1

Ar 0.0 0.0 0.0

Ar 0.0 0.0 3.76

*

In addition, for any of the already fitted functionals one can define a user specific value for the parameter b,

which might be different to the default value, therefore, overriding the default parameter b. For example, for

B3LYP the fitted parameter is b = 4.8 which is changed below to a more repulsive value of b = 5.2.

! B3LYP NL

! def2-TZVP def2/JK RIJK grid4 vdwgrid2 nofinalgrid nososcf nopop

%method

NLb 5.2

end

*xyz 0 1

Ar 0.0 0.0 0.0

Ar 0.0 0.0 3.76

*
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The other parameter C = 0.0093 appearing in ω0 may also be changed with the “NLC” keyword as shown in

the following example. Of course, both parameters b and C can be changed with the keywords “NLb” and

“NLC” at the same time.

! B3LYP NL

! def2-TZVP def2/JK RIJK grid4 vdwgrid2 nofinalgrid nososcf nopop

%method

NLC 0.0083

end

*xyz 0 1

Ar 0.0 0.0 0.0

Ar 0.0 0.0 3.76

*

Self-consistent computations with the DFT-NL dispersion correction

Self-consistent calculations with the DFT-NL dispersion correction are possible by invoking the keyword “!

SCNL” in combination with one of the available density functionals (rPW86PBE, revPBE, BLYP, B3LYP,

B3PW91, revPBE0 and revPBE38). However, as explained above any density functional can be used also in

combination with the “SCNL” keyword by providing a parameter b with the “NLb” keyword. Note, that due

to technical reasons self-consistent calculations are not possible with the Hartree-Fock method.

In the following example we use the B3LYP hybrid functional with the self-consistent DFT-NL variant:

! B3LYP SCNL

! def2-TZVP def2/JK RIJK grid4 vdwgrid2 nofinalgrid nososcf nopop

*xyz 0 1

Ar 0.0 0.0 0.0

Ar 0.0 0.0 3.76

*

The DFT-NL output of this example is shown below:

-------------------------------------------------------------------------------

Self-consistent DFT-NL dispersion correction

-------------------------------------------------------------------------------

NL parameter b = 4.80

--------------

SCF ITERATIONS

--------------
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ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp

0 -1054.7512430617 0.000000000000 0.00166322 0.00007167 0.0007919 0.0000

1 -1054.7512472736 -0.000004211912 0.00077400 0.00002662 0.0005919 0.0000

2 -1054.7512477044 -0.000000430774 0.00004435 0.00000152 0.0000304 0.0000

**** Energy Check signals convergence ****

*****************************************************

* SUCCESS *

* SCF CONVERGED AFTER 3 CYCLES *

*****************************************************

----------------

TOTAL SCF ENERGY

----------------

Total Energy : -1054.75124767 Eh -28701.24059 eV

Components:

Nuclear Repulsion : 45.59931263 Eh 1240.82038 eV

Electronic Energy : -1100.35056030 Eh -29942.06097 eV

NL Energy : 0.20940947 Eh 5.69832 eV

The procedure for the self-consistent computation is similar to the non-self-consistent one: In the first step

a self-consistent B3LYP run is performed and in the second step the converged electron density is used as

input for the self-consistent SCNL run, as shown in the output example above.

In the output the “Total Energy” is the energy of an exchange-correlation functional (B3LYP) plus the

non-local (NL) contribution. In the “Components” section the non-local contribution (“NL Energy”) is listed

separately in order to be consistent with the “! NL” option (see above).

As can be seen from this example only two cycles of the self-consistent NL run were performed. The difference

in energy (5.0e-06) by comparing the self-consistent (-1054.751248) and non-self-consistent (-1054.751243)

computations is very small which seems to be typical also even for larger systems.

In the current version of ORCA analytical gradients for any DFT-NL dispersion correction are not available

and, therefore, geometry optimizations are not possible using analytical gradients. As mentioned above we

recommend to use DFT-D3 optimized geometries for single point DFT-NL calculations.

9.3.2.13 DFT and HF Calculations with the geometrical Counterpoise Correction: gCP

The central idea of the gCP correction [329] is to add in a semi-empirical fashion a correction ∆EgCP to

the energies of molecular systems, in order to remove artificial overbinding effects from BSSE (see section

8.1.6). The correction uses atomic corrections and thus also yields the ability to correct for intramolecular

BSSE. The parametrization is constructed such that it approximates the Boys and Bernadi counterpoise

(CP) correction ∆ECP in the intermolecular case

∆ECP ≈ ∆EgCP, (9.42)
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Table 9.5: Overview of parametrized basis sets. The level keyword in !GCP(level) is a com-
pound of HF or DFT and the basis set keyword. Valid examples are: !GCP(HF/MINIS),
!GCP(DFT/LANL), !GCP(HF/TZ), !GCP(DFT/631GD) · · ·

parametrized basis set HF DFT basis set keyword

MINIS yes yes MINIS
SV yes yes SV
6-31G(d) yes yes 631GD
6-31G(d) + LANL2DZ (Sc-Zn) no yes LANL
def2-SV(P) no yes SV(P)
def2-SV(P/h,c) no yes SVX or SV(P/H,C)
def2-SVP yes yes SVP
def2-TZVP yes yes TZ

where e.g. for a complexation reaction A+B → C our correction is given by

∆EgCP = EgCP(C)− EgCP(A)− EgCP(B). (9.43)

In practice, EgCP can simply be added to the HF/DFT energy

Etotal = EHF/DFT + EgCP, (9.44)

which is also done in ORCA. The FINAL SINGLE POINT ENERGY is the sum of the HF/DFT energy and the

gCP correction.

The central equation over all atoms N reads:

EgCP = σ ·
N∑
a

N∑
b6=a

emiss
a · fdec(Rab) , (9.45)

where the energy emiss
a is a measure for the incompleteness of the chosen target basis set (that is typically

small), and fdec(Rab) is a decay function that depends on the inter-atomic distance Rab.

The scaling factor σ is one out of 4 parameters needed for every method/basis set combination. More

details on this can be found in the original gCP paper [329].

Analytical gradients are available for geometry optimization. Due to its semi-empirical nature the correction

itself is calculated within seconds even for very large systems.

The correction can be invoked by using !GCP(level) keyword, where level is a compound of the method

(=HF or DFT) and the basis set. See table 9.5 for the available basis sets and the corresponding keyword.

For a B3LYP calculation using the def2-SV(P) basis set a typical input would be:

! B3LYP def2-SV(P) GCP(DFT/SV(P))

*xyzfile 0 1 example.xyz

The output states the level, the 4 parameters mentioned above and the correction itself:
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------------------------------------------------------------------------------

g C P - geometrical counterpoise correction

------------------------------------------------------------------------------

Method: dft/sv(p)

Parameters: sigma eta alpha beta

0.2424 1.2371 0.6076 1.4078

Egcp: 0.0381115568 a.u.

------------------ -----------------

gCP correction 0.038111557

------------------ -----------------

------------------------- --------------------

FINAL SINGLE POINT ENERGY -152.809257799447

------------------------- --------------------

There may be issued several warnings and notices: Elements of the 4th and higher period are treated as their

3rd period analog, i.e. Sn is treated as if it were Ge in terms of parameters. If this is the case a notice is

printed. If an element has no parameters it will give no contributions to the correction. Both cases can occur

at once:

! HF SV GCP(hf/minis)

*xyzfile 0 1 example.xyz

The corresponding output:

Method: hf/minis

** NOTE ** -> element sn will be treated as ge

** WARNING ** -> element ge has no parameters (no contribution)!

Parameters: sigma eta alpha beta

0.1290 1.1526 1.1549 1.1763

Egcp: 0.1593457998 a.u.

WARNING: Basis set mismatch between ORCA and otool_gcp:

ORCA: 280 gCP: 88

------------------ -----------------

gCP correction 0.159345800

------------------ -----------------

This is done for the user convenience. It enables the computation of molecules that has un-parametrized

elements. If only one or a few atoms in a larger molecule is treated inaccurate or not at all the error can

be expected to be small. In case of a mismatch between the ORCA basis set and the selected basis set for

gCP another warning is printed. This was done on purpose in the example above (GCP(hf/minis) instead of

GCP(hf/sv)). This is meant to be a safety check. However, a small deviation may cause only a minor error

(be careful nonetheless!). Use your own judgment if you want to use an unparametrized basis sets: Number

of basis functions and exponents should be very similar!

For debug issues, !LARGEPRINT will print additional information about parameters and individual atomic

contributions.
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The gCP input can also be defined through the method section

%method

DoGCP true/false # turn gCP on/off

GCPMETHOD "method" # define method string for otool gcp, eg. dft/svp

GCP.D3MINIS true/false # use special DFT-D3 refit for HF/MINIS (default=true)

end

Further comments:

CP(HF/MINIS) sets automatically the refitted D3 parameter as proposed in the original gCP paper.

The gCP method is implemented via an external tool called otool gcp, which is based on the original Fortran

program used in the publication. Thus, the otool gcp binary can also be called directly via the command

line (otool gcp -h gives an overview of the options). It is also possible to read an external parameter file

($HOME/.gcppar) using !GCP(FILE). For further information, please look at the manual for the gcp program

as provided by Prof. S. Grimme10. During the calculation some temporary output files are written by ORCA:

basename.gcp.in.tmp and basename.gcp.out.tmp will contain the input for otool gcp and its output.

It has been demonstrated that the popular combination of B3LYP with 6-31G(d) can be strongly im-

proved using DFT-D3 and gCP [330]. For convenience, the following compound keyword is defined

! B3LYP-gCP-D3/6-31G*. This equals the keywords: ! B3LYP 6-31G* D3BJ GCP(DF/631GD).

General Advices:

• Small basis sets show not only a large BSSE, but general shortcomings. These effects are not always

clearly distinguishable.

• If computationally affordable, large basis sets (triple-ζ and higher) are always preferable for a given

system.

• gCP makes only sense for somewhat large molecules

• gCP should always be applied together with a dispersion correction for DFT: gCP-D3 is well tested,

but gCP-NL does also work well. (see sections 9.3.2.11 for DFT-D3 and 9.3.2.12 for DFT-NL)

9.3.2.14 HF-3c: Hartree-Fock with three corrections

HF-3c is a fast Hartree-Fock based method developed for computation of structures, vibrational frequencies

and non-covalent interaction energies in huge molecular systems [331]. The starting point for evaluating the

electronic energy is a standard HF calculation with a small Gaussian AO basis set. The used so-called MINIX

basis set consists of different sets of basis functions for different groups of atoms as shown in table 9.6.

Three terms are added to correct the HF energy E
HF/MINIX
tot in order to include London dispersion interactions,

to account for the BSSE and to correct for basis set deficiencies, i.e. overestimated bond lengths. The

corrected total energy is therefore calculated as

EHF-3c
tot = E

HF/MINIX
tot + E

D3(BJ)
disp + EgCP

BSSE + ESRB. (9.46)

10http://www.thch.uni-bonn.de/tc/
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Table 9.6: Composition of the MINIX basis set.

element basis

H-He, B-Ne MINIS
Li-Be MINIS+1(p)
Na-Mg MINIS+1(p)
Al-Ar MINIS+1(d)
K-Zn SV
Ga-Kr SVP
Rb-Rn def2-SVP with Stuttgart-Dresden ECPs

The first correction term E
D3(BJ)
disp is the atom-pair wise London dispersion energy from the D3 dispersion

correction scheme [2] applying Becke-Johnson (BJ) damping [317–319] (see section 9.3.2.11). The second term

EgCP
BSSE denotes the geometrical counterpoise (gCP) correction [329] to treat the BSSE (see section 9.3.2.13).

For the HF-3c method, the three usual D3 parameters s8, a1 and a2 were re-fitted using reference interaction

energies of the complexes of the S66 test set [325]. This results in s8 = 0.8777, a1 = 0.4171 and a2 = 2.9149.

The parameter s6 was set to unity as usual to enforce the correct asymptotic limit and the gCP correction

was already applied in this fitting step.

The last term ESRB is a short-ranged correction to deal with basis set deficiencies which occur when using small

or minimal basis sets. It corrects for systematically overestimated covalent bond lengths for electronegative

elements and is calculated as a sum over all atom pairs:

ESRB = −s
Atoms∑
A

Atoms∑
B 6=A

(ZAZB)3/2 exp(−γ(R0,D3
AB )3/4RAB) (9.47)

Here, R0,D3
AB are the default cut-off radii as determined ab initio for the D3 scheme [2] and ZA, ZB are the

nuclear charges. This correction is applied for all elements up to argon. The empirical fitting parameters

s = 0.03 and γ = 0.7 were determined to produce vanishing HF-3c total atomic forces for B3LYP-D3(BJ)/def2-

TZVPP equilibrium structures of 107 small organic molecules. More details can be found in the original

publication [331].

The HF-3c method can only be invoked with a simple keyword:

! HF-3c

! HF-3c is a compound keyword and equals ! HF MINIX D3BJ GCP(HF/MINIX) PATOM, hence no basis set

etc. has to be specified. The PATOM guess is selected since the grid construction for the default guess can take

more time than an actual SCF step. The guess can only be overwritten manually in the %method section.

The default mode for the integral handling is set to Conventional. The storing of the two-electron integrals

on disk or in memory if possible leads to large computational savings. In case one want to use the Direct

mode, this has to be specified in the %scf input section:

%scf

SCFmode Direct

end
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The output gives the used parameters and the correction itself for D3 and gCP separately. As the SRB

correction is also calculated with the otool gcp, the results are given in the gCP output section. The Total

correction to HF/MINIX is the sum of all three corrections (D3, gCP and SRB) and FINAL SINGLE POINT

ENERGY is the total HF-3c energy as given in equation 9.46.

-------------------------------------------------------------------------------

DFT DISPERSION CORRECTION

DFTD3 V2.1 Rev 6

USING Becke-Johnson damping

-------------------------------------------------------------------------------

The default Hartree-Fock is recognized

Active option DFTDOPT ... 4

molecular C6(AA) [au] = 1689.256597

DFT-D V3

parameters

using HF/MINIX parameters

s6 scaling factor : 1.0000

a1 scaling factor : 0.4171

s8 scaling factor : 0.8777

a2 scaling factor : 2.9149

ad hoc parameters k1-k3 : 16.0000 1.3333 -4.0000

Edisp/kcal,au: -32.163184627631 -0.051255291794

E6 /kcal : -18.007221978

E8 /kcal : -14.155962649

% E8 : 44.012938437

------------------------- ----------------

Dispersion correction -0.051255292

------------------------- ----------------

------------------------------------------------------------------------------

g C P - geometrical counterpoise correction

------------------------------------------------------------------------------

Method: hf/minix

Parameters: sigma eta alpha beta

0.1290 1.1526 1.1549 1.1763

Egcp: 0.0723150636 a.u.

Ebas: -0.0636976872 a.u.

------------------ -----------------

gCP+bas correction 0.008617376

------------------ -----------------

---------------------------- ----------------

Total correction to HF/MINIX -0.042637915

---------------------------- ----------------

------------------------- --------------------
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FINAL SINGLE POINT ENERGY -163.002895262171

------------------------- --------------------

For the elements up to Xe, the default initial guess is a Hückel guess. Beyond Xe, the guess mode is changed

to HCORE since no Hückel parameters for the respective ECP bases are available and other models are not

implemented at the moment. For calculations with only lighter elements and therefore no ECPs, the ECP

printouts in the output file can be ignored.

9.3.2.15 PBEh-3c: A PBE hybrid density functional with small AO basis set and two

corrections

PBEh-3c is a highly efficient electronic structure approach performing particularly well in the optimization

of geometries and for interaction energies of non-covalent complexes. [332] Here, a global hybrid variant of

the Perdew-Burke-Ernzerhof (PBE) functional with a relatively large amount of non-local Fock-exchange

(42%) is employed with a valence-double-zeta Gaussian AO basis set (def2-mSVP). Basis set superposition

errors (BSSE) and London dispersion effects are accounted for by the gCP and D3 schemes, respectively (see

above). The basis set is constructed such that:

Table 9.7: Composition of the def2-mSVP basis set.

element basis

H def2-SV(P) (α scaled by 1.2)
He def2-SVP(-p)
Li-Be,Na-Kr def2-SV(P)
B,Ne Ahlrichs’ DZ + Polarization from def2-SVP
C-F Ahlrichs’ DZ + Polarization from 6-31G*
Rb-Rn def2-SVP with Stuttgart-Dresden ECPs

For inter- and intramolecular BSSE the gCP expression from Eq. 9.45 is used but with a damping function

(similar to the zero-damping in Eq. 9.37). This damping improves the thermochemistry of the method

significantly compared with the non-damped version. London dispersion effects are accounted for by the

DFT-D3 (BJ-damping) scheme including the three-body term. Compared to the related HF-3c approach,

the PBEh-3c is somewhat more costly, however, it yields much better geometries. These are roughly of

MP2-quality (or even better for non-covalent structures) but may be computed at much lower cost. Due to

the moderate amount of non-local Fock exchange, the method is less prone to self-interaction errors (as in

GGAs) but still applicable in cases when Hartree-Fock fails (strongly correlated systems).

The PBEh-3c method may be invoked with the simple keyword:

! PBEh-3c

Identical to HF-3c, the default initial guess for all elements up to Xe is a Hückel guess. Beyond Xe, the

guess mode is changed to HCORE. For calculations with only lighter elements and therefore no ECPs, the ECP

printouts in the output file can be ignored.



424 9 Detailed Documentation

Very recently, a new composite ’low-cost’ method for accurate thermochemistry, structures, and noncovalent

interactions specifically also for transition metal chemistry and other stronger correlated systems was

implemented. As it is based on the B97 GGA including D3 with three-body contribution, a short range bond

length correction, and a modified, stripped-down triple-ζ basis, def2-mTZVP, the computational cost of this

method termed B97-3c are between that of HF-3c and PBEh-3c (for large systems roughly two times more

expensive than HF-3c). It is invoked with a simple keyword analogously to the latter methods. Some more

detailed information can be found in Ref. [333] .

9.3.3 Semiempirical Methods

The present version of ORCA has inherited the capability of doing semiempirical calculations from the

earlier versions. A number of methods based on the “neglect of differential overlap” [334,335] are currently

implemented for energies and analytic gradients (for geometry optimization).

%method

Method CNDO

INDO

NDDO

# for Method=CNDO

Version CNDO_1

CNDO_2

CNDO_S

# for Method=INDO

Version INDO_1

INDO_2

ZINDO_1

ZINDO_2

ZINDO_S

# for Method=NDDO

Version ZNDDO_1

ZNDDO_2

MNDO

AM1

PM3

end

The methods MNDO [336–338], AM1 [339] and PM3 [340] are available for main group elements only and

arise from the work of the Dewar group. They have been optimized to reproduce molecular structure and

energetics. The older CNDO/1,2 and INDO/1,2 were developed by the Pople group [341–349] and were

designed to roughly mimic minimal basis ab initio calculations. The methods of the Zerner group (ZINDO/1,2

and ZINDO/S) are closely related to the older methods but have been well parameterized for transition metals

too [350–360]. ZINDO/1 (and less so ZINDO/2) are suitable for geometry optimization. ZINDO/S gives good

results for electronically excited states at moderate configuration interaction levels and is also successful for the

calculation of electron and spin distributions in large transition metal complexes [355–360]. The ZNDDO/1,2

methods have been implemented into ORCA as straightforward extensions of the corresponding INDO
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methods without changing any parameter. However, the methods benefit from the somewhat more accurate

representation of the Coulomb interaction within the NDDO approximation [361, 362]. The preliminary

experience with these methods is that they are better than the corresponding INDO methods for calculation

of transition metal complex structures but on the whole have also similar deficiencies.

The analytic gradients are available for all of these methods and can be used to produce reasonable molecular

structures at low computational cost or to get preliminary insight in the behavior of the system under

investigation11.

There is also a mechanism for simplified input. Instead of giving values for Method and Version separately

you can also assign the value that would normally belong to Method to Version. The program will recognize

that and assign the correct values to both Method and Version.

%method

# shortcut to Method=NDDO; and Version=AM1;

Method AM1

end

• If you want you can also combine semiempirical methods with MP2 (energies only). For example

use Method=AM1; and DoMP2=true; It is questionable if this makes the results of semiempirical

calculations any better but at least it is possible in ORCA.

You can change the built-in semiempirical parameters in a straightforward fashion. For example:

! RHF ZINDO/S TightSCF DIIS NoRICO NoMOPrint

%cis NRoots 20

MaxDim 3 # Davidson expansion space = MaxDim * NRoots

end

%ndoparas P[6,25] 20

P[6,26] 20

end

The %ndoparas block is there in order to let you input your favorite personal parameters. The “molecular”

parameters are set using “INTFA” (“interaction factors”);

%ndoparas INTFA[PP_PI] 0.585

# The interaction factors exist for

# ss_sigma

# sp_sigma

# sd_sigma

11However, do not try to use ZINDO/S (or CNDO/S) for structure optimizations - it does not make sense and will
lead to disastrous results because there is no accurate representation of nuclear repulsion in these methods.
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# pp_sigma

# pd_sigma

# dd_sigma

# pp_pi

# pd_pi

# dd_pi

# dd_delta

# the parameter entering the Coulomb integrals

# in INDO/S

FGAMMA 1.2

end

end

All atomic parameters are collected in an array “P”. The first index is the atomic number of the element whose

parameters you want to change. The second index identifies which parameter. The list of parameters follows

below. Most of them will only be interesting for expert users. The most commonly modified parameters are

the Beta’s (number 25 through 28). Note that most programs require a negative number here. In ORCA the

resonance integrals are defined in a way that makes the Beta’s positive.

# core integrals (in eV)

US 0

UP 1

UD 2

UF 3

# Basis set parameters (double-zeta for generality)

NSH 4 # number of shells for the element

NZS 5 # number of Slater type orbitals for the s shell

ZS1 6 # first exponent

ZS2 7 # second exponent

CS1 8 # first contraction coefficient

CS2 9 # second contraction coefficient

NZP 10 # number of Slater type orbitals for the p shell

ZP1 11 # ...

ZP2 12

CP1 13

CP2 14

NZD 15 # number of Slater type orbitals for the d shell

ZD1 16 # ...

ZD2 17

CD1 18

CD2 19

NZF 20 # number of Slater type orbitals for the f shell

ZF1 21 # ...

ZF2 22
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CF1 23

CF2 24

# Resonance integral parameters (in eV)

BS 25 # s shell beta

BP 26 # p shell beta

BD 27 # d shell beta

BF 28 # f shell beta

# Number of electrons in the g.s.

NEL 29 # total number of electrons (integer)

NS 30 # fractional occupation number of the s shell

NP 31 # fractional occupation number of the p shell

ND 32 # fractional occupation number of the d shell

NF 33 # fractional occupation number of the f shell

# The one center repulsion (gamma) integrals (in eV)

GSS 34

GSP 35

GSD 36

GSF 37

GPP 38

GPD 39

GPF 40

GDD 41

GDF 42

GFF 43

# The Slater Condon parameters (in eV)

F2PP 44

F2PD 45

F2DD 46

F4DD 47

G1SP 48

G1PD 49

G2SD 50

G3PD 51

R1SPPD 52

R2SDPP 53

R2SDDD 54

# The nuclear repulsion parameters for Dewar type models

NR1 55

NR2 56

NR3 57

NR4 58

NR5 59

NR6 60

NR7 61

NR8 62
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NR9 63

NR10 64

NR11 65

NR12 66

NR13 67

# The nuclear attraction/repulsion parameter for MNDO/d

RHO 68

# Spin orbit coupling parameters

SOCP 69 # SOC for the p shell

SOCD 70 # SOC for the d shell

SOCF 71 # SOC for the f shell

9.3.3.1 Semi-empirical tight-binding methods: Grimme’s GFN-xTB and GFN2-xTB

ORCA is interfaced to the XTB tool by Grimme and coworkers, allowing the user to request all kinds of

calculations using the popular GFN-xTB and GFN2-xTB Hamiltonian. [363,364] From the technical side,

the user has to provide the executable provided by the Grimme group (please write to xtb@thch.uni-bonn.de)

as otool xtb in the directory, where the other ORCA executables are located.

XTB is invoked by the following keywords:

! XTB1 # for GFN-XTB

! XTB2 # for GFN2-xTB

The following methods can be used in conjunction with XTB:

• Single Point Energy

• Energy and Gradient

• Optimization, using all kinds of constraints, relaxed surface scans, etc.

• Nudged-Elastic Band calculations

• Numerical Frequency Calculations

• Intrinsic Reaction Coordinate

• Molecular Dynamics Calculations

• QM/MM calculations

NOTE

• Please note that XTB1 and XTB2 can also be used for the initial path generation or for the calculation

of an initial TS structure on XTB level, both as input for the subsequent NEB calculation on a higher

level of theory. For more details, please consult section 9.22.2.



9.4 Choice of Basis Set 429

The solvation method implemented together with the XTB methods (generalized born model with solvent

accessable surface area model) can be invoked via the SMD solvent keywords:

%cpcm

smd true

SMDsolvent "water" # use water

end

Please note that parallel jobs with XTB are possible and can be invoked as usual via

%pal nprocs 4 end # alternatively use !pal4

Only if jobs are run over several nodes, the number of cores used by the XTB tool might be lower than

requested via the pal keyword.

9.4 Choice of Basis Set

A fair number of reasonable basis sets is hardwired in the program as will be described in the next section. In

addition, whole basis sets can be read from a file, basis sets can be assigned for all atoms of a given type or,

at the highest resolution, basis sets can be assigned to individual atoms which is convenient if different parts

of the molecule are to be treated at different levels of accuracy. All hard wired basis sets were obtained from

the EMSL library [365] and the input format in ORCA is closely related to the “GAMESS-US” format.

As of ORCA version 4.0, the basis set handling has been

significantly modified!

Please check your basis sets very carefully!

9.4.1 Built-in Basis Sets

The basis set is specified in the block [BASIS]. The format is straightforward. Note that there are three

distinguished slots for auxiliary basis sets (AuxJ, AuxC and AuxJK) to be used with RI approximation.

Which auxiliary basis slot is used in the actual program depends on the context. The AuxJ and AuxJK slots

are used in the context of Fock matrix construction, whereas the AuxC slot is used for all other integral

generation steps e.g. in post-Hartree Fock methods. Assigning the auxiliary basis with the one-liner, takes

care of the individual slots. However, in specific cases they must be set explicitly.

As of ORCA 4.0, the basis set name has to be put in quotation marks, as well as the basis set

name identifiers are the same as in the one-liner!
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%basis

Basis "Def2-TZVP" # The orbital expansion basis set

AuxJ "Def2/J" # RI-J auxiliary basis set

AuxJK "Def2/JK" # RI-JK auxiliary basis set

AuxC "Def2-TZVP/C" # Auxiliary basis set for correlated

# calcualtions, e.g. RI-MP2

CABS "cc-pVDZ-F12-OptRI" # complementary auxiliary basis set

# for F12 calculations

DecontractBas false # if chosen "true" the program will

# decontract the orbital basis set

DecontractAuxJ false # if "true" - decontract the AuxJ basis set

DecontractAuxJK false # if "true" - decontract the AuxJK basis set

DecontractAuxC false # if "true" - decontract the AuxC basis set

DecontractCABS true # if "false" - do not decontract the CABS

Decontract false # if "true" - decontract all basis sets

end

WARNING:

• ORCA uses pure d and f functions (5D and 7F instead of Cartesian 6D and 10F) for all basis sets.

This needs to be taken into account when results are compared with other programs, especially for

Pople-style basis sets that were optimized with Cartesian (6D) functions.

• If you use Decontract: if your basis set arises from general contraction it will contain duplicate

primitives in several contractions and these will be removed such that only unique primitives remain

and there is no problem with redundancy.

A complete list of predefined basis sets and their availability is given in table 9.8.

Table 9.8: Basis sets availability

Keyword Availability Keyword Availability

Orbital basis sets (Basis) Orbital basis sets (Basis)

STO-3G H–I cc-pVDZ H–Ar, Ca–Kr

MINI H–Ca cc-pVTZ H–Ar, Ca–Kr, Y, Ag, Au

MINIS H–Ca cc-pVQZ H–Ar, Ca–Kr

MINIX H–Rn cc-pV5Z H–Ar, Ca–Kr

MIDI H–Na, Al–K cc-pV6Z H–He, Be–Ne, Al–Ar

3-21G H–Cs aug-cc-pVDZ H–Ar, Sc–Kr

3-21GSP H–Ar aug-cc-pVTZ H–Ar, Sc–Kr, Ag, Au

4-22GSP H–Ar aug-cc-pVQZ H–Ar, Sc–Kr

6-31G H–Zn aug-cc-pV5Z H–Ar, Sc–Kr

6-31G* H–Zn aug-cc-pV6Z H–He, B–Ne, Al–Ar

m6-31G Sc–Cu cc-pVD(+d)Z Na–Ar

m6-31G* Sc–Cu cc-pVT(+d)Z Na–Ar

6-31G** H–Zn cc-pVQ(+d)Z Na–Ar

6-31G(d) H–Zn cc-pV5(+d)Z Na–Ar

6-31G(d,p) H–Zn aug-cc-pVTZ-J H, B–F, Al–Cl, Sc–Zn, Se
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6-31G(2d) H–Zn cc-pCVDZ4 H–Ar, Ca, Ga–Kr

6-31G(2d,p) H–Zn cc-pCVTZ4 H–Ar, Ca, Ga–Kr

6-31G(2d,2p) H–Zn cc-pCVQZ4 H–Ar, Ca, Ga–Kr

6-31G(2df) H–Zn cc-pCV5Z4 H–Ar, Ca, Ga–Kr

6-31G(2df,2p) H–Zn cc-pCV6Z4 H–He, B–Ne, Al–Ar

6-31G(2df,2pd) H–Zn aug-cc-pCVDZ4 H–Ar, Ga–Kr

6-31+G* H–Zn aug-cc-pCVTZ4 H–Ar, Ga–Kr

6-31+G** H–Zn aug-cc-pCVQZ4 H–Ar, Ga–Kr

6-31+G(d) H–Zn aug-cc-pCV5Z4 H–Ar, Ga–Kr

6-31+G(d,p) H–Zn aug-cc-pCV6Z4 H–He, B–Ne, Al–Ar

6-31+G(2d) H–Zn cc-pwCVDZ4 H–Ar, Ca, Ga–Kr

6-31+G(2d,p) H–Zn cc-pwCVTZ4 H–Ar, Ca–Kr, Ag, Au

6-31+G(2d,2p) H–Zn cc-pwCVQZ4 H–Ar, Ca–Kr

6-31+G(2df) H–Zn cc-pwCV5Z4 H–Ar, Ca–Kr

6-31+G(2df,2p) H–Zn aug-cc-pwCVDZ4 H–Ar, Ga–Kr

6-31+G(2df,2pd) H–Zn aug-cc-pwCVTZ4 H–Ar, Sc–Kr, Ag, Au

6-31++G** H–Zn aug-cc-pwCVQZ4 H–Ar, Sc–Kr

6-31++G(d,p) H–Zn aug-cc-pwCV5Z4 H–Ar, Sc–Kr

6-31++G(2d,p) H–Zn cc-pVDZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-31++G(2d,2p) H–Zn cc-pVTZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-31++G(2df,2p) H–Zn cc-pVQZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-31++G(2df,2pd) H–Zn cc-pV5Z-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311G H–Br aug-cc-pVDZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311G* H–Br aug-cc-pVTZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311G** H–Br aug-cc-pVQZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311G(d) H–Br aug-cc-pV5Z-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311G(d,p) H–Br cc-pCVDZ-PP2 Ca, Sr, Ba, Ra

6-311G(2d) H–Br cc-pCVTZ-PP2 Ca, Sr, Ba, Ra

6-311G(2d,p) H–Br cc-pCVQZ-PP2 Ca, Sr, Ba, Ra

6-311G(2d,2p) H–Br cc-pCV5Z-PP2 Ca, Sr, Ba, Ra

6-311G(2df) H–Br aug-cc-pCVDZ-PP2 Ca, Sr, Ba, Ra

6-311G(2df,2p) H–Br aug-cc-pCVTZ-PP2 Ca, Sr, Ba, Ra

6-311G(2df,2pd) H–Br aug-cc-pCVQZ-PP2 Ca, Sr, Ba, Ra

6-311G(3df) H–Br aug-cc-pCV5Z-PP2 Ca, Sr, Ba, Ra

6-311G(3df,3pd) H–Br cc-pwCVDZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G* H–Br cc-pwCVTZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G** H–Br cc-pwCVQZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(d) H–Br cc-pwCV5Z-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(d,p) H–Br aug-cc-pwCVDZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2d) H–Br aug-cc-pwCVTZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2d,p) H–Br aug-cc-pwCVQZ-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2d,2p) H–Br aug-cc-pwCV5Z-PP2 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra

6-311+G(2df) H–Br cc-pVDZ-DK H–Ar, Sc–Kr

6-311+G(2df,2p) H–Br cc-pVTZ-DK H–Ar, Sc–Kr, Y–Xe, Hf–Rn

6-311+G(2df,2pd) H–Br cc-pVQZ-DK H–Ar, Sc–Kr, In–Xe, Tl–Rn

6-311+G(3df) H–Br cc-pV5Z-DK H–Ar, Sc–Kr

6-311+G(3df,3pd) H–Br aug-cc-pVDZ-DK H–Ar, Sc–Kr

6-311++G** H–Br aug-cc-pVTZ-DK H–Ar, Sc–Kr, Y–Xe, Hf–Rn

6-311++G(d,p) H–Br aug-cc-pVQZ-DK H–Ar, Sc–Kr, In–Xe, Tl–Rn

6-311++G(2d,p) H–Br aug-cc-pV5Z-DK H–Ar, Sc–Kr

6-311++G(2d,2p) H–Br cc-pwCVDZ-DK4 H–Be, Na–Mg, Ca–Zn

6-311++G(2df,2p) H–Br cc-pwCVTZ-DK4 H–Be, Na–Mg, Ca–Zn, Y–Xe, Hf–Rn

6-311++G(2df,2pd) H–Br cc-pwCVQZ-DK4 H–Be, Na–Mg, Ca–Zn, In–Xe, Tl–Rn

6-311++G(3df,3pd) H–Br cc-pwCV5Z-DK4 H–Be, Na–Mg, Ca–Zn

6-311+G(3df,2p) H–Br aug-cc-pV(D+d)Z Al–Ar

haV(T+d)Z H–Ar aug-cc-pV(T+d)Z Al–Ar

haV(Q+d)Z H–Ar aug-cc-pV(Q+d)Z Al–Ar

haV(5+d)Z H–Ar aug-cc-pV(5+d)Z Al–Ar
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W1-DZ H–Ar aug-cc-pV(6+d)Z Al–Ar

W1-mtsmall H–Ar W1-Opt H–Ar

W1-TZ H–Ar W1-QZ H–Ar

SV H–Kr aug-cc-pwCVDZ-DK4 H–Be, Na–Mg, Sc–Zn

SV(P) H–Kr aug-cc-pwCVTZ-DK4 H–Be, Na–Mg, Sc–Zn, Y–Xe, Hf–Rn

SVP H–Kr aug-cc-pwCVQZ-DK4 H–Be, Na–Mg, Sc–Zn, In–Xe, Tl–Rn

TZV H–Kr aug-cc-pwCV5Z-DK4 H–Be, Na–Mg, Sc–Zn

TZV(P) H–Kr Partridge-1 H, Li–Sr

TZVP H–Kr Partridge-2 H, Li–Kr

TZVPP H–Kr Partridge-3 H, Li–Zn

QZVP H–Kr Partridge-4 Sc–Zn

QZVPP H–Kr ANO-SZ H–Ar, Sc–Zn

DKH-SV(P) H–Kr LANL083 Na–La, Hf–Bi

DKH-SVP H–Kr LANL08(f)3 Sc–Cu, Y–Ag, La, Hf–Au

DKH-TZV(P) H–Kr LANL2DZ3 H, Li–La, Hf–Bi, U–Pu

DKH-TZVP H–Kr LANL2TZ3 Sc–Zn, Y–Cd, La, Hf–Hg

DKH-TZVPP H–Kr LANL2TZ(f)3 Sc–Cu, Y–Ag, La, Hf–Au

DKH-QZVP H–Kr Sapporo-DZP-2012 H–Xe

DKH-QZVPP H–Kr Sapporo-TZP-2012 H–Xe

ZORA-SV(P) H–Kr Sapporo-QZP-2012 H–Xe

ZORA-SVP H–Kr Sapporo-DKH3-DZP-2012 K–Rn

ZORA-TZV(P) H–Kr Sapporo-DKH3-TZP-2012 K–Rn

ZORA-TZVP H–Kr Sapporo-DKH3-QZP-2012 K–Rn

ZORA-TZVPP H–Kr SARC-DKH-SVP Hf–Hg

ZORA-QZVP H–Kr SARC-DKH-TZVP Xe–Rn, Ac–Lr

ZORA-QZVPP H–Kr SARC-DKH-TZVPP Xe–Rn, Ac–Lr

def2-mSVP1 H–Rn SARC-ZORA-SVP Hf–Hg

def2-mTZVP1 H–Rn SARC-ZORA-TZVP Xe–Rn, Ac–Lr

def2-SV(P)1 H–Rn SARC-ZORA-TZVPP Xe–Rn, Ac–Lr

def2-SVP1 H–Rn SARC2-DKH-QZV La–Lu

def2-TZVP(-f)1 H–Rn SARC2-DKH-QZVP La–Lu

def2-TZVP1 H–Rn SARC2-ZORA-QZV La–Lu

def2-TZVPP1 H–Rn SARC2-ZORA-QZVP La–Lu

def2-QZVP1 H–Rn D95 H, Li–Li, B–Ne, Al–Cl

def2-QZVPP1 H–Rn D95p H, Li–Li, B–Ne, Al–Cl

def2-SVPD1 H–La, Hf–Rn EPR-II H, B–F

def2-TZVPD1 H–La, Hf–Rn EPR-III H, B–F

def2-TZVPPD1 H–La, Hf–Rn IGLO-II H, B–F, Al–Cl

def2-QZVPD1 H–La, Hf–Rn IGLO-III H, B–F, Al–Cl

def2-QZVPPD1 H–La, Hf–Rn UGBS H–Th, Pu–Am, Cf–Lr

DKH-def2-SV(P) H–Kr CP Sc–Zn

DKH-def2-SVP H–Kr CP(PPP) Sc–Zn

DKH-def2-TZVP(-f) H–Kr Wachters+f Sc–Cu

DKH-def2-TZVP H–Kr cc-pVDZ-F12 H–Ar

DKH-def2-TZVPP H–Kr cc-pVTZ-F12 H–Ar

DKH-def2-QZVPP H–Kr cc-pVQZ-F12 H–Ar

ZORA-def2-SV(P) H–Kr cc-pVDZ-PP-F122 Ga–Kr, In–Xe, Tl–Rn

ZORA-def2-SVP H–Kr cc-pVTZ-PP-F122 Ga–Kr, In–Xe, Tl–Rn

ZORA-def2-TZVP(-f) H–Kr cc-pVQZ-PP-F122 Ga–Kr, In–Xe, Tl–Rn

ZORA-def2-TZVP H–Kr cc-pCVDZ-F12 Li–Ar

ZORA-def2-TZVPP H–Kr cc-pCVTZ-F12 Li–Ar

ZORA-def2-QZVPP H–Kr cc-pCVQZ-F12 Li–Ar

ma-def2-mSVP1 H–Rn Coulomb-fitting auxiliary basis sets (AuxJ)

ma-def2-SV(P)1 H–Rn def2/J H–Rn

ma-def2-SVP1 H–Rn def2-mTZVP/J H–Rn

ma-def2-TZVP(-f)1 H–Rn SARC/J H–Rn, Ac–No

ma-def2-TZVP1 H–Rn Coulomb and exchange-fitting auxiliary basis sets (AuxJK)

ma-def2-TZVPP1 H–Rn def2/JK H–Ba, Hf–Rn
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ma-def2-QZVP1 H–Rn def2/JKsmall H–Ra, Th–Lr

ma-def2-QZVPP1 H–Rn cc-pVTZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-SV(P) H–Kr cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-SVP H–Kr cc-pV5Z/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-TZVP(-f) H–Kr aug-cc-pVTZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-TZVP H–Kr aug-cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-TZVPP H–Kr aug-cc-pV5Z/JK H, B–F, Al–Cl, Ga–Br

ma-DKH-def2-QZVPP H–Kr SARC2-DKH-QZV/JK La–Lu

ma-ZORA-def2-SV(P) H–Kr SARC2-DKH-QZVP/JK La–Lu

ma-ZORA-def2-SVP H–Kr SARC2-ZORA-QZV/JK La–Lu

ma-ZORA-def2-TZVP(-f) H–Kr SARC2-ZORA-QZVP/JK La–Lu

ma-ZORA-def2-TZVP H–Kr Auxiliary basis sets for correlated methods (AuxC)

ma-ZORA-def2-TZVPP H–Kr def2-SVP/C H–Rn

ma-ZORA-def2-QZVPP H–Kr def2-TZVP/C H–Rn

old-SV H–I def2-TZVPP/C H–Rn

old-SV(P) H–I def2-QZVPP/C H–Rn

old-SVP H–I def2-TZVPD/C H–La, Hf–Rn

old-TZV H–I def2-TZVPPD/C H–La, Hf–Rn

old-TZV(P) H–I def2-QZVPPD/C H–La, Hf–Rn

old-TZVP H–I cc-pVDZ/C H–Ar, Ga–Kr

old-TZVPP H–I cc-pVTZ/C H–Ar, Sc–Kr

old-DKH-SV(P) H–I cc-pVQZ/C H–Ar, Sc–Kr

old-DKH-SVP H–I cc-pV5Z/C H–Ar, Ga–Kr

old-DKH-TZV(P) H–I cc-pV6Z/C H–He, B–Ne, Al–Ar

old-DKH-TZVP H–I aug-cc-pVDZ/C H–He, Be–Ne, Mg–Ar, Ga–Kr

old-DKH-TZVPP H–I aug-cc-pVTZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr

old-ZORA-SV(P) H–I aug-cc-pVQZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr

old-ZORA-SVP H–I aug-cc-pV5Z/C H–Ne, Al–Ar, Ga–Kr

old-ZORA-TZV(P) H–I aug-cc-pV6Z/C H–He, B–Ne, Al–Ar

old-ZORA-TZVP H–I cc-pwCVDZ/C4 H–He, B–Ne, Al–Ar, Ga–Kr

old-ZORA-TZVPP H–I cc-pwCVTZ/C4 H–He, B–Ne, Al–Ar, Sc–Kr

ANO-pVDZ H–Ar, Sc–Zn cc-pwCVQZ/C4 H–He, B–Ne, Al–Ar, Ga–Kr

ANO-pVTZ H–Ar, Sc–Zn cc-pwCV5Z/C4 H–Ne, Al–Ar

ANO-pVQZ H–Ar, Sc–Zn aug-cc-pwCVDZ/C4 H–He, B–Ne, Al–Ar, Ga–Kr

ANO-pV5Z H–Ar, Sc–Zn aug-cc-pwCVTZ/C4 H–He, B–Ne, Al–Ar, Sc–Kr

ANO-pV6Z H–Ar, Sc–Zn aug-cc-pwCVQZ/C4 H–He, B–Ne, Al–Ar, Ga–Kr

aug-ANO-pVDZ H–Ar, Sc–Zn aug-cc-pwCV5Z/C4 H–Ne, Al–Ar

aug-ANO-pVTZ H–Ar, Sc–Zn cc-pVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

aug-ANO-pVQZ H–Ar, Sc–Zn cc-pVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

aug-ANO-pV5Z H–Ar, Sc–Zn cc-pVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

saug-ANO-pVDZ H–Ar, Sc–Zn aug-cc-pVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

saug-ANO-pVTZ H–Ar, Sc–Zn aug-cc-pVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

saug-ANO-pVQZ H–Ar, Sc–Zn aug-cc-pVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

saug-ANO-pV5Z H–Ar, Sc–Zn cc-pwCVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

ANO-RCC-DZP H–Cm cc-pwCVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

ANO-RCC-TZP H–Cm cc-pwCVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

ANO-RCC-QZP H–Cm aug-cc-pwCVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

ANO-RCC-Full H–Cm aug-cc-pwCVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

pc-0 H–Ca, Ga–Kr aug-cc-pwCVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn

pc-1 H–Kr cc-pVDZ-F12-MP2Fit H–Ar

pc-2 H–Kr cc-pVTZ-F12-MP2Fit H–Ar

pc-3 H–Kr cc-pVQZ-F12-MP2Fit H–Ar

pc-4 H–Kr cc-pVDZ-PP-F12-MP2Fit Ga–Kr, In–Xe, Tl–Rn

aug-pc-0 H–Ca, Ga–Kr cc-pVTZ-PP-F12-MP2Fit Ga–Kr, In–Xe, Tl–Rn

aug-pc-1 H–Kr cc-pVQZ-PP-F12-MP2Fit Ga–Kr, In–Xe, Tl–Rn

aug-pc-2 H–Kr cc-pCVDZ-F12-MP2Fit Li–Ar

aug-pc-3 H–Kr cc-pCVTZ-F12-MP2Fit Li–Ar

aug-pc-4 H–Kr cc-pCVQZ-F12-MP2Fit Li–Ar
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pcJ-0 H–He, B–Ne, Al–Ar Complementary auxiliary basis sets for F12 calculations (CABS)

pcJ-1 H–He, B–Ne, Al–Ar cc-pVDZ-F12-CABS H, B–Ne, Al–Ar

pcJ-2 H–He, B–Ne, Al–Ar cc-pVTZ-F12-CABS H, B–Ne, Al–Ar

pcJ-3 H–He, B–Ne, Al–Ar cc-pVQZ-F12-CABS H, B–Ne, Al–Ar

pcJ-4 H–He, B–Ne, Al–Ar cc-pVDZ-F12-OptRI H–Ar

aug-pcJ-0 H–He, B–Ne, Al–Ar cc-pVTZ-F12-OptRI H–Ar

aug-pcJ-1 H–He, B–Ne, Al–Ar cc-pVQZ-F12-OptRI H–Ar

aug-pcJ-2 H–He, B–Ne, Al–Ar cc-pVDZ-PP-F12-OptRI Ga–Kr, In–Xe, Tl–Rn

aug-pcJ-3 H–He, B–Ne, Al–Ar cc-pVTZ-PP-F12-OptRI Ga–Kr, In–Xe, Tl–Rn

aug-pcJ-4 H–He, B–Ne, Al–Ar cc-pVQZ-PP-F12-OptRI Ga–Kr, In–Xe, Tl–Rn

pcseg-0 H–Kr aug-cc-pVDZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

pcseg-1 H–Kr aug-cc-pVTZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

pcseg-2 H–Kr aug-cc-pVQZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

pcseg-3 H–Kr aug-cc-pV5Z-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

pcseg-4 H–Kr cc-pCVDZ-F12-OptRI Li–Ar

aug-pcseg-0 H–Kr cc-pCVTZ-F12-OptRI Li–Ar

aug-pcseg-1 H–Kr cc-pCVQZ-F12-OptRI Li–Ar

aug-pcseg-2 H–Kr aug-cc-pwCVDZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

aug-pcseg-3 H–Kr aug-cc-pwCVTZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

aug-pcseg-4 H–Kr aug-cc-pwCVQZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

pcSseg-0 H–Kr aug-cc-pwCV5Z-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

pcSseg-1 H–Kr

pcSseg-2 H–Kr

pcSseg-3 H–Kr

pcSseg-4 H–Kr

aug-pcSseg-0 H–Kr

aug-pcSseg-1 H–Kr

aug-pcSseg-2 H–Kr

aug-pcSseg-3 H–Kr

aug-pcSseg-4 H–Kr
1 Used with the Def2-ECP pseudopotentials (Kr–Rn).
2 Used with the SK-MCDHF-RSC pseudopotentials (Ca, Cu–Kr, Sr–Xe, Ba, Hf–Ra).
3 Used with the HayWadt pseudopotentials (Na–La, Hf–Bi, U–Pu).
4 The repective basis sets without core correlation functions, i.e. (aug-)cc-pVXZ(-DK)(/C), are used for H and He.

A note on RI and auxiliary basis sets: one thing that is certainly feasible and reasonable if you do not want

to depend on the RI approximation is to converge a RI-J calculation and then take the resulting orbitals as

initial guess for a calculation with exact Coulomb term. This should converge within a few cycles and the

total execution time should still be lower than just converging the calculation directly with exact Coulomb

treatment.

9.4.2 Automatic generation of auxiliary basis sets

If no auxiliary basis set is available for your chosen orbital basis set, one can be generated automatically by

ORCA using the keyword AutoAux. This is specified as any other fitting basis set: as a separate keyword in

the simple input line or as a value to the AUX variable in the %basis block (AutoAux can also be assigned to

individual elements or atoms - see sections 9.4.3 and 9.4.4). The generated basis sets can be used for Coulomb,

exchange and correlation fitting and are as accurate as the optimized auxiliary basis sets at the cost of being

up to twice as large. The exact generation procedure is described elsewhere [134] but notably it has been

significantly altered since ORCA 3.1 and will not produce the same results! For compatibility, the
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old version is still accessible via the setting OldAutoAux true in the %basis block. Some additional settings

for AutoAux are given below with their default values.

%basis

Aux "AutoAux" # Use AutoAux to generate the fitting basis set

AutoAuxSize 1-3 # 1 (default) increases the maximal exponent

# for the shells with low angular momenta.

# 2 increases the maximal exponent for all shells

# 3 directly uses the primitives and produces

# the largest fitting basis

AutoAuxLmax false # If true increase the maximal angular momentum of

# the fitting basis set to the highest value

# permitted by ORCA and by the orbital basis set.

OldAutoAux false # If true selects the ORCA 3.1 generation procedure

# Only change the defaults below if you know what you are doing

AutoAuxF[0] 20.0 # The factor to increase the maximal s-exponent

AutoAuxF[1] 7.0 # Same for the p-shell

AutoAuxF[2] 4.0 # Same for the d-shell

AutoAuxF[3] 4.0 # Same for the f-shell

AutoAuxF[4] 3.5 # Same for the g-shell

AutoAuxF[5] 2.5 # Same for the h-shell

AutoAuxF[6] 2.0 # Same for the i-shell

AutoAuxF[7] 2.0 # Same for the j-shell

AutoAuxB[0] 1.8 # Even-tempered expansion factor for the s-shell

AutoAuxB[1] 2.0 # Same for the p-shell

AutoAuxB[2] 2.2 # Same for the d-shell

AutoAuxB[3] 2.2 # Same for the f-shell

AutoAuxB[4] 2.2 # Same for the g-shell

AutoAuxB[5] 2.3 # Same for the h-shell

AutoAuxB[6] 3.0 # Same for the i-shell

AutoAuxB[7] 3.0 # Same for the j-shell

AutoAuxTightB true # Only use B[l] for shells with high l and B[0] for the rest

end

9.4.3 Assigning or Adding Basis Functions to an Element

In order to assign a new basis set to a given element, use:

%basis

NewGTO 8 # new basis for oxygen.

# NewGTO O # works as well

S 3
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1 910.10034975 0.03280967

2 137.19711335 0.23422391

3 30.85279077 0.81490980

S 2

1 1.72885887 0.27389659

2 0.39954770 0.79112437

P 1

1 8.35065975 1.00000000

end

end

Note that for simplicity and consistency the input format is the same as that used in the basis set files. In

this format the first line carries first the angular momentum of the shell to be added (s, p, d, f, g, h, i, j) and

the number of primitives. Then for each primitive one line follows which has (a) the index of the primitive

(1, 2, 3, . . . ) (b) the exponent of the primitive and (c) the contraction coefficient (unnormalized). Note

that ORCA always uses spherical harmonic gaussian functions. L-shells (not to be confused with angular

momentum equal to 9) can only be dealt with as separate s- and p-shells. There also is the possibility to

include a SCALE X statement after the number of primitives in the first line to indicate that the basis function

exponents should be scaled.

In order to add basis functions to the basis of a given element (for example because you do not like the

standard polarization functions) use AddGTO instead or NewGTO. In NewGTO or AddGTO you can also use the

nicknames of internally stored basis sets. An example is:

%basis

NewGTO 8 # new basis for oxygen

"6-31G"

D 1

1 0.4 1.0

end

end

In this example the 6-31G basis is assigned to oxygen and in addition a polarization function with exponent

0.4 is added to the oxygen basis.

Note that the NewGTO keyword does not change the ECP for the given element - you must use NewECP or

DelECP (see section 9.4.7).

A similar mechanism was established for the auxiliary basis sets in RI calculations:

%basis

NewAuxJGTO 8 # new auxiliary basis for oxygen

s 1

1 350 1.0

... etc
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end

AddAuxJGTO 8 # add a shell to the auxiliary basis for

# oxygen

D 1

1 0.8 1.0

end

end

New basis function can be specifically assigned to all auxiliary basis sets. The keywords NewAuxCGTO,

AddAuxCGTO, NewAuxJKGTO, AddAuxJKGTO, NewCABSGTO, AddCABSGTO are used in the same way. The keywords

NewAuxGTO and AddAuxGTO are the same as NewAuxJGTO and AddAuxJGTO, that is, they only influence the

coulomb auxiliary basis (/J basis)!

9.4.4 Assigning or Adding Basis Functions to Individual Atoms

Sometimes you may want to not treat all carbon atoms with the same basis set but to assign a specific basis

set to a specific atom in the molecules. This is also possible in ORCA and takes place in the section [COORDS].

The format is the same as described above. An example may help to make things clear:

%coords

CTyp = Internal; # choose internal coordinates

Units = Angs; # choose Angström units

Charge = 0; # total charge

Mult = 1; # spin multiplicity

Coords # start coordinate assignments

C(1) 0 0 0 0.00 0.0 0.00

AddGTO

D 1

1 1.0 1.0

end;

O(2) 1 0 0 1.13 0.0 0.00

NewGTO

"6-311G"

D 1

1 1.2 1.0

end;

end;

end

In this example an extra d-shell with exponent 1.0 is added to the first carbon atom and the basis for the

oxygen atom is changed to 6-311G with an extra d-function of exponent 1.2 added.

Analogously, AUX basis functions can be assigned or added to individual atoms using the keywords NewAuxJGTO,

AddAuxJGTO, NewAuxCGTO, AddAuxCGTO, NewAuxJKGTO, AddAuxJKGTO, NewCABSGTO, AddCABSGTO.
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A note on the use of AutoAux: if you change the basis set on a given atom and want to generate a fitting

basis, you have to specify it again in the COORDS section, even if AutoAux is already present in the simple

input line or in the %basis block. For example:

! Def2-SVP Def2/JK

%basis

NewAuxJKGTO H

"AutoAux"

end

end

%coords

Coords

O 0.00 0.00 0.00

H -0.25 0.93 0.00

H 0.96 0.00 0.00

AddGTO

P 1

1 1.6 1.0

D 1

1 1.0 1.0

end

NewAuxJKGTO

"AutoAux"

end

end

end

Here the oxygen atom is assigned the Def2-SVP basis and the Def2/JK fitting basis, the first hydrogen atom

is assigned the Def2-SVP basis and an automatically generated fitting basis and the second hydrogen atom is

assigned the Def2-SVP basis with two additional polarization functions and a larger automatically generated

fitting basis that accounts for these functions.

TIP

• When assigning custom basis sets it is always a good idea to print the basis set information (%output

print[p basis] 2 end) and check that everything is correct.

9.4.5 Linear Dependence

The previous sections describe the assessment of a desired molecular basis set from appropriately parametrized

functions at various locations within the molecule (normally centered on atoms). The parametrization of

these functions is such that the chance for redundancy is minimal. Since however, one is limited to work

with finite numerical precision, and furthermore these parameters also depend on the molecular geometry,

redundancies cannot be completely eliminated in advance. Redundancy means that the subspace spanned by

the given basis functions at given values of parameters (including geometry), can be identically spanned by a
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smaller number of linear independent basis functions. Linear dependent (redundant) function sets however

may cause numerical instabilities. Linear dependence is normally identified by searching for zero eigenvalues

of the overlap matrix. Note that the inverse of the overlap (or related matrices) are used for orthogonalization

purposes, and it follows that if near zero eigenvalues are not treated properly, the inverse becomes ill-defined,

and the SCF procedure numerically unstable.

From the previous discussion, it is evident that the crucial parameter for curing linear dependence is the

threshold below which an overlap eigenvalue is considered zero. This parameter may be changed using the

following keyword

%scf

sthresh 1e-7 # default 1e-8

end

Although there is no strict limit for the value of the above parameter, it should reasonably be somewhere

between 1e-5 and 1e-8 (the latter is the default). One may get away with 1e-9 or perhaps even lower without

convergence problem, but there is a risk that the result is contaminated with noise caused by the near zero

vectors. In difficult cases, an 1e-7 threshold was often found to work smoothly, and above that one risks

throwing away more and more functions, which also influence comparability of results with other calculations.

To monitor the behaviour of the small eigenvalues, one should look for the following block in the output

Diagonalization of the overlap matrix:

Smallest eigenvalue ... -1.340e-17

Time for diagonalization ... 0.313 sec

Threshold for overlap eigenvalues ... 1.000e-08

Number of eigenvalues below threshold ... 1

Time for construction of square roots ... 0.073 sec

Total time needed ... 0.387 sec

Here, the smallest eigenvalue is printed, along with the currently used overlap threshold, and the number of

functions below this (which will be dropped). It is a recommended consistency check to look for an equal

number of zero entries among orbital energies once the SCF procedure converged. Note that for functions

belonging to zero eigenvalues no level shifts are applied!

In case that redundant vectors were removed from the basis, ! moread noiter should not be used to read

SCF orbitals, as it is going to produce wrong results. In that case ! rescue moread can be used without

noiter, with the caveats regarding the rescue keyword applying.

9.4.6 Reading Orbital and Auxiliary Basis Sets from a File

By using the variables GTOName, GTOAuxJName, GTOAuxJKName, and GTOAuxCName a basis set can be read

from an ASCII file The format is that used for “GAMESS-US” in the EMSL library [365]. GTOAuxName is a

synonym for GTOAuxJName.
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%basis

# read an externally specified orbital basis

GTOName = "MyBasis.bas"

# read an externally specified Coulomb-fitting basis for RI calculations

GTOAuxJName = "MyAuxJBasis.bas"

# read an externally specified Coulomb- and exchange-fitting basis

GTOAuxJKName = "MyAuxJKBasis.bas"

# read an externally specified correlation-fitting basis

GTOAuxCName = "MyAuxCBasis.bas"

# for STO basis

STOName = "MySTOBasis.bas"

end

To give an example of how this format looks like here is a part of the 3-21GSP basis of Buenker and

coworkers [366,367]:

3-21GSP the name of the basis

! all these lines in the beginning with ’!’ are comments

! BASIS="3-21GSP"

!Elements References

!-------- ----------

! H - Ne: A.V. Mitin, G. Hirsch, R. J. Buenker, Chem. Phys. Lett. 259, 151 (1996)

! Na - Ar: A.V. Mitin, G. Hirsch, R. J. Buenker, J. Comp. Chem. 18, 1200 (1997).

!

HYDROGEN ! (3s) -> [2s]

S 2

1 4.50036231 0.15631167

2 0.68128924 0.90466909

S 1

1 0.15137639 1.00000000

CARBON ! (6s,3p) -> [3s,2p]

S 3

1 499.24042249 0.03330322

2 75.25419194 0.23617745

3 16.86538669 0.81336259

L 2 L shells are a s and a p shell with identical exponents

1 0.89739483 0.24008573 0.46214684

2 0.21746772 0.81603757 0.66529098

L 1

1 4.52660451 1.00000000 1.00000000

STOP

In this way you can construct your favorite standard basis set and load it easily into the program. A word of

caution: in C/C++ the backslashes in directory assignments must be given twice to be correctly understood!

The file format for the auxiliary basis sets is exactly the same.



9.4 Choice of Basis Set 441

9.4.7 Advanced Specification of Effective Core Potentials

Library ECPs and Basis Sets

Besides the simple input line (section 6.3.3), assignment of ECPs can be done within the %basis block using

the ECP and NewECP keywords as in the following example:

%basis

ECP "def2-ECP" # All elements (for which the ECP is defined)

NewECP Pt "def2-SD" end # Different ECP for Pt

end

A variant of the NewECP keyword can be used for individual atoms inside the geometry definition:

* xyz ...

...

S 0.0 0.0 0.0 NewECP "SDD" end

...

*

Note that these keywords only affect the ECP and not the valence basis set!

In case the basis set for an element/atom has been changed using the NewGTO keyword (see sections 9.4.3 and

9.4.4 above) it may be necessary to remove the ECP from that element/atom. This can be done with the

DelECP keyword in the %basis block or coordinates input, respectively:

! LANL2DZ # Uses HayWadt ECPs by default, starting from Na

%basis

NewGTO S "Def2-TZVP" end # All-electron up to Kr

DelECP S # Remove HayWadt ECP

end

* xyz ...

...

Cu 0.0 0.0 0.0

DelECP # Remove HayWadt ECP

NewGTO "Def2-QZVPP" end # All-electron up to Kr

...

*

Manual Input of ECP Parameters

To manually specify ECP parameters, the NewECP keyword is followed by the element for which an ECP is

to be entered, the number of core electrons to be replaced (N core) and the maximum angular momentum

(lmax). The ECP specification is finished by giving the definitions of the individual shells that constitute the

angular dependent potentials Ul.
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%basis

NewECP element

N_core (number of core electrons)

lmax (max. angular momentum)

[shells]

end

end

For each ECP shell, first the angular momentum l has to be given, followed by the number of primitives.

The primitives themselves are then specified by giving a running index and the respective tuple of exponent

akl, expansion coefficient dkl and radial power nkl.

# ECP shell

l (number of primitives)

1 a1l d1l n1l

2 a2l d2l n3l

...

As an example, consider the SD(10,MDF) for Vanadium. The name indicates a Stuttgart–Dresden type ECP

that replaces 10 core electrons and is derived from a relativistic calculation for the neutral atom. It consists

of 4 shells with angular momentum s, p, d and f . Note that the f shell has an expansion coefficient of 0.0

and thus will not contribute at all to this effective core potential. This is typical for all SD potentials (but

may be different for program packages like TURBOMOLE that do not support arbitrary angular momentum

with respect to the ECP and therefore use recontractions of the original parameter sets).

# ECP SD(10,MDF) for V

# M. Dolg, U. Wedig, H. Stoll, H. Preuss,

# J. Chem. Phys. 86, 866 (1987).

NewECP V

N_core 10

lmax f

s 2

1 14.4900000000 178.4479710000 2

2 6.5240000000 19.8313750000 2

p 2

1 14.3000000000 109.5297630000 2

2 6.0210000000 12.5703100000 2

d 2

1 17.4800000000 -19.2196570000 2

2 5.7090000000 -0.6427750000 2

f 1

1 1.0000000000 0.0000000000 2

end

9.4.8 Embedding Potentials

Computations on cluster models sometimes require the presence of embedding potentials in order to account

for otherwise neglected repulsive terms at the border [368]. In order to simplify these kind of calculations



9.5 Choice of Initial Guess and Restart of SCF Calculations 443

with ORCA the ECP embedding can be accomplished quite easy:

* ...

# atom> charge x y z optional ECP declaration

Zr> 4.0 0.0 0.0 0.0 NewECP "SDD" end

...

*

The declaration of such a coreless ECP centre takes place in the coordinates section by appending a bracket

“>” to the element symbol. Note that embedding ECPs are treated as point charges in ORCA, so the charge

has to be given next. The coordinates of the coreless ECP centre have to be specified as usual and may be

followed by an optional ECP assignment. In general, calculations that employ an ECP embedding procedure

should be single point calculations. However if the need arises to perform a geometry optimization, make

sure to set up explicit Cartesian constraints for the coreless ECP centres.

9.5 Choice of Initial Guess and Restart of SCF Calculations

The initial guess is an important issue in each SCF calculation. If this guess is reasonable the convergence of

the procedure will be much better. ORCA makes some effort to provide a good initial guess and give the

user enough flexibility to tailor the initial guess to his or her needs.

The initial guess is also controlled via the %scf block and the variables Guess, MOInp and GuessMode.

%scf Guess HCore # One electron matrix

Hueckel # Extended Hückel guess

PAtom # Polarized atomic densities

PModel # Model potential

MORead # Restart from an earlier calc.

MOInp "Name.gbw" # orbitals used for MORead

GuessMode FMatrix # FMatrix projection

CMatrix # Corresponding orbital projection

AutoStart true # try to use the orbitals from the existing

# GBW file of the same name (if possible)

# (default)

false # don’t use orbitals from existing GBW file

end

9.5.1 AutoStart feature

Previous versions of ORCA always created a new GBW file at the beginning of the run no matter whether a

file of the same name existed or perhaps contained orbitals. This philosophy was changed in version 2.5-03.

The program now automatically checks if a .gbw file of the same name exists. If yes, the program checks

if it contains orbitals and all other necessary information for a restart. If yes, the variable Guess is set
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to MORead. The existing .gbw file is renamed to BaseName.ges and MOInp is set to this filename. If the

AutoStart feature is not desired set AutoStart false in the %scf block or give the keyword !NoAutoStart

in the simple input line.

9.5.2 One Electron Matrix Guess

The simplest guess is to diagonalize the one electron matrix to obtain starting orbitals. This guess is very

simple but usually also a disaster because it produces orbitals that are far too compact.

9.5.3 Basis Set Projection

The remaining guesses (may) need the projection of initial guess orbitals onto the actual basis set. In ORCA
there are two ways this can be done. GuessMode FMatrix and GuessMode CMatrix The results from the

two methods are usually rather similar. In certain cases GuessMode CMatrix may be preferable. GuessMode

FMatrix is simpler and faster. In short the FMatrix projection defines an effective one electron operator:

f =
∑
i

εia
†
iai (9.48)

where the sum is over all orbitals of the initial guess orbital set, a†i is the creation operator for an electron

in guess MO i, ai is the corresponding destruction operator and εi is the orbital energy. This effective one

electron operator is diagonalized in the actual basis and the eigenvectors are the initial guess orbitals in the

target basis. For most wavefunctions this produces a fairly reasonable guess.

CMatrix is more involved. It uses the theory of corresponding orbitals to fit each MO subspace (occupied,

partially occupied or spin-up and spin-down occupied) separately [369,370]. After fitting the occupied orbitals

the virtual starting orbitals are chosen in the orthogonal complement of the occupied orbitals. In some cases,

especially when restarting ROHF calculations this may be an advantage. Otherwise I have not met cases

where CMatrix was grossly superior to FMatrix but that does not mean that such cases do not exist and

they may not even be exotic.

9.5.4 PModel Guess

The PModel guess (chosen by Guess PModel in the %scf block or simply a keywordline with !PModel) is

one that is usually considerably successful. It consists of building and diagonalizing a Kohn-Sham matrix

with an electron density which consists of the superposition of spherical neutral atoms densities which are

predetermined for both relativistic and nonrelativistic methods. This guess is valid for both Hartree-Fock

and DFT methods but not for semiempirical models. However, due to the complexity of the guess it will also

take a little computer time (usually less than one SCF iteration). The model densities are available for most

atoms of the periodic table and consequently the PModel guess is usually the method of choice (particularly

for molecules containing heavy elements) unless you have more accurate starting orbitals available.
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9.5.5 Hückel and PAtom Guesses

The extended Hückel guess proceeds by performing a minimal basis extended Hückel calculation and projecting

the MOs from this calculation onto the actual basis set using one of the two methods described above. The

minimal basis is the STO-3G basis set. The Hückel guess may not be very good because the STO-3G basis set

is so poor. There is also accumulating evidence that the superposition of atomic densities produces a fairly

good initial guess. The critique of the atomic density method is that the actual shape of the molecule is not

taken into account and it is more difficult to reliably define singly occupied orbitals for ROHF calculations or

a reasonable spin density for UHF calculations. Therefore ORCA chooses a different way in the PAtom guess

(which is the default guess) - the Hückel calculation is simply carried out for all electrons in a minimal basis

of atomic SCF orbitals. These were determined once and for all and are stored inside the program. This

means that the densities around the atoms are very close to the atomic ones, all orbitals on one center are

exactly orthogonal, the initial electron distribution already reflects the molecular shape and there are well

defined singly occupied orbitals for ROHF calculations. This guess has to the best of my knowledge not been

described before.

9.5.6 Restarting SCF Calculations

To restart SCF calculations, it can be very helpful and time-saving to read in the orbital information of a

previous calculation. To do this, specify:

! moread

% moinp "name.gbw"

Starting from version 2.5-03 of ORCA this is done by default if the .gbw file of the same name exists.

The program stores the current orbitals in every SCF cycle. Should a job crash, it can be restarted from

the orbitals that were present at this time by just re-running the calculation to use the present .gbw file. In

addition, an effort has been made to make .gbw files from different releases compatible with each other. If

your input .gbw file is from an older release, use ! rescue moread noiter with % moinp "name.gbw" to

produce an up-to-date .gbw. When the rescue keyword is invoked, only the orbital coefficients are read from

the .gbw file, and everything else from the input file. Thus, make sure that the geometry and the basis set of

the old .gbw file and the new input match.

Within the same ORCA version, neither the geometry nor the basis set stored in name.gbw need to match the

present geometry or basis set. The program merely checks if the molecules found in the current calculation

and name.gbw are consistent with each other and then performs one of the possible orbital projections. If

the two basis sets are identical the program by default only reorthogonalizes and renormalizes the input

orbitals. However, this can be overruled by explicitly specifying GuessMode in the % scf block as CMatrix

or FMatrix.

If redundant components were removed from the basis (see 9.4.5), then ! moread noiter must

not be used to read SCF orbitals from a previous calculation, as it is going to lead to wrong

results. In that case, ! rescue moread may be used (without noiter) if doing the entire calcu-

lation in one go is not possible.
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For pre 2.5-03 versions of ORCA the input .gbw file from the earlier calculation must have a different name

than the new calculation, because in the very beginning of a calculation, a new .gbw file is written. If the

names are the same, the .gbw file from the earlier calculation is overwritten and all information is lost.

Therefore, if you want to restart a calculation with an input file of the same name as the previous calculation,

you have to rename the .gbw file first.

There is an additional aspect of restarting SCF calculations — if you have chosen SCFMode = Conventional or

SCFMode = SemiDirect the program stores a large number of integrals that might have been time consuming

to calculate on disk. Normally the program deletes these integrals at the end of the calculation. However, if

you want to do a closely related calculation that requires the same integrals (i.e. the geometry, the basis

set and the threshold Thresh are the same) it is faster to use the integrals generated previously. This is

done by using KeepInts = true in the % scf block of the first calculation and then use ReadInts = true

in the the % scf block of the second calculation. If the second calculation has a different name than the first

calculation you have to use IntName = "FirstName" to tell the program the name of the integral files. Note

that the file containing the integrals does not have an extension — it is simply the name of the previous

input file with .inp stripped off.

%scf KeepInts true # Keep integrals on disk

ReadInts true # Read integrals from disk

IntName "MyInts" # Name of the integral files without extension

end

Note that if you want to reuse the integrals for SemiDirect calculations it is forbidden to change the values

of TCost and TSize in the % scf block. The program will not check for that but your results will be totally

meaningless. In general, restarting calculations with old integral files requires the awareness and responsibility

of the user. If properly used, this feature can save considerable amounts of time.

9.5.7 Changing the Order of Initial Guess MOs and Breaking the Initial Guess

Symmetry

Occasionally you will want to change the order of initial guess MOs — be it because the initial guess yielded

an erroneous occupation pattern or because you want to converge to a different electronic state using the

orbitals of a previous calculation. Reordering of MOs and other tasks (like breaking the symmetry of the

electronic wavefunction) are conveniently handled with the Rotate feature in ORCA. Rotate is a subblock

of the SCF block that allows you to linearly transform pairs of MOs.

%scf

Rotate

{ MO1, MO2, Angle }
{ MO1, MO2, Angle, Operator1, Operator2 }
{ MO1, MO2} # Shortcut to swap MO1 and MO2. Angle=90 degrees.

end

end
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Here, MO1 and MO2 are the indices of the two MOs of interest. Recall that ORCA starts counting MOs with

index 0, i.e. the MO with index 1 is the second MO. Angle is the rotation angle in degrees. A rotation

angle of 90◦ corresponds to flipping two MOs, an angle of 45◦ leads to a 50:50 mixture of two MOs, and a

180◦ rotation leads to a change of phase. Operator1 and Operator2 are the orbitals sets for the rotation.

For UHF calculations spin-up orbitals belong to operator 0 and spin-down orbitals to operator 1. RHF and

ROHF calculations only have a single orbital set.

The Rotate feature can be used to produce broken symmetry solutions say in transition metal dimers. In

order to do that first perform a high-spin calculation, then find the pairs of MOs that are symmetric and

antisymmetric combinations of each other. Take these MOs as the initial guess and use rotations of 45◦ for

each pair to localize the startup MOs. If you are lucky and the broken symmetry solution exists, you have a

good chance of finding it this way. The physical meaning of such a solution is a different question that will

not be touched here.

9.6 SCF Convergence

SCF convergence is a pressing problem in any electronic structure package because the total execution times

increases linearly with the number of iterations. Thus, it remains true that the best way to enhance the

performance of an SCF program is to make it converge better. In some cases, especially for open-shell

transition metal complexes, convergence may be very difficult. ORCA makes a dedicated effort to achieve

reasonable SCF convergence for these cases without compromising efficiency. However, there are cases that

do not converge, but find a list of things to try first before giving up in this chapter.

Another issue is whether the solution found by ORCA is stable, i.e. a minimum on the surface of orbital

rotations. Especially for open-shell singlets it can be hard to achieve a broken-symmetry solution. The SCF

stability analysis (section 9.9) may be able to help in such situations.

9.6.1 Convergence Tolerances

Before discussing how to converge a SCF calculation it should be defined what is meant by “converged”.

ORCA has a variety of options to control the target precision of the energy and the wavefunction that can be

selected in the % scf block, or with a simple input line keyword that merges the criterion label with “SCF”,

e.g. ! StrongSCF or ! VeryTightSCF:

%scf

Convergence # The default convergence is between medium and strong

Sloppy # very weak convergence

Loose # still weak convergence

Medium # intermediate accuracy

Strong # stronger

Tight # still stronger

VeryTight # even stronger

Extreme # close to numerical zero of the computer

# in double precision arithmetic
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end

Like other keys, Convergence is a compound key that assigns default values to a variety of other variables

given in the box below. The default convergence criteria are reasonable and should be sufficient for most

purposes. For a cursory look at populations weaker convergence may be sufficient, whereas other cases may

require stronger than default convergence. Note that Convergence does not only affect the target convergence

tolerances but also the integral accuracy as discussed in the section about direct SCF and alike. This is very

important: if the error in the integrals is larger than the convergence criterion, a direct SCF calculation

cannot possibly converge.

The convergence criteria are always printed in the output. Given below is a list of the convergence criteria

for ! TightSCF, which is often used for calculations on transition metal complexes.

%scf

TolE 1e-8 # energy change between two cycles

TolRMSP 5e-9 # RMS density change

TolMaxP 1e-7 # maximum density change

TolErr 5e-7 # DIIS error convergence

TolG 1e-5 # orbital gradient convergence

TolX 1e-5 # orbital rotation angle convergence

ConvCheckMode 2 # = 0: check all convergence criteria

# = 1: stop if one of criterion is met, this is sloppy!

# = 2: check change in total energy and in one-electron energy

# Converged if delta(Etot)<TolE and delta(E1)<1e3*TolE

ConvForced # = 0: convergence not mandatory for next calculation step

# = 1: break, if you did not meet the convergence criteria

end

If ConvCheckMode=0, all convergence criteria have to be satisfied for the program to accept the calculation

as converged, which is a quite rigorous criterion. In this mode, the program also has mechanisms to decide

that a calculation is converged even if one convergence criterion is not fulfilled but the others are overachieved.

ConvCheckMode=1 means that one criterion is enough. This is quite dangerous, so ensure that none of the

criteria are too weak, otherwise the result will be unreliable. The default ConvCheckMode=2 is a check of

medium rigour — the program checks for the change in total energy and for the change in the one-electron

energy. If the ratio of total energy and one-electron energy is constant, the self-consistent field does not

fluctuate anymore and the calculation can be considered converged. If you have small eigenvalues of the

overlap matrix, the density may not be converged to the number of significant figures requested by TolMaxP

and TolRMSP.

ConvForced is a flag to prevent time consuming calculations on non-converged wave functions. It will default

to ConvForced=1 for Post-HF methods, Excited States runs and Broken Symmetry calculations. You can

overwrite this default behavior by setting ConvForced=0.

Irrespective of the ConvForced value that has been chosen, properties or numerical calculations (NumGrad,

NumFreq) will not be performed on non-converged wavefunctions!
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9.6.2 Dynamic and Static Damping

Damping is the oldest and simplest convergence aid. It was already invented by Douglas Hartree when he did

his famous atomic calculations. Damping consists of mixing the old density with the new density as:

Pnew, damped = (1− α)Pnew + αPold (9.49)

where α is the damping factor, which must have a value of less than 1. Thus the permissible range (not

checked by the program) is 0 . . . 0.999999. For α values larger than 1, the calculation cannot proceed since no

new density is admixed. Damping is important in the early stages of a calculation where Pold and Pnew are

very different from each other and the energy is strongly fluctuating. Many schemes have been suggested that

vary the damping factor dynamically to give strong damping in the beginning and no damping in the end of

an SCF. The scheme implemented in ORCA is that by Hehenberger and Zerner [371] and is invoked with

CNVZerner=true. Static damping is invoked with CNVDamp=true. These convergers are mutually exclusive.

They can be used in the beginning of a calculation when it is not within the convergence radius of DIIS or

SOSCF. Damping works reasonably well, but most other convergers in ORCA are more powerful.

If damping used in conjunction with DIIS or SOSCF, the value of DampErr is important: once the DIIS error

falls below DampErr, the damping is turned off. In case SOSCF is used, DampErr refers to the orbital gradient

value at which the damping is turned off. The default value is 0.1 Eh. In difficult cases, however, it is a good

idea to choose DampErr much smaller, e.g. 0.001. This is — to some extent — chosen automatically together

with the keyword ! SlowConv.

%scf

# control of the Damping procedure

CNVDamp true # default: true

CNVZerner false # default: false

DampFac 0.98 # default: 0.7

DampErr 0.05 # default: 0.1

DampMin 0.1 # default: 0.0

DampMax 0.99 # default: 0.98

# more convenient:

Damp fac 0.98 ErrOff 0.05 Min 0.1 Max 0.99 end

end

9.6.3 Level Shifting

Level shifting is a frequently used technique. The basic idea is to shift the energies of the virtual orbitals such

that after diagonalization the occupied and virtual orbitals mix less strongly and the calculation converges

more smoothly towards the desired state. Also, level shifting should prevent flipping of electronic states

in near-degenerate cases. In a special context it has been shown by Saunders and Hillier [372, 373] to be

equivalent to damping.

Similar to DampErr described in the previous section, ShiftErr refers to the DIIS error at which the level

shifting is turned off.
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%scf

# control of the level shift procedure

CNVShift true # default: true

LShift 0.1 # default: 0.25, energy unit is Eh.

ShiftErr 0.1 # default: 0.0

# more convenient:

Shift Shift 0.1 ErrOff 0.1 end

end

9.6.4 Direct Inversion in Iterative Subspace (DIIS)

The Direct Inversion in Iterative Subspace (DIIS) is a technique that was invented by Pulay [?, 374]. It

has become the de facto standard in most modern electronic structure programs, because DIIS is robust,

efficient and easy to implement. Basically DIIS uses a criterion to judge how far a given trial density is from

self-consistency. The commutator of the Fock and density matrices [F,P] is a convenient measure for this

error. With this information, an extrapolated Fock matrix from the present and previous Fock matrices is

constructed, which should be much closer to self-consistency. In practice this is usually true, and better than

linear convergence has been observed with DIIS. In some rare (open-shell) cases however, DIIS convergence is

slow or absent after some initial progress. As self-consistency is approached, the set of linear equations to be

solved for DIIS approaches linear dependency and it is useful to bias DIIS in favor of the SCF cycle that

had the lowest energy using the factor DIISBfac. This is achieved by multiplying all diagonal elements of

the DIIS matrix with this factor unless it is the Fock matrix/density which leads to the lowest energy. The

default value for DIISBfac is 1.05.

The value of DIISMaxEq is the maximum number of old Fock matrices to remember. Values of 5-7 have been

recommended, while other users store 10-15 Fock matrices. Should the standard DIIS not achieve convergence,

some experimentation with this parameter can be worthwhile. In cases where DIIS causes problems in the

beginning of the SCF, it may have to be invoked at a later stage. The start of the DIIS procedure is controlled

by DIISStart. It has a default value of 0.2 Eh, which usually starts DIIS after 0-3 cycles. A different way of

controlling the DIIS start is adjusting the value DIISMaxIt, which sets the maximum number of cycles after

which DIIS will be started irrespective of the error value.

%scf

# control of the DIIS procedure

CNVDIIS true # default: true

DIISStart 0.1 # default: 0.2

DIISMaxIt 5 # default: 12

DIISMaxEq 7 # default: 5

DIISBFac 1.2 # default: 1.05

DIISMaxC 15.0 # default: 10.0

# more convenient:

DIIS Start 0.1 MaxIt 5 MaxEq 7 BFac 1.2 MaxC 15.0 end

end
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9.6.5 An alternative DIIS algorithm: KDIIS

An alternative algorithm that makes use of the DIIS concept is called KDIIS in ORCA. The KDIIS algorithm

is designed to bring the orbital gradient of any energy expression to zero using a combination of DIIS

extrapolation and first order perturbation theory. Thus, the method is diagonalization-free. In our hands it

is superior to the standard DIIS algorithm in many cases, but not always. The algorithm is invoked with the

keyword ! KDIIS and is available for RHF, UHF and CASSCF.

9.6.6 Approximate Second Order SCF (SOSCF)

SOSCF is an approximately quadratically convergent variant of the SCF procedure [375,376]. The theory is

relatively involved and will not be described here. In short – SOSCF computes an initial guess to the inverse

orbital hessian and then uses the BFGS formula in a recursive way to update orbital rotation angles. As

information from a few iterations accumulates, the guess to the inverse orbital hessian becomes better and

better and the calculation reaches a regime where it converges superlinearly. As implemented, the procedure

converges as well or slightly better than DIIS and takes a somewhat less time. However, it is also a lot

less robust, so that DIIS is the method of choice for many problems (see also the description of the full

Newton-Raphson procedure in the next section). On the other hand, SOSCF is useful when DIIS gets stuck

at some error around ∼ 0.001 or 0.0001. Such cases were the primary motive for the implementation of

SOSCF into ORCA.

The drawback of SOSCF is the following: in the beginning of the SCF, the orbital gradient (the derivative of

the total energy with respect to rotations that describe the mixing of occupied and virtual MOs) is large,

so that one is far from the quadratic regime. In such cases, the procedure is not successful and may even

wildly diverge. Therefore it is recommended to only invoke the SOSCF procedure in the very end of the

SCF where DIIS may lead to “trailing” convergence. SOSCF is controlled by the variables SOSCFStart and

SOSCFMaxIt. SOSCFStart is a threshold for the orbital gradient. When the orbital gradient, or equivalently

the DIIS Error, fall below SOSCFStart, the SOSCF procedure is initiated. SOSCFMaxIt is the latest iteration

to start the SOSCF even if the orbital gradient is still above SOSCFStart.

%scf

# control of the SOSCF procedure

CNVSOSCF true # default: false

SOSCFStart 0.1 # default: 0.01

SOSCFMaxIt 5 # default: 1000

# more convenient:

SOSCFStart 0.1 MaxIt 5 end

end

For many calculations on transition metal complexes, it is a good idea to be conservative in the startup

criterion for SOSCF, it may diverge otherwise. A choice of 0.01 or lower can be recommended.
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9.6.7 Full Second Order SCF (Newton-Raphson SCF)

The Newton–Raphson (NR) procedure is quite powerful once the calculations is within its radius of convergence:

it then usually converges extremely fast and to high accuracy. It should be considered that the time

requirement for a NR iteration is much higher than that for a regular SCF calculation. However, this may

be overcompensated by the reduced number of cycles (see section 8.1.5 for a numerical example). For a

“normal” well-behaved molecule which converges in 10–15 iterations with the DIIS procedure, it is unlikely

that invoking the NR converger pays off. For more problematic cases it is more likely that it will. Another

area where NR-SCF may be useful is when you desire accurate SCF solutions, for example for numerical

frequency calculations. In these cases, a different option is to decrease the convergence tolerance of the

CP-SCF solver (Z Tol).

In version 2.4.45 the full Newton–Raphson method (and its augmented Hessian analogue) was implemented

for converging closed-shell or spin-unrestricted Hartree–Fock and density functional calculations.

The NR solver itself has two options, which are very similar to the analogous SOSCF options:

%scf

# no Newton-Raphson by default

NRMaxIt 10 # iteration at which NR is switched on, default 150

NRStart 0.05 # DIIS error at which NR is switched on, default 0.0033

end

end

As soon as the Newton–Raphson procedure starts within one SCF procedure, all other convergers are switched

off. After convergence is achieved, the orbitals are canonicalized again through a single diagonalization of the

Fock operator. In order to help the convergence of the CP-SCF procedure, the orbitals are quasi-canonical in

between iterations. This means that after the orbital update, the occ–occ and virt–virt blocks of the Fock

operator are diagonalized separately and the occupied and virtual orbitals are chosen to be eigenfunctions of

these parts of the Fock operator.

There is a shortcut to the NR-converger. If ! NRSCF is chosen, this will invoke the NRSCF once the DIIS

error falls below 0.0033 (the default value). If SlowConv is also specified, the NR converger will only be

switched on at a DIIS error of 0.002. This is more conservative since the NR-solver may also have convergence

problems otherwise.

In particularly difficult cases, the Newton–Raphson step may run into trouble if the orbital Hessian is singular

or nearly singular. It is then preferable to take a more cautious step, by invoking the augmented-Hessian

method which was implemented for such cases. This method is called by ! AHSCF. It sets the same values as

NRSCF but puts an augmented Hessian solver into operation. It will not always help, but in some difficult

situations this feature has already been successful.

Technically speaking, the program solves a large set of linear equations in each NR iteration. It turns out

that the equations to be solved are precisely equivalent to the CP-SCF equations for an electric-field-like

equation but with the right hand side being replaced by the occupied/virtual blocks of the Fock operator in

the MO basis. Thus, the implementation calls the CP-SCF program in each SCF iteration. The converged

CP-SCF first order wavefunction coefficients are then used to update the current orbitals. Thus, the cost of
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each NR iteration can be precisely specified as the cost of one electric field type CP-SCF calculation for a

single perturbation on the same system.

One important aspect of the NR implementation is that the NR solver checks itself for convergence. The

orbital gradient is calculated before the CP-SCF program is called. If the orbital gradient is below its

threshold (TolG), convergence is signaled irrespective of what the other convergence indicators are. The

orbital gradient is a rigorous criterion and therefore the results are considered reliable. If tighter convergence

is desired, the thresholds TolG and TolX should be lowered.

The following example for a “normal” case of a Hartree–Fock geometry optimization converges in 5 cycles:

! RHF TZVPP Opt VeryTightSCF

* xyz 0 1

N 0 0 0

N 0 0 1

*

With the alternative first order SCF it also takes 5 cycles, but in each geometry optimization step there

are more SCF iterations. In these examples, the total time for the calculations is comparable (less than 30

seconds), but that may be different for other cases.

! RHF TZVPP Opt TightSCF

! NRSCF

* xyz 0 1

N 0 0 0

N 0 0 1

*

The CP-SCF program is called with the convergence and method flags that are also used in Z-vector

calculations (e.g. in MP2 or CIS/TD-DFT gradient calculations). They are accessible through the %method

block (see also section 9.8):

%method Z_solver Pople # Pople’s solver. Usually great!

CG # conjugate gradient

DIIS # Pulays DIIS

AugHess # Augmented Hessian (for SCF only)

Z_MaxIter 64 # maximum number of CP-SCF iterations

Z_MaxDIIS 10 # for DIIS: maximum number of expansion vectors

Z_Shift 0.3 # for DIIS: level shift

Z_Tol 1e-6 # convergence tolerance on residual

end



454 9 Detailed Documentation

The range of applicability of the NR method is precisely the same as that of the CP-SCF program itself and

the SCF program will immediately benefit from any improvement made in the CP-SCF module.

9.6.8 Finite Temperature HF/KS-DFT

A finite temperature can be used to apply a Fermi-like occupation number smearing over the orbitals of

the system, which may sometimes help to get convergence of the SCF equations in near hopeless cases.

Through the smearing, the electrons are distributed according to Fermi statistics among the available orbitals.

The “chemical potential” is found through the condition that the total number of electrons remains correct.

Gradients can be computed in the presence of occupation number smearing.

%scf SmearTemp 5000 # ‘‘temperature’’ in Kelvin

end

NOTE:

• Finite temperature SCF (fractional occupation numbers or FOD analysis, see 9.6.8.1 and 9.6.8.2,

respectively) cannot be used together with the CNVRico or SOSCF methods.

9.6.8.1 Fractional Occupation Numbers

Only a very basic implementation of fractional occupation numbers is presently provided. It is meant to deal

with orbitally degenerate states in the UHF/UKS method. Mainly it was implemented to avoid symmetry

breaking in DFT calculations on orbitally degenerate molecules and atoms. The program checks the orbital

energies of the initial guess orbitals, finds degenerate sets and averages the occupation numbers among them.

Currently the criterion for degenerate orbitals is 10−3 Eh. The fractional occupation number option is invoked

by:

%scf FracOcc true

end

Clearly, the power of fractional occupation numbers goes far beyond what is presently implemented in the

program and future releases will likely make more use of them. The program prints a warning whenever it

uses fractional occupation numbers. The fractionally occupied orbitals should be checked to ensure they are

actually the intended ones.

NOTE:

• Using GuessMode = CMatrix will cause problems because there are no orbital energies for the initial

guess orbitals. The program will then average over all orbitals — which makes no sense at all.



9.6 SCF Convergence 455

9.6.8.2 Fractional Occupation Number Weighted Electron Density (FOD)

Many approximate QC methods do not yield reliable results for systems with significant static electron

correlation (SEC) but it is often difficult to predict if the system in question suffers from SEC or not. Existing

scalar SEC diagnostics (e.g., the T1 diagnostic) do not provide any information where the SEC is located in the

molecule. Furthermore, often quite expensive calculations have to be performed first (e.g., CCSD) in order to

judge the reliability of the results based on a single number. Molecular systems with strong SEC (e.g. covalent

bond-breaking, biradicals, open-shell transition metal complexes) are usually characterized by small energy

gaps between frontier orbitals, and hence, the appearance of many equally important determinants in their

electronic wavefunction. This finding is used in the FOD analysis [377] which is based on finite temperature

KS-DFT where the fractional occupation numbers are determined from the Fermi distribution (“Fermi

smearing”)

fi =
1

e(εi−EF )/kTel + 1

The central quantity of the FOD analysis is the fractional occupation number weighted electron density

(ρFOD), a real-space function of the position vector r:

ρFOD(r) =

N∑
i

(δ1 − δ2fi)|ϕi(r)|2

(δ1 and δ2 are unity if the level is lower than EF while they are 0 and −1, respectively, for levels higher than

EF ). The fi represent the fractional occupation numbers (0≤ fi ≤1; sum over all electronic single-particle

levels obtained by solving self-consistently the KS-SCF equations minimizing the free-electronic energy).

ρFOD(r) can be plotted using a pre-defined contour surface value (see 9.39.2.2). FOD plots only show the

contribution of the ‘hot’ (strongly correlated) electrons and can thus be used to choose a suitable QC method

for the system in question based on some rules of thumb (see 9.39.2.2). Mulliken reduced orbital charges

based on ρFOD(r) (see 9.38.2) offer a fast alternative to get the informations of the FOD plot.

The integration of ρFOD over all space yields as additional information a single size-extensive number termed

NFOD which correlates well with other scalar SEC diagnostics and can be used to globally quantify SEC

effects in the molecule.

ρFOD (and NFOD) strongly depend on the orbital energy gap which itself depends almost linearly on the

amount of the non-local Fock exchange admixture ax. The following (empirical) function of the optimal

electronic temperature Tel on ax

Tel = 20000 K× ax + 5000 K

is used to ensure that similar results of the FOD analysis are obtained with various functionals. For example,

the SmearTemp has to be 5000 K for TPSS (ax = 0), 9000 K for B3LYP (ax = 20%), 10000 K for PBE0 (ax

= 25%), and 15800 K for M06-2x (ax = 54%). The result of the FOD analysis is not strongly dependent

on the employed basis set (see supplementary information of the original publication [377]). TPSS/def2-

TZVP/TightSCF was chosen as the default since it is fast and robust. The FOD analysis is a very efficient

and practicable tool to get informations about the amount and localization of SEC in the system of question.

It is called by a simple keyword:
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# ground state of p-benzyne

! FOD

* xyz 0 1

C 0.0000000 1.2077612 0.7161013

C 0.0000000 0.0000000 1.3596219

C 0.0000000 -1.2077612 0.7161013

C 0.0000000 -1.2077612 -0.7161013

C 0.0000000 0.0000000 -1.3596219

C 0.0000000 1.2077612 -0.7161013

H 0.0000000 2.1606260 1.2276695

H 0.0000000 -2.1606260 1.2276695

H 0.0000000 -2.1606260 -1.2276695

H 0.0000000 2.1606260 -1.2276695

*

The respective output reads:

--------------

SCF ITERATIONS

--------------

ITER Energy Delta-E Max-DP RMS-DP [F,P] Damp

*** Starting incremental Fock matrix formation ***

0 -230.8802282249 0.000000000000 0.02185974 0.00097019 0.1125725 0.7000

1 -230.9307557407 -0.050527515790 0.02830189 0.00098494 0.0564588 0.7000

***Turning on DIIS***

... etc.

12 -231.0034669835 0.000000000547 0.00000176 0.00000004 0.0000032 0.0000

***DIIS convergence achieved***

Fermi smearing: E(HOMO(Eh)) = -0.201006 MUE = -0.179109 gap = 1.117 eV

N_FOD = 0.921577

If the FOD analysis should be done employing a different functional, one has to explicitly specify the functional

and basis set in the simple keyword line and adjust the SmearTemp accordingly.

# ozone molecule

! UKS B3LYP def2-TZVP TightSCF

%scf

SmearTemp 9000

end

* xyz 0 1

O 0.00000000017911 0.00000000000000 0.43702029765776

O -1.09512651993192 0.00000000000000 -0.21851064888325



9.7 Choice of Wavefunction and Integral Handling 457

O 1.09512651975281 0.00000000000000 -0.21851064877451

*

The FOD analysis may also be useful for finding a suitable active space for e.g. CASSCF calculations.

NOTE:

• The FOD analysis will be always printed (including Mulliken reduced orbital charges based on ρFOD)

if SmearTemp > 0 K ρFOD is stored on disk in the file Basename.scfp fod).

• Since the the Ŝ2 expectation value is not defined for fractional occupation numbers, its printout is

omitted.

9.7 Choice of Wavefunction and Integral Handling

9.7.1 Choice of Wavefunction Type

The basic variable that controls the type of wavefunction to be computed is the variable HFTyp in the %scf

block. If nothing is specified for HFTyp, the program will check the multiplicity given in the input: for

closed-shell molecules with multiplicity 1, RHF/RKS is assumed; for open shell molecules with multiplicity

larger than 1, UHF/UKS is invoked. RHF will lead to a spin restricted closed-shell type computation [59].

For DFT calculations, RKS, UKS and ROKS can be used as synonyms for RHF, UHF and ROHF. The restricted

open-shell DFT method (ROKS) is only operative for high-spin states that have n unpaired electrons and

S = n/2. UKS wavefunctions will not be spin-purified.

%scf HFTyp RHF # closed-shell (RKS for DFT)

UHF # unrestricted open-shell (UKS for DFT)

ROHF # restricted open-shell (ROKS for DFT)

CASSCF # complete active space SCF

end

In certain cases you may want to run open-shell molecules with RHF/RKS to get a “half-electron” type

wavefunction [378]. The total energy is not corrected! Sometimes these half-electron computations lead to

acceptable convergence, and the resulting orbitals may be used as input for ROHF, UHF or MRCI calculations.

Especially for transition metal complexes the orbitals are quite different from ROHF or UHF orbitals, so that

it is not recommended to over-interpret the wavefunctions from such calculations. The calculation is set up

in the following way:

%method AllowRHF true end

# or simply: ! AllowRHF
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For ROHF calculations [379–387] the program will try to figure out what type of open-shell situation is

present on the basis of the initial guess orbitals and their energies. Most “simple” cases are well recognized

but sometimes a little help from the user is needed. The ROHF code has a very powerful feature that goes

back to insights of Mike Zerner [388,389]. It can average over either all states of a given configuration (CAHF)

or all states of a given spin for a given configuration (SAHF). Especially the SAHF feature gives you easy access

to most degenerate high symmetry situations and the orbitals resulting from such calculations will be very

convenient as input for CI calculations. In this way one can approach results from MCSCF calculations.

The input variables described above are accessed in the %scf block. ROHFOPT Case User is a convenient way

to input details. For example for the high spin case with three electrons in three orbitals gives two operators

with vector coupling coefficients a = 1 and b = 2 (Zerner convention).

%scf HFTyp ROHF

ROHF_case CAHF # configuration averaged HF

SAHF # spin averaged HF

HighSpin # high spin case, n unpaired e- in n orbitals with S=n/2

ROHF_NumOp 3 # number of operators (3, 2 or 1)

ROHF_NOrb[1] 2,1 # number of orbitals in each open-shell

ROHF_NEl[1] 1,1 # number of electrons in each open-shell

end

ROHFOP Case User # manual input of ROHF variables

Nop 2 # number of operators

Norb[1] 3 # number of open-shell orbitals

Nel[1] 3 # number of open-shell electrons

A[1,1] 1 # Coulomb vector in the open shell

B[1,1] 2 # Exchange vector in the open shell

end

end

The hypothetical example below could represent an excited state of an octahedral d3 transition metal complex.

In this case there are five open-shell orbitals. The first three open-shell orbitals contain two electrons and the

last two one electron. The input for a SAHF calculation is identical, just replace CAHF with SAHF.

%scf HFTyp ROHF

ROHF_case CAHF # configuration averaged HF

ROHF_NumOp 3 # 3 operators in this case: closed, open1, open2

ROHF_NOrb[1] 3,2 # 3 orbitals in first open shell, 2 in the second

ROHF_NEl[1] 2,1 # 2 electrons in first open shell, 1 in the second

end

For a ROHF case HighSpin calculation an analogous input can be used, but the number of operators is always

two (one closed and one open-shell), therefore:
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%scf HFTyp ROHF

ROHF_case HighSpin # high spin case

ROHF_NEl[1] 4 # n=4 unpaired electrons, S=n/2

end

One awkward feature of the ROHF theory is that the Fock operator is somewhat arbitrarily defined. Different

choices lead to the same wavefunction, but have different convergence properties that may vary from system

to system. ORCA thus lets the user choose the desired variant. Playing around with these choices may turn

a divergent or slowly converging ROHF calculation into a successful calculation!

The ROHF Restrict feature is another feature that may be useful. If you suspect that the ROHF calculation

does not converge because an open-shell and a closed-shell orbital are flipping back and forth, you can try to

avoid this behavior by choosing ROHF Restrict= true. Of course there is no guarantee that it will work,

and no guarantee that the system stays in the desired state. However, it decreases the chances of large,

uncontrolled steps.

%scf ROHF_Mode 0 # construct F according to Pulay (default)

1 # construct F as in the Gamess program

2 # construct F according to Kollmar

ROHF_Restrict false # restrict orbital interchanges and off-diagonal elements

# (default=false)

# a complete list of ROHF variables

ROHFOP Case User # manual input of ROHF variables

Nop 2 # number of operators

Norb[1] 3 # number of open-shell orbitals

Nel[1] 3 # number of open-shell electrons

A[1,1] 1 # Coulomb vector in the open shell

B[1,1] 2 # Exchange vector in the open shell

Mode 2 # use the Kollmar operator

Restrict false # do not restrict

end

end

9.7.2 UHF Natural Orbitals

The program can produce the UHF natural orbitals (UNOs). With these, the open-shell wavefunction can be

pictured conveniently. The syntax is simple:

%scf UHFNO true

end

# or simply: ! UNO

There are various printing options for UNOs described in the output section 9.38. The UNOs can also be

plotted as described in the plots section 9.39. In general the program stores a file BaseName.uno, where
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BaseName is by default the name of you input file with .inp stripped off. Accordingly, the gbw file is named

BaseName.gbw. The .uno file is a normal gbw file that contains the geometry, basis set and the UNO orbitals.

It could be used, for example, to start a ROHF calculation.

9.7.3 Integral Handling (Conventional, Direct, SemiDirect)

As the number of nonzero integrals grows very rapidly and reaches easily hundreds of millions even with medium

sized basis sets in medium sized molecules, storage of all integrals is not generally feasible. This desperate

situation prevented SCF calculations on larger molecules for quite some time, so that Almlöf [390–392]

made the insightful suggestion to repeat the integral calculation, which was already the dominant step, in

every SCF cycle to solve the storage problem. Naively, one would think that this raises the effort for the

calculation to nitertintegrals (where niter is the number of iterations and tintegrals is the time needed to generate

the nonzero integrals). However, this is not the case because only the change in the Fock matrix is required

from one iteration to the next, but not the Fock matrix itself. As the calculations starts to converge, more

and more integrals can be skipped. The integral calculation time will still dominate the calculation quite

strongly, so that ways to reduce this burden are clearly called for. An important contribution to this subject

was made by Häser and Ahlrichs [393] who suggested to store some of the integrals and to only recalculate

the remaining ones in the direct SCF calculation. Obvious candidates for storage are those integrals that are

expensive to calculate. As integrals are calculated in batches12 the cost of evaluating the given batch of shells

p, q, r, s may be estimated as:

cost ≈ npnqnrns (2lp + 1) (2lq + 1) (2lr + 1) (2ls + 1) (9.50)

Here, np is the number of primitives involved in shell p, and lp is the angular momentum for this shell.

Large integrals are also good candidates for storage, because small changes in the density that multiply large

integrals are likely to give a nonzero contribution to the changes in the Fock matrix.

ORCA thus features three possibilities for integral handling, which are controlled by the variable SCFMode.

In the mode Conventional, all integrals above a given threshold are stored on disk (in a compressed format

that saves much disk space). In the mode Direct, all two-electron integrals are recomputed in each iteration.

In the mode SemiDirect, the Häser/Ahlrichs-type hybrid method as described above is implemented.

Two further variables are of importance: In the Conventional and SemiDirect modes the program may

write enormous amounts of data to disk. To ensure this stays within bounds, the program first performs a

so-called “statistics run” that gives a pessimistic estimate of how large the integral files will be. Oftentimes,

the program will overestimate the amount of disk space required by a factor of two or more. The maximum

amount of disk space that is allowed for the integral files is given by MaxDisk (in Megabytes).

On the other hand, if the integral files in Conventional and SemiDirect runs are small enough to fit into

the central memory, it is faster to do this since it avoids I/O bottlenecks. The maximum amount of memory

allocated for integrals in this way is specified by MaxIntMem (in Megabytes). If the integral files are larger

than MaxIntMem, no integrals will be read into memory.

12 A batch is a set of integrals that arises from all components of the shells involved in the integral. For example a
〈pp|pp〉 batch gives rise to 3× 3× 3× 3 = 81 integrals due to all possible combinations of px, py and pz functions
in the four shells. Computations based on batches lead to great computational advantages because the 81 integrals
involved in the 〈pp|pp〉 batch share many common intermediate quantities.
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%scf

MaxIter 100 # Max. no. of SCF iterations

SCFMode Direct # default, other choices: Conventional, SemiDirect

Thresh 1e-8 # Threshold for neglecting integrals / Fock matrix contributions

# Depends on the chosen convergence tolerance (in Eh).

TCut 1e-10 # Threshold for neglecting primitive batches. If the prefactor

# in the integral is smaller than TCut, the contribution of the

# primitive batch to the total batch is neglected.

TCost 100 # Threshold for considering integrals as costly in

# SemiDirect SCF. Batches with Cost > TCost are stored.

TSize 0.01 # In SemiDirect SCF: stores integrals with estim. size = TSize

UseCheapInts false # default: false

DirectResetFreq 20 # default: 15

MaxDisk 2500 # Max. amount of disk for 2 el. ints. (MB)

MaxIntMem 400 # Max. amount of RAM for 2 el. ints. (MB)

end

The flag UseCheapInts has the following meaning: In a Direct or SemiDirect SCF calculation, the

oscillations in the total energy and density are initially quite large. High accuracy in the integrals is therefore

not crucial. If UseCheapInts is switched on, the program loosens the threshold for the integrals and thus

saves a lot of computational time. After having obtained a reasonable initial convergence, the thresholds are

tightened to the target accuracy. One pitfall with this method is that the number of cycles required to reach

convergence may be larger relative to a calculation with full integral accuracy throughout.13 When restarting

calculations that are close to convergence, it is recommended to switch UseCheapInts off. UseCheapInts

has no meaning in a conventional SCF.

The value of DirectResetFreq sets the number of incremental Fock matrix builds after which the program

should perform a full Fock matrix build in a Direct or SemiDirect SCF calculation. To prevent numerical

instabilities that arise from accumulated errors in the recursively build Fock matrix, the value should not be

too large, since this will adversely affect the SCF convergence. If the value is too small, the program will

update more frequently, but the calculation will take considerably longer, since a full Fock matrix build is

more expensive than a recursive one.

The thresholds TCut and Thresh also deserve a closer explanation. Thresh is a threshold that determines

when to neglect two-electron integrals. If a given integral is smaller than Thresh Eh, it will not be stored

or used in Fock matrix construction. Additionally, contributions to the Fock matrix that are smaller than

Thresh Eh will not be calculated in a Direct or SemiDirect SCF.

Clearly, it would be wasteful to calculate an integral, then find out it is good for nothing and thus discard it.

A useful feature would be an efficient way to estimate the size of the integral before it is even calculated, or

even have an estimate that is a rigorous upper bound on the value of the integral. Häser and Ahlrichs [393]

were the first to recognize that such an upper bound is actually rather easy to calculate. They showed that:

|〈ij |kl 〉| 6
√
〈ij |ij 〉

√
〈kl |kl 〉 (9.51)

13 This might be an undesirable feature of the current implementation.
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where:

〈ij |kl 〉 =

∫ ∫
φi (~r1)φj (~r1) r−1

12 φk (~r2)φl (~r2) d~r1d~r2 (9.52)

Thus, in order to compute an upper bound for the integral only the right hand side of this equation must be

known. This involves only two index quantities, namely the matrix of two center exchange integrals 〈ij |ij 〉.
These integrals are easy and quick to calculate and they are all >0 so that there is no trouble with the square

root. Thus, one has a powerful device to avoid computation of small integrals. In an actual calculation, the

Schwartz prescreening is not used on the level of individual basis functions but on the level of shell batches

because integrals are always calculated in batches. To realize this, the largest exchange integral of a given

exchange integral block is looked for and its square root is stored in the so called pre-screening matrix K

(that is stored on disk in ORCA). In a direct or semidirect SCF this matrix is not recalculated in every

cycle, but simply read from disk whenever it is needed. The matrix of exchange integrals on the level of

individual basis function is used in conventional or semidirect calculations to estimate the disk requirements

(the “statistics” run).

Once it has been determined that a given integral batch survives it may be calculated as:

〈ij |kl 〉 =
∑
p

dpi
∑
q

dqj
∑
r

dkr
∑
s

dsl 〈ipjq |krls 〉 (9.53)

where the sums p, q, r, s run over the primitive gaussians in each basis function i, j, k, l and the d’s are

the contraction coefficients. There are more powerful algorithms than this one and they are also used in

ORCA. However, if many terms in the sum can be skipped and the total angular momentum is low, it is still

worthwhile to compute contracted integrals in this straightforward way. In equation 9.53, each primitive

integral batch 〈ipjq |krls 〉 contains a prefactor Ipqrs that depends on the position of the four gaussians and

their orbital exponents. Since a contracted gaussian usually has orbital exponents over a rather wide range, it

is clear that many of these primitive integral batches will contribute negligibly to the final integral values. In

order to reduce the overhead, the parameter TCut is introduced. If the common prefactor Ipqrs is smaller than

TCut, the primitive integral batch is skipped. However, Ipqrs is not a rigorous upper bound to the true value

of the primitive integral. Thus, one has to be more conservative with TCut than with Thresh. In practice

it appears that choosing TCut=0.01*Thresh provides sufficient accuracy, but the user is encouraged to

determine the influence of TCut if it is suspected that the accuracy reached in the integrals is not sufficient.

HINT:

• If the direct SCF calculation is close to convergence but fails to finally converge, this maybe related to

a numerical problem with the Fock matrix update procedure – the accumulated numerical noise from

the update procedure prevents sharp convergence. In this case, set Thresh and TCut lower and/or let

the calculation more frequently reset the Fock matrix (DirectResetFreq).

NOTE:

• For a Direct or SemiDirect calculation, there is no way to have Thresh larger than TolE. If the errors

in the Fock matrix are larger than the requested convergence of the energy, the change in energy can

never reach TolE. The program checks for that.
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• In a SemiDirect SCF, the number of stored integrals increases with molecular size. It may be necessary

to increase TSize and TCost to make storage possible. It is usually not a good idea to produce integral

files many gigabytes in size, because this will lead to quite some I/O penalty, especially in the late

stages of a calculation. Within reasonable bounds however, SemiDirect calculations can be quite a bit

faster than Direct calculations.

• The actual disk space used for all temporary files may easily be larger than MaxDisk. MaxDisk only

pertains to the two-electron integral files. Other disk requirements are not currently checked by the

program and appear to be uncritical.

9.8 CPSCF Options

The coupled perturbed self-consistent field (CPSCF) equations have to be solved in many cases, such as when

the NRSCF solver is used or when second derivative properties (e.g. vibrational frequencies, polarizability,

chemical shielding, indirect spin-spin coupling, hyperfine coupling, g-tensor) or the MP2 relaxed density

(in this case they are referred to as Z-vector equations) are calculated. They are a set of linear equations

generally expressed as

AUx = Bx, (9.54)

where Ux is the vector of solutions for perturbation x, the right-hand side (RHS) matrix Bx is perturbation-

specific and the left-hand side (LHS) matrix A is perturbation-independent and contains, among other terms,

the two-electron repulsion integrals (ij|ab) and (ia|jb). The equations are solved iteratively and the LHS

is reassembled at every step, while the RHS does not change. The generation and transformation of the

two-electron integrals are therefore the most time-consuming parts of the CPSCF solution.

In ORCA these equations are usually solved by the orca cpscf program, which accepts several options given

below with their default values:

%method

Z_Solver Pople # (default) Use the Pople algorithm to solve the equations

DIIS # Use the DIIS algorithm

CG # Use the conjugate gradient algorithm

Z_Tol 1e-6 # Convergence tolerance.

# Default is 1e-7 for NRSCF and 1e-10 for VeryTightOpt

# and varies from 1e-5 to 1e-11 from LooseSCF to ExtremeSCF

Z_MaxIter 128 # Maximum number of iterations

Z_MaxDIIS 12 # Maximum number of DIIS vectors

Z_LevelShift 0.3 # Level shift for DIIS

Z_GridX 1 # COSX grid used for the LHS (see below)

end

In some cases different options will be used, depending on the calling module. These may have different

default values, which can be changed in the respective block. For analytic polarizability calculations this is

%elprop:
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%elprop

Solver Pople # (default)

DIIS

CG

Tol 1e-6

MaxIter 64

MaxDIIS 5

LevelShift 0.2

end

For magnetic properties (chemical shielding, indirect spin-spin coupling, hyperfine coupling, g-tensor), options

are set in the %eprnmr block:

%eprnmr

Solver Pople # (default)

DIIS

CG

Tol 1e-6

MaxIter 64

MaxDIIS 10

LevelShift 0.05

end

For CIS/TD-DFT gradients, only the solver can be changed separately:

%method

CISGrad_Z_Solver DIIS # (default) Synonym is TDDFTGrad Z Solver

Pople

CG

end

The Z GridX is only set in the %method block and is applicable if the RIJCOSX approximation is chosen for

the treatment of two-electron integrals. The RIJCOSX SCF procedure employs three grids: a small grid for

the initial iterations, a medium grid for the rest, and a large grid to evaluate the energy more accurately

after the iterations have converged (see Sections 9.3.2.7. and 9.3.2.8 for details). By default, the integrals on

the LHS of the CPSCF (or Z-vector) equations are solved on a grid identical to the small grid in the SCF

procedure. However, any of the other SCF grids can be selected as follows:

%method

Z_GridX 1 # small SCF grid (default)

2 # medium SCF grid

3 # large SCF grid

end
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Integrals on the RHS are evaluated differently for different perturbations - refer to sections 9.3.2.7, 9.36.3,

9.11.5, and 9.11.6 for SCF-level gradients, EPR/NMR calculations with GIAOs, MP2 gradients, and MP2

second derivatives, respectively.

If the RIJK approximation is used for the SCF procedure, the LHS of the CPSCF is nonetheless evaluated

using RIJONX because the RI-K approximation is not efficient for these terms. The AuxJK auxiliary basis

set is used for the Coulomb part. If the RIJONX approximation is used in the SCF, it is also employed in

the CPSCF in combination with the AuxJ fitting basis.

An alternative approach to calculate the LHS integrals is requested by the keyword !RITrafo. In this case

(ij|ab) and (ia|jb) are generated via an RI transformation and stored on disk. This is done by the RI-MP2

module and uses the AuxC fitting basis. The integrals are then read at every CPSCF iteration, which is

usually faster (including the time for the transformation itself) than recalculating them using RIJONX but not

necessarily faster than RIJCOSX. For very large systems, disk space and I/O overhead might become an issue,

as the integrals require at least 6×N2
occupied ×N2

virtual bytes. The RITrafo keyword requires NoFrozenCore

and is ignored during NRSCF iterations, because the integrals are not yet available on disk. It is particularly

useful for RI-MP2 second derivatives, where part of the RI transformation is needed anyway, the amplitudes

are usually stored on disk (therefore a large disk is required anyway), and the CPSCF program is called

three times (once for the relaxed RI-MP2 density, once for the SCF level property and once for the RI-MP2

contribution). For example, the following GIAO-RI-MP2 NMR chemical shielding calculation took 2 minutes

with the RITrafo option and 5 without it.

! RI-MP2 NMR NoFrozenCore TightSCF

! def2-TZVP def2/JK def2-TZVP/C RIJK RITrafo

%maxcore 2048

%mp2 density relaxed end

%eprnmr tol 1e-8 end

%method z_tol 1e-8 end

*xyz 0 1

O 0.000000 0.000000 1.312747

C 0.000000 0.000000 0.100560

C 0.000000 1.280014 -0.697250

C 0.000000 -1.280014 -0.697250

H 0.000000 2.132916 -0.028110

H 0.000000 -2.132916 -0.028110

H 0.876773 1.314696 -1.342826

H -0.876773 1.314696 -1.342826

H -0.876773 -1.314696 -1.342826

H 0.876773 -1.314696 -1.342826

*

9.9 SCF Stability Analysis

The SCF stability analysis evaluates the electronic Hessian (with respect to orbital rotations) at the point

indicated by the SCF solution to determine the lowest eigenvalues of the Hessian. If one or more negative
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eigenvalues are found, the SCF solution corresponds to a saddle point and not a true local minimum in the

space considered in the analysis. A typical case are stretched bonds of diatomics, where the symmetry of the

initial guess leads to a restricted solution instead of the often preferred unrestricted one. Several spaces are

theoretically possible [179], however, ORCA limits itself to the analysis RHF/RKS in the space of UHF/UKS

or UHF/UKS in the space of UHF/UKS. As such, it is available for the SCF parts of DFT and HF. [180]

In the following, HF is used to indicate both HF and KS. Consider the following input (unless indicated

otherwise, default values are shown):

! BHLYP def2-SVP NORI

%scf

guess hcore # for illustrative purposes only

HFTyp UHF # default based on spin multiplicity

STABPerform true # default false

STABRestartUHFifUnstable true # restart the UHF-SCF if unstable

STABNRoots 3 # number of eigenpairs sought

STABMaxDim 3 # Davidson expansion space = MaxDim * NRoots

STABMaxIter 100 # maximum number of Davidson iterations

STABNGuess 4096 # size of initial guess matrix: 4096 x 4096

STABDTol 0.0001 # convergence criterion from iteration to iteration

STABRTol 0.0001 # convergence criterion max residual norm

STABlambda +0.5 # mixing parameter

STABORBWIN -1, -1, -1, -1, -1, -1, -1, -1 # four parameters in case of RHF

# orbital window, -1 refers to automatic determination

STABEWIN -5.0, 5.0 # lower and upper cutoff in Eh for automatic freezing

#---------------------------------------------------------------------------------

# alternative specification using a sub-block:

stab

NRoots 3

MaxDim 3 # etc.

end

end

* xyz 0 1

h 0.0 0.0 0.0

h 0.0 0.0 1.4

*

The determination of the electronic Hessian is structurally comparabale to the TDHF/CIS/TDDFT procedure.

Thus, many options are very similar and the user is encouraged to read the section on TDDFT (section 9.23)

to clarify some of the options given here. Since one is usually only interested in the qualitative determination

“stable or not?”, three roots should be sufficient to find the lowest eigenvalue. By the same philosophy,

MaxDim, MaxIter, NGuess and the convergence criteria were chosen. lambda refers to the λ of equation 37

of reference 179, which determines the mixing of the original SCF solution and the new orbitals to yield a

new guess. Choosing this value is not trivial, since positive and negative values can lead to different new

solutions (at least in principle). The convergence of the ensuing SCF depends on it, as well, since all SCF
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procedures require a sufficiently good guess to converge in a decent number of iterations (or even at all).

The orbital window and the energy window can be specified. Note that the EWIN will be overridden by the

appropriate ORBWIN values. The automatic determination is also influenced by the %method FrozenCore

settings. Tests have shown that significant curtailing of the actual orbital window can drastically influence

the results to the point of qualitative failure.

Current limitations on the method are:

• Only single-point-like calculations are supported. For geometry optimizations etc., one must use the

guess MORead feature 9.5 to employ the guess obtained here. Likewise, one must extract a geometry

and run a separate calculation if one is interested in the SCF stability.

• As for TDDFT, NORI, RIJONX, and RIJCOSX are supported. RI-JK is not supported.

• No solvation models are currently implemented to work with the stability analysis.

• Other, more advanced features like finite-temperature calculations and relativistic calculations (beside

ECPs) are not possible at this time.

Overall, the user is cautioned against using the stability analysis blindly without critically evaluating the

result in terms of energy difference and by investigating the orbitals (by the printout or by plotting). Its

usefulness cannot be denied, but it is certainly not black-box.

9.10 Frozen Core Options

The frozencore (FC) approximation is usually applied in correlated calculation and consists in neglecting

correlation effects for electrons in the low-lying core orbitals. The FC approximation and the number of

core electrons per element can be adjusted in the %method block. The default number of core electrons per

element is listed in Table 9.9.

For systems containing heavy elements, core electrons might have higher orbital energies compared to the

orbital energies of valence MOs of some lighter elements. In that case, core electrons might be included in

the correlation calculation, which ultimately leads to large errors in correlation energy. In order to prevent

this, the MO ordering is checked after the SCF calculation: Do all lower energy MOs in the core region have

core electron character, i.e. are they strongly localized on the individual elements? If core orbitals are found

in the valence region, while more delocalized orbitals are found in the core region, the corresponding MO

pairs are swapped. The check for a correct frozen core can be switched off in the %method block.

%method FrozenCore FCELECTRONS #Freeze all core electrons

FC_EWIN #Freeze selected core electrons via

# an energy window e.g. for MP2

# %mp2 EWin EMin,EMax

FC_NONE #No frozencore approximation

-n #Freeze a total of n electrons

NewNCore Bi 68 end #Set the number of core electrons for Bi to 68
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Table 9.9: Default values for number of frozen core electrons.
H He
0 0
Li Be B C N O F Ne
0 0 2 2 2 2 2 2

Na Mg Al Si P S Cl Ar
2 2 10 10 10 10 10 10

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
10 10 10 10 10 10 10 10 10 10 10 10 18 18 18 18 18 18

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
18 18 28 28 28 28 28 28 28 28 28 28 36 36 36 36 36 36

Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
36 36 46 46 46 46 46 46 46 46 46 46 68 68 68 68 68 68

Fr Ra Lr Rf Db Sg Bh Hs Mt Ds Rg Cn
68 68 68 100 100 100 100 100 100 100 100 100

Lanthanides La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb
36 36 36 36 36 36 36 36 36 36 36 36 36 36

Actinides Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No
68 68 68 68 68 68 68 68 68 68 68 68 68 68

CheckFrozenCore true #Check whether frozen core orbitals

# are ordered correctly

end

NOTE

• The FrozenCore options are applied to all post Hartree-Fock methods.

• If including all electrons is desired, the !NoFrozenCore keyword can be simply inserted. For MP2:

Frozen virtual orbitals are not allowed in gradient runs or geometry optimization!

• If ECPs are used, the number for NewNCore has to include the electrons represented by the ECPs as

well. E.g. if an element is supposed to have 60 electrons in the ECP and additional 8 electrons should

be frozen in the correlation calculation, NewNCore should be 68.

• In ORCA we use rather conservative frozencore settings, i. e. a large number of electrons are included

in the correlation treatment. Therefore, we recommend to use properly optimized correlating functions

in all cases.

• For DLPNO calculations the virtual space for core-core and core-valence correlation is adjusted by

default, which is described in detail in section 9.12.4.1.

• In general, NewNCore only has an effect in calculations with FC ELECTRONS. In calculations using the

DLPNO approximation (except DLPNO-NEVPT2), NewNCore has also an effect in the other cases, as

is described in section 9.12.4.1.

• Double-hybrid density functional (section 8.1.4.5) calculations by default use the FrozenCore option for

the perturbative part.
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9.11 The Second Order Many Body Pertubation Theory Module

(MP2)

Throughout this section, indices i, j, k, . . . refer to occupied orbitals in the reference determinant, a, b, c, . . . to

virtual orbitals and p, q, r, . . . to general orbitals from either set while µ, ν, κ, τ, . . . refer to basis functions.

9.11.1 Standard MP2

The standard (or full accuracy) MP2 module has two different branches. One branch is used for energy

calculations, the other for gradient calculations.

For standard MP2 energies, the program performs two half-transformations and the half-transformed integrals

are stored on disk in compressed form. This appears to be the most efficient approach that can also be used

for medium sized molecules.The module should parallelize acceptably well as long as I/O is not limiting.

For standard MP2 gradients, the program performs four quarter transformations that are ordered by occupied

orbitals. Here, the program massively benefits from large core memory (%maxcore) since this minimizes the

number of batches that are to be done. I/O demands are minimal in this approach.

In “memory mode” (Q1Opt>0) basically the program treats batches of occupied orbitals at the same time.

Thus, there must be at least enough memory to treat a single occupied MO at each pass. Otherwise the MP2

module will fail. Thus, potentially, MP2 calculations on large molecules take significant memory and may be

most efficiently done through the RI approximation.

Alternatively, in the “disk based mode” (Q1Opt=-1) the program performs a half transformation of the

exchange integrals and stores the transformed integrals on disk. A bin-sort then leads to the AO operator

Kij (µ, ν) = (iµ|jν) in (11|22) integral notation. These integrals are then used to make the final Kij(a,b)

(a,b=virtual MOs) and the EMP2 pair energy contributions. In many cases, and in particular for larger

molecules, this algorithm is much more efficient than the memory based algorithm. It depends, however,

much more heavily on the I/O system of the computer that you use. It is important, that the program uses

the flags CFLOAT, UCFLOAT, CDOUBLE or UCDOUBLE in order to store the unsorted and sorted AO exchange

integrals. Which flag is used will influence the performance of the program and to some extent the accuracy

of the result (float based single precision results are usually very slightly less accurate; µEh-range deviations

from the double precision result14). Finally, gradients are presently only available for the memory based

algorithm since in this case a much larger set of integrals is required.

The ! MP2 command does the following: (a) it changes the Method to HFGTO and (b) it sets the flag DoMP2 to

true. The program will then first carry out a Hartree-Fock SCF calculation and then estimate the correlation

energy by MP2 theory. RHF, UHF and high-spin ROHF reference wavefunctions are permissible and the type

of MP2 calculation to be carried out (for high-spin ROHF the gradients are not available) is automatically

chosen based on the value of HFTyp. If the SCF is carried out conventionally, the MP2 calculation will also

be done in a conventional scheme unless the user forces the calculation to be direct. For SCFMode=Direct or

SCFMode=SemiDirect the MP2 energy evaluation will be fully in the integral direct mode.

The following variables can be adjusted in the block for conventional MP2 calculations:

14However, sometimes, and in particular when transition metals and core orbitals are involved we have met unpleasantly
large errors. So – be careful and double check when using floats!
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%mp2

EMin -1.5 # orbital energy cutoff that defines the

# frozen core in Eh

EMax 1.0e3 # orbital energy cutoff that defines the

# neglected virtual orbitals in Eh

EWin EMin,EMax # the same, but accessed as array

# (respects settings in %method block!)

MaxCore 256 # maximum amount of memory (in MB) to be

# used for integral buffering

ForceDirect false # Force the calculation to be integral

# direct

RI false # use the RI approximation

F12 false # apply F12 correction

Q1Opt # For non-RI calculations a flag how to perform

# the first quarter transformation

# 1 - use double precision buffers

# (default for gradient runs)

# 2 - use single precision buffers. This reduces

# the memory usage in the bottleneck step by

# a factor of two. If several passes are re-

# quired, the number of passes is reduced by

# a factor of two.

# -1 - Use a disk based algorithm. This respects

# the flags UCFLOAT,CFLOAT,UCDOUBLE and

# CDOUBLE. (but BE CAREFUL with FLOAT)

# (default for energy runs)

PrintLevel 2 # How much output to produce. PrintLevel 3 produces

# also pair correlation energies and other info.

DoSCS false # use spin-component scaling

Ps 1.2 # scaling factor for ab pairs

Pt 0.333 # scaling factor for aa and bb pairs

Density none # no density construction

unrelaxed # only "unrelaxed densities"

relaxed # full relaxed densities

NatOrbs false # calculate natural orbitals

9.11.2 RI-MP2

The RI-MP2 module is of a straightforward nature. The program first transforms the three-index integrals

(ia|P̃ ), where “i” is a occupied, “a” is a virtual MO and “P̃” is an auxiliary basis function that is orthogonalized

against the Coulomb metric. These integrals are stored on disk, which is not critical, even if the basis has

several thousand functions. The integral transformation is parallelized and has no specifically large core

memory requirements.

In the next step, the integrals are read ordered with respect to the occupied labels and the exchange operators
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Kij(a, b) = (ia|jb) =
∑NAux
P̃ (ia|P̃ )(P̃ |jb) are formed in the rate limiting O(N5) step. This step is done with

high efficiency by a large matrix multiplication and parallelizes well. From the exchange operators, the MP2

amplitudes and the MP2 energy is formed. The program mildly benefits from large core memory (%maxcore)

as this minimizes the number of batches and hence reads through the integral list.

The RI-MP2 gradient is also available. Here, all necessary intermediates are made on the fly.

In the RI approximation, one introduces an auxiliary fitting basis ηP (r) and then approximates the two-

electron integrals in the Coulomb metric as:

(pq|rs) ≈
∑
PQ

(pq|P )V −1
PQ (Q|rs) (9.55)

where VPQ = (P |Q) is a two-index electron-electron repulsion integral. As first discussed by Weigend and

Häser, the closed-shell case RI-MP2 gradient takes the form:

ExRI-MP2 = 2
∑
µνP

(µν|P )
(x)
∑
i

cµiΓ
P
iν +

∑
RS

V xRS

(
V−1/2γV−1/2

)
RS

+ 〈DFx〉 (9.56)

The F-matrix derivative terms are precisely handled as in the non-RI case and need not be discussed any

further. ΓPia is a three-index two-particle “density”:

ΓPia =
∑
jbQ

(1 + δij) t̃
ij
abV

−1/2
PQ (Q|jb) (9.57)

Which is partially transformed to the AO basis by:

ΓPiν =
∑
a

cνaΓPia (9.58)

The two-index analogue is given by:

γPQ =
∑
iaR

ΓQia (ia|R)V
−1/2
RP (9.59)

The RI contribution to the Lagrangian is particularly convenient to calculate:

LRIai =
∑
µ

cµa

2
∑
PQν

ΓPiν (µν|Q)V
−1/2
PQ

 (9.60)

In a similar way, the remaining contributions to the energy weighted density matrix can be obtained efficiently.

Note, however, that the response operator and solution of the CP-SCF equations still proceed via traditional

four- index integrals since the SCF operator was built in this way. Thus, while the derivatives of the

three-index integrals are readily and efficiently calculated, one still has the separable contribution to the

gradient, which requires the derivatives of the four-index integrals.
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The RI-MP2 energy and gradient calculations can be drastically accelerated by employing the RIJCOSX or

the RIJDX approximation.

9.11.3 “Double-Hybrid” Density Functional Theory

A slightly more general form is met in the double-hybrid DFT gradient. The theory is briefly described

below.

The energy expression for perturbatively and gradient corrected hybrid functionals as proposed by Grimme

is:

E = VNN +
〈
Ph+

〉
+

1

2

∫ ∫
ρ (r1) ρ (r2)

|r1 − r2|
dr1dr2 −

1

2
ax

∑
µνκτσ

PσµκP
σ
ντ (µν|κτ) + cDFEXC [ρα, ρβ ] + cPTEPT

(9.61)

= ESCF + cPTEPT (9.62)

Here VNN is the nuclear repulsion energy and hµν is a matrix element of the usual one-electron operator which

contains the kinetic energy and electron-nuclear attraction terms (〈ab〉 denotes the trace of the matrix product

ab). As usual, the molecular spin-orbitals are expanded in atom centered basis functions (σ = α, β):

ψσp (r) =
∑
µ

cσµpϕµ (r) (9.63)

with MO coefficients cσµp. The total density is given by (real orbitals are assumed throughout):

ρ (r) =
∑
iσ

|ψσi (r)|2 =
∑
µνσ

Pσµνϕµ (r)ϕν (r) = ρα (r) + ρβ (r) (9.64)

Where P = Pα + Pβ and Pσµν =
∑
iσ
cσµic

σ
νi.

The second term of eq. 9.62 represents the Coulombic self-repulsion. The third term represents the contribution

of the Hartree-Fock exchange with the two-electron integrals being defined as:

(µν|κτ) =

∫ ∫
φµ (r1)φν (r1) r−1

12 φκ (r2)φτ (r2) dr1dr2 (9.65)

The mixing parameter ax controls the fraction of Hartree-Fock exchange and is of a semi-empirical nature.

The exchange correlation contribution may be written as:

EXC [ρα, ρβ ] = (1− ax)EGGA
X [ρα, ρβ ] + bEGGA

C [ρα, ρβ ] (9.66)

Here, EGGA
X [ρα, ρβ ] is the exchange part of the XC- functional in question and EGGA

C [ρα, ρβ ] is the correlation

part. The parameter b controls the mixing of DFT correlation into the total energy and the parameter cDF
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is a global scaling factor that allows one to proceed from Hartree-Fock theory (aX = 1, cDF = 0, cPT = 0)

to MP2 theory (aX = 1, cDF = 0, cPT = 1) to pure DFT (aX = 1, cDF = 0, cPT = 1) to hybrid DFT

(0 < aX < 1, cDF = 1, cPT = 0) and finally to the general perturbatively corrected methods discussed in this

work (0 < aX < 1, cDF = 1, 0 < cPT < 1). As discussed in detail by Grimme, the B2- PLYP functional uses

the Lee-Yang-Parr (LYP) functional as correlation part, the Becke 1988 (B88) functional as GGA exchange

part and the optimum choice of the semi-empirical parameters was determined to be aX = 0.53, cPT = 0.27,

cDF = 1, b = 1− cPT. For convenience, we will suppress the explicit reference to the parameters aX and b in

the XC part and rewrite the gradient corrected XC energy as:

EXC

[
ρα, ρβ

]
=

∫
f
(
ρα, ρβ , γαα, γββ , γαβ

)
dr (9.67)

with the gradient invariants γσσ
′

= ~∇ρσ ~∇ρσ′ . The final term in eq (48) represents the scaled second order

perturbation energy:

EPT2 =
1

2

∑
iα<jα

〈
tiαjαK̄iαjα+

〉
+

1

2

∑
iβ<jβ

〈
tiβjβK̄iβjβ+

〉
+
∑
iα,jβ

〈
tiαjβK̄iαjβ+

〉
(9.68)

The PT2 amplitudes have been collected in matrices tiσjσ′ with elements:

t
iσjσ′
aσbσ′

= K̄
iσjσ′
aσbσ′

(
εσi + εσ

′

j − εσa − εσ
′

b

)−1

(9.69)

Where the orbitals were assumed to be canonical with orbital energies εσp . The exchange operator matrices are

K
iσjσ′
aσbσ′

= (iσaσ|jσ′bσ′) and the anti-symmetrized exchange integrals are defined as K̄
iσjσ′
aσbσ′

= (iσaσ|jσ′bσ′)−
δσσ′ (iσbσ|σaσ).

The orbitals satisfy the SCF equations with the matrix element of the SCF operator given by:

Fσµν = hµν +
∑
κτ

Pκτ (µν|κτ)− aXP
σ
κτ (µκ|ντ) + cDF (µ|V σXC|ν) (9.70)

The matrix elements of the XC–potential for a gradient corrected functional are: [59]

(µ|V αXC|ν) =

∫ {
δf

δρα (r)
(ϕµϕν) + 2

δf

δγαα
~∇ρα~∇ (ϕµϕν) +

δf

δγαβ
~∇ρβ ~∇ (ϕµϕν)

}
dr (9.71)

The energy in equation 9.62 depends on the MO-coefficients, the PT2-amplitudes and through VNN , VeN

(in h) and the basis functions also explicitly on the molecular geometry. Unfortunately, the energy is only

stationary with respect to the PT2 amplitudes since they can be considered as having been optimized through

the minimization of the Hylleraas functional:

EPT2 = min
t

1

2

∑
iα<jα

〈
tiαjαK̄iαjα+

〉
+

1

2

∑
iβ<jβ

〈
tiβjβK̄iβjβ+

〉
+
∑
iαjβ

〈
tiαjβK̄iαjβ+

〉
+
〈
D′

α
Fα+

〉
+
〈
D′

β
Fβ+

〉
(9.72)
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The unrelaxed PT2 difference density is defined as:

D
′α
ij = −1

2

∑
kα

〈
tiαkαtkαjα

〉
−
∑
kβ

〈
tiαkβtkβjα

〉
(9.73)

D
′α
ab =

∑
iα<jα

tiαjαtiαjα+ +
∑
iβjα

tiβjα+tiβjα (9.74)

With analogous expressions for the spin-down unrelaxed difference densities. Minimization of this functional

with respect to the amplitudes yields the second order perturbation energy. The derivative of the SCF part

of equation 9.62 with respect to a parameter “x” is straightforward and well known. It yields:

ExSCF = V xNN + 〈Phx〉+
〈
WSCFS(x)

〉
+
∑
µνκτ Γµνκτ (µν|κτ)

(x)

+
∑
σ︸︷︷︸

(σ′ 6=σ)

∫ {
δf

δρσ(r)ρ
(x)
σ + 2 δf

δγσσ
~∇ρσ ~∇ρ(x)

σ + δf
δγσσ′

~∇ρσ′ ~∇ρ(x)
σ

}
dr (9.75)

Superscript “x” refers to the derivative with respect to some perturbation “x” while a superscript in

parentheses indicates that only the derivative of the basis functions with respect to “x” is to be taken. For

example:

ρ
(x)
σ =

∑
µν P

σ
µν

{
∂ϕµ
∂x ϕν + ϕµ

∂ϕν
∂x

}
hxµν =

(
∂ϕµ
∂x |ĥ|ϕν

)
+
(
ϕµ|ĥ|∂ϕν∂x

)
+
(
ϕµ|∂ĥ∂x |ϕν

) (9.76)

In equation 9.75, S is the overlap matrix and WSCF the energy weighted density:

W SCF
µν = Wα;SCF

µν +W β;SCF
µν = −

∑
iσ

cσµic
σ
νiε

σ
i (9.77)

At this point, the effective two-particle density matrix is fully separable and reads:

Γµνκτ =
1

2
PµνPκτ −

1

2
axP

α
µκP

α
ντ −

1

2
axP

β
µκP

β
ντ (9.78)

The derivative of the PT2 part is considerably more complex, since EPT2 is not stationary with respect to

changes in the molecular orbitals. This necessitates the solution of the coupled-perturbed SCF (CP-SCF)

equations. We follow the standard practice and expand the perturbed orbitals in terms of the unperturbed

ones as:

ψσ;x
p (r) =

∑
q

Uσ;x
qp ψ

σ
q (r) (9.79)

The occupied-occupied and virtual-virtual blocks of U are fixed, as usual, through the derivative of the

orthonormality constraints:
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Uσ;x
ij = −1

2
S
σ(x)
ij (9.80)

Uσ;x
ab = −1

2
S
σ(x)
ab (9.81)

Uσ;x
ia = −Sσ(x)

ia − Uσ;x
ai (9.82)

Where S
σ(x)
pq =

∑
µν c

σ
µpc

σ
νqS

(x)
µν . The remaining virtual-occupied block of Ux must be determined through

the solution of the CP-SCF equations. However, as shown by Handy and Schaefer, this step is unnecessary

and only a single set of CP-SCF equations (Z-vector equations) needs to be solved. To this end, one defines

the Lagrangian:

Lαai = Rσ (D′)ai + 2
∑
jαbαcα

(aαcα|jαbα) tiαjαcαbα
− 2

∑
jαkαbα

(kαiα|jαbα) tkαjαaαbα

+2
∑
jβbβcα

(aαcα|jβbβ) t
jβiα
bβcα
− 2

∑
jβkαbβ

(kαiα|jβbβ) t
jβkα
bβaα

(9.83)

An analogous equation holds for Lβai. The matrix elements of the response operator Rα (D′) are best evaluated

in the AO basis and then transformed into the MO basis. The AO basis matrix elements are given by:

Rα (D′)µν =
∑
κτ

2D′κτ (µν|κτ)−D′ακτ [(µκ|ντ) + (νk|µτ)]

+
∑
ζ

∫ [
δ2f

δραδζ
ζ (D′) (φµφν) +

(
2

δ2f

δγααδζ
~∇ραP +

δ2f

δγαβδζ
~∇ρβP

)
ζ (D′) ~∇ (φµφν)

+

(
2
δf

δγαα
~∇ραD′ +

δf

δγαβ
~∇ρβD′

)
~∇ (φµφν)

]
dr

(9.84)

where

ζ (D′) = ραD′ , ρ
β
D′ , γαα (D′) , γββ (D′) , γαβ (D′) (9.85)

The ζ-gradient-parameters are evaluated as a mixture of PT2 difference densities and SCF densities. For

example:

γαα(D′) = 2~∇ραD′ ~∇ρ
α
P′ (9.86)

With

ραD′ (r) =
∑
µν

D
′α
µνφµ (r)φν (r) (9.87)
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ραP (r) =
∑
µν

Pαµνφµ (r)φν (r) (9.88)

Having defined the Lagrangian, the following CP-SCF equations need to be solved for the elements of the “Z-

vector”:

(εσa − εσi )Zσai +Rσ (Z)ai = −Lσai (9.89)

The solution defines the occupied-virtual block of the relaxed difference density, which is given by:

Dσ = D′
σ

+ Zσ (9.90)

For convenience, Dσ is symmetrized since it will only be contracted with symmetric matrices afterwards.

After having solved the Z-vector equations, all parts of the energy weighted difference density matrix can be

readily calculated:

Wα;PT2
ij = −1

2
Dα
ij

(
εαi + εαj

)
− 1

2
R (D)ij −

∑
kαaαbα

(iαaα|kαbα) tjαkαaαbα
−

∑
kβaαbβ

(iαaα|kβbβ) t
kβjα
bβaα

(9.91)

Wα;PT2
ab = −1

2
Dα
ab (εαa + εαb )−

∑
iαjαcα

(iαaα|jαcα) tiαjαbαcα
−
∑
iαjβcβ

(iαaα|jβcβ) t
jβiα
cβbα

(9.92)

Wα;PT2
ai = −2

∑
jαkαbα

(kαiα|jαbα) tkαjαaαbα
− 2

∑
jβkαbβ

(kαiα|jβbβ) t
jβkα
bβaα

(9.93)

Wα;PT2
ia = −εαi Zαai (9.94)

Once more, analogous equations hold for the spin-down case. With the relaxed difference density and energy

weighted density matrices in hand, one can finally proceed to evaluate the gradient of the PT2 part as

(WPT2 = Wα;PT2 + Wβ;PT2):

ExPT2 = 〈Dhx〉+
〈
WPT2S(x)

〉
+
∑
µνκτ ΓPT2

µνκτ (µν|κτ)
(x)

+
∑

σ
(σ 6=σ′)

∫ {
δf

δρσ(r)ρ
(x)
σ + 2 δf

δγσσ

r

∇ρσ
r

∇ρ(x)
σ + δf

δγσσ

r

∇ρσ′
r

∇ρ(x)
σ

}
dr

(9.95)

The final derivative of eq. 9.62 is of course the sum ExSCF + cPTE
x
PT2. Both derivatives should be evaluated

simultaneously in the interest of computational efficiency.

Note that the exchange-correlation contributions to the gradient take a somewhat more involved form than

might have been anticipated. In fact, from looking at the SCF XC-gradient (eq. 9.75) it could have been

speculated that the PT2 part of the gradient is of the same form but with ρ
σ(x)
P being replaced by Ĥ, the

relaxed PT2 difference density. This is, however, not the case. The underlying reason for the added complexity
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apparent in equation 9.95 is that the XC contributions to the PT2 gradient arise from the contraction of

the relaxed PT2 difference density with the derivative of the SCF operator. Since the SCF operator already

contains the first derivative of the XC potential and the PT2 energy is not stationary with respect to changes

in the SCF density, a response type term arises which requires the evaluation of the second functional

derivative of the XC-functional. Finally, as is well known from MP2 gradient theory, the effective two- particle

density matrix contains a separable and a non-separable part:

ΓPT2
µνκτ = DµνPκτ −Dα

µκP
α
ντ −Dβ

µκP
β
ντ + ΓNS

µνκτ (9.96)

ΓNS
µνκτ =

∑
iαjαaαbα

cαµic
α
νac

α
κjc

α
τbt

iαjα
aαbα

+
∑

iβjβaβbβ

cβµic
β
νac

β
κjc

β
τbt

iβjβ
aβbβ

+ 2
∑

iαjβaαbβ

cαµic
α
νac

β
κjc

β
τbt

iαjβ
aαbβ

(9.97)

Thus, the non-separable part is merely the back-transformation of the amplitudes from the MO to the AO

basis. It is, however, important to symmetrize the two-particle density matrix in order to be able to exploit

the full permutational symmetry of the AO derivative integrals.

9.11.4 Orbital Optimized MP2

The MP2 energy can be regarded as being stationary with respect to the MP2 amplitudes, since they can be

considered as having been optimized through the minimization of the Hylleraas functional:

EMP2 = min
t

{
2
〈

Ψ1|Ĥ|Ψ0

〉
+
〈

Ψ1|Ĥ0 − E0|Ψ1

〉}
(9.98)

Ĥ is the 0th order Hamiltonian as proposed by Møller and Plesset, Ψ0 is the reference determinant, Ψ1

is the first-order wave function and E0 = EHF = 〈ΨHF| Ĥ |ΨHF〉 is the reference energy. The quantities t

collectively denote the MP2 amplitudes.

The fundamental idea of the OO-MP2 method is to not only minimize the MP2 energy with respect to

the MP2 amplitudes, but to minimize the total energy additionally with respect to changes in the orbitals.

Since the MP2 energy is not variational with respect to the MO coefficients, no orbital relaxation due to

the correlation field is taken into account. If the reference determinant is poor, the low-order perturbative

correction then becomes unreliable. This may be alleviated to a large extent by choosing better orbitals in the

reference determinant. Numerical evidence for the correctness of this assumption will be presented below.

In order to allow for orbital relaxation, the Hylleraas functional can be regarded as a functional of the

wavefunction amplitudes t and the orbital rotation parameters R that will be defined below. Through

a suitable parameterization it becomes unnecessary to ensure orbital orthonormality through Lagrange

multipliers. The functional that we minimize reads:

L {t, R} = E0 [R] + 2 〈Ψ1| Ĥ |Ψ0〉+ 〈Ψ1| Ĥ0 − E0 |Ψ1〉 (9.99)

Ψ0 is the reference determinant. However, it does no longer correspond to the Hartree-Fock (HF) determinant.

Hence, the reference energy E0 [R] = 〈Ψ0 [R]| Ĥ |Ψ0 [R]〉 also changes during the variational process and is no
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longer stationary with respect to the HF MO coefficients. Obviously, E0 [R] > EHF since the HF determinant

is, by construction, the single determinant with the lowest expectation value of the full Hamiltonian.

The reference energy is given as:

E0 [R] =
∑
i

〈i|h |i〉+
1

2

∑
ij

〈ij||ij〉 (9.100)

The first-order wave function excluding single excitations is:

|Ψ1〉 =
1

4

∑
ijab

tijab| Ψab
ij

〉
(9.101)

A conceptually important point is that Brillouin’s theorem [394] is no longer obeyed since the Fock matrix

will contain off-diagonal blocks. Under these circumstances the first-order wavefunction would contain

contributions from single excitations. Since the orbital optimization brings in all important effects of the

singles we prefer to leave them out of the treatment. Any attempt to the contrary will destroy the convergence

properties. We have nevertheless contemplated to include the single excitations perturbatively:

E
(2)
Singles = −

∑
ia

|Fia|2
εa − εi

(9.102)

The perturbative nature of this correction would destroy the stationary nature of the total energy and is hence

not desirable. Furthermore, results with inclusion of single excitation contributions represent no improvement

to the results reported below. They will therefore not be documented below and henceforth be omitted from

the OO-MP2 method by default.

The explicit form of the orbital-optimized MP2 Hylleraas functional employing the RI approximation

(OO-RI-MP2) becomes:

L∞ [t, R] =
∑
i

〈i|ĥ |i〉+
1

2

∑
ij

〈ij||ij〉+
∑
iaP

(ia|P )Γ
′P
ia +

∑
ij

DijFij +
∑
ab

DabFab (9.103)

with:

Γ
′P
ia =

∑
Q

V −1
PQ

∑
jb

(Q|jb)tijab (9.104)

(ia|P ) =

∫ ∫
ψi(r1)ψa(r1)

1

|r1 − r2|
ηP (r2)dr1dr2 (9.105)

(P |Q) =

∫ ∫
ηp(r1)

1

|r1 − r2|
ηQ(r2)dr1dr2 (9.106)

Here, {ψ} is the set of orthonormal molecular orbitals and {η} denotes the auxiliary basis set. Fpq denotes a

Fock matrix element:
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Fpq = 〈p| ĥ |q〉+
∑
k

〈pk||qk〉 (9.107)

and it is insisted that the orbitals diagonalize the occupied and virtual subspaces, respectively:

Fij = δijFii = δijεi

Fab = δabFaa = δabεa
(9.108)

The MP2 like density blocks are,

Dij = − 1
2

∑
kab t

ik
abt

jk
ab

Dab = 1
2

∑
ijc t

ij
act

ij
bc

(9.109)

where the MP2 amplitudes in the case of a block diagonal Fock matrix are obtained through the condition∂L∞
∂tijab

=

0:

tijab = − 〈ij||ab〉
εa + εb − εi − εj

(9.110)

The orbital changes are parameterized by an anti-Hermitian matrix R and an exponential Ansatz,

cnew = cold exp(R)

R =

(
0 Ria

−Ria 0

)
(9.111)

The orbitals changes to second order are,

exp(R) |i〉 = |i〉+
∑
a Rai |a〉 − 1

2

∑
jb RbiRbj |j〉+ . . .

exp(R) |a〉 = |a〉 −∑i Rai |i〉 − 1
2

∑
jb RajRbj |b〉+ . . .

(9.112)

Through this Ansatz it is ensured that the orbitals remain orthonormal and no Lagrangian multipliers need

to be introduced. The first-order expansion of the Fock operator due to the orbital rotations are:

Fpq [R] = Fpq [0] +R(1)
pq +

∑
r

RrpFrq [0] +RrqFpr [0] (9.113)

R(1)
pq =

∑
kc

Rck {〈pc||qk〉+ 〈pk||qc〉} (9.114)

The first-order energy change becomes
(
hpq ≡ 〈p| ĥ |q〉 , gpqrs ≡ 〈pq||rs〉

)
:
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L∞ [t,R] =
∑
icRci (hci + hic) + 1

2

∑
ijcRci (gcjij + gijcj) +Rcj (gicij + gijic)

+2
∑
iacP Rci(ac|P )Γ

′P
ia − 2

∑
ikaP Rak(ik|P )Γ

′P
ia

−∑ij Dij

(
R

(1)
ij +

∑
c (RciFcj +RcjFic)

)
+
∑
abDab

(
R

(1)
ab −

∑
k (RakFkb +RbkFak)

) (9.115)

The condition for the energy functional to be stationary with respect to the orbital rotations
(
∂L∞[t,R]
∂Rai

= 0
)

,

yields the expression for the orbital gradient and hence the expression for the OO-RI-MP2 Lagrangian.

∂L∞[t,R]

∂Rai
≡ gai = 2Fai + 2

∑
j

DijFaj − 2
∑
b

DabFib +R(1)(D)ai (9.116)

+2
∑
cP

(ac|P )Γ′Pia − 2
∑
kP

(ik|P )Γ′Pia

The goal of the orbital optimization process is to bring this gradient to zero. There are obviously many ways

to achieve this. In our experience, the following simple procedure is essentially satisfactory. We first build a

matrix B in the current MO basis with the following structure:

Bij = δijFii

Bab = δab(Faa + ∆)

Bai = Bia = gai

(9.117)

where ∆ is a level shift parameter. The occupied/occupied and virtual/virtual blocks of this matrix are

arbitrary but their definition has a bearing on the convergence properties of the method. The orbital energies

of the block diagonalized Fock matrix appear to be a logical choice. If the gradient is zero, the B-matrix is

diagonal. Hence one obtains an improved set of orbitals by diagonalizing B.

In order to accelerate convergence a standard DIIS scheme is used. [60,246] However, in order to carry out

the DIIS extrapolation of the B-matrix it is essential that a common basis is used that does not change from

iteration to iteration. Since the B-matrix itself is defined in the molecular orbitals of the current iteration

we choose as a common set of orthonormal orbitals the MOs of the HF calculation. The extrapolation is

carried out in this basis and the extrapolated B-matrix is transformed back to the current set of MOs prior

to diagonalization. Obviously, the same strategy can be used for orbital optimization in any method for

which an orbital gradient is available.

For well behaved cases this simple scheme converges in 5-10 iterations. Transition metals and more complicated

molecules may require up to 20 iterations and level shifting in order to achieve convergence.

Upon convergence the sum of the matrix D and the density of the reference determinant Pµν =
∑
i cµicνi

form the true one-particle density matrix of the OO-MP2 approach that can be used for property or gradient

calculations.
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9.11.5 RIJCOSX-RI-MP2 Gradients

Additional grids are introduced for the RIJCOSX-MP2 gradient. They have sensible default settings and

therefore do not usually require any intervention from the user. However, a number of expert options are

available, as described below.

The RIJCOSX-SCF procedure employs three grids: a small grid for the initial iterations, a medium grid

for the final iterations, and a large grid to evaluate the energy more accurately after the iterations have

converged. By default, the Z-vector equations are solved on a grid identical to the small grid in the SCF

procedure. However, any of the other SCF grids can be selected for the CPSCF procedure in the method

block as follows:

%method

Z_GridX 1 # small SCF grid (default)

2 # medium SCF grid

3 # large SCF grid

end

The grid used for evaluation of the response operator on the right-hand side of the Z-vector equations (see

for example eqs 9.83 and 9.84) can be independently selected using:

%method

Z_GridX_RHS 1 # small SCF grid (default)

2 # medium SCF grid

3 # large SCF grid

end

Yet another grid is used to evaluate basis functions derivatives. Appropriate parameters are chosen through

! GridXn (in addition to the three SCF grids), but there are several ways to override this setting. Firstly,

the grid can be chosen with ! MP2GridXn (n = 1–3), where the default is MP2GridX2. Secondly, the angular

(GridX) and radial (IntAccX) parameters can be specified explicitly through:

%mp2 GridX 2 # default 2: angular Lebedev grid 110

IntAccX 4.34 # radial grid

end

9.11.6 MP2 and RI-MP2 Second Derivatives

Analytical second-order properties with the MP2, RI-MP2 and double-hybrid DFT methods are available

in ORCA for calculations without frozen core orbitals. Hessians can be calculated with MP2 and RI-MP2.

The most expensive term in the second derivative calculations is the four-external contribution which can be

evaluated either via an AO direct (default) or a semi-numerical Chain-of-Spheres approach. In case that the

latter approach is chosen, appropriate grid parameters are defined through the ! GridXn settings. However,

a more fine-grained specification is available to expert users as follows:
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%mp2 KCOpt _AOBLAS # (default) AO direct with BLAS routines

_COSX # semi-numerical evaluation using the COSX method

KC_GridX 2 # default 2: angular Lebedev grid 110

KC_IntAccX 3.34 # radial grid

end

Alternatively, all the grid settings can be defined in the %method block, as discussed in section 9.3.2.8. The

first three entries define the three SCF grids, the fourth entry the MP2 grid for basis function derivatives

(refer to section 9.11.5) and the fifth entry the grid for the four-external contribution.

%method

IntAccX Acc1, Acc2, Acc3, Acc4, Acc5

GridX Ang1, Ang2, Ang3, Ang4, Ang5

UseFinalGridX true

end

9.11.7 Local MP2

In analogy to the domain-based local pair natural orbital coupled-cluster methods, there is also a local linear

scaling version of MP2 (DLPNO-MP2) implemented in ORCA. Its default thresholds are chosen to reproduce

about 99.9 % of the total RI-MP2 correlation energy, resulting in an accuracy of a fraction of 1 kcal/mol for

energy differences. The theory has been described in the literature. [75,76]

Further information of local correlation methods in ORCA can be found in section 9.12.4. The local MP2

method becomes truly beneficial for very large molecules and can be used to compute energies of systems

containing several hundred atoms. Figure 9.2 shows the scaling behavior for linear alkane chains. Note that

this represents an idealized situation. For three-dimensional molecules the crossover with canonical RI-MP2

is going to occur at a later point.
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Figure 9.2: Scaling of the DLPNO-MP2 method with default thresholds for linear alkane chains
in def2-TZVP basis. Shown are also the times for the corresponding Hartree-Fock
calculations with RIJCOSX and for RI-MP2.

In the following, the most important design principles of the RHF-DLPNO-MP2 are pointed out.

• Unlike in the 2013 version of the DLPNO methodology, domains are selected by means of the differential

overlap
√∫

i2(r)µ̃′2(r)dr between localized MOs i and projected atomic orbitals (PAOs) µ̃′ which are

normalized to unity. The default value for the corresponding cutoff is TCutDO = 10−2.

• MP2 amplitudes for each pair of localized orbitals ij are expressed in a basis of pair natural orbitals

(PNOs) ãij . PNOs are obtained from diagonalization of an approximate, “semicanonical” MP2 pair

density Dij . Only PNOs with an occupation number > TCutPNO are retained, with a default value of

TCutPNO = 10−8 for DLPNO-MP2. The pair density is given by:

Dij = Tij†T̃ij + TijT̃ij† where
T ijµ̃ν̃ = − (iµ̃|jν̃)

εµ̃ + εν̃ − Fii − Fjj
T̃ij = (1 + δij)

−1 (
4Tij − 2Tij†) (9.118)

• Since the occupied block of the Fock matrix is not diagonal in the basis of localized orbitals, the

MP2 amplitudes Tij are obtained by solving the following set of residual equations iteratively (where

subscripts of PNOs have been dropped):

Rij
ãb̃

=
(
iã
∣∣∣jb̃)+

(
εã + εb̃ − Fii − Fjj

)
T ij
ãb̃
−
∑
k 6=i

∑
c̃d̃

FikS
ij,kj
ãc̃ T kj

c̃d̃
Skj,ij
d̃b̃
−
∑
k 6=j

∑
c̃d̃

FkjS
ij,ik
ãc̃ T ik

c̃d̃
Sik,ij
d̃b̃

= 0

(9.119)

• The largest part of the error relative to canonical RI-MP2 is controlled by the the domain (TCutDO)

and PNO (TCutPNO) thresholds, which should be adequate for most applications. If increased accuracy

is needed (e.g. for studying weak interactions), tighter truncation criteria can be invoked by means of
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the ! TightPNO keyword. Conversely, a less accurate but faster calculation can be performed with the

! LoosePNO keyword. For more details refer to table 9.10.

• Fitting domains are determined by means of orbital Mulliken populations with a threshold TCutMKN =

10−3. This threshold results in an error contribution that is typically about an order of magnitude

smaller than the overall total energy deviation from RI-MP2.

• Prior to performing the local MP2 calculation, pairs of localized molecular orbitals ij are prescreened

using an MP2 energy estimate with a dipole approximation, and the differential overlap integral

between orbitals i and j. This procedure has been chosen conservatively and leads to minimal errors.

• Residual evaluation can be accelerated significantly by neglecting terms with associated Fock matrix

elements Fik and Fkj below FCut = 10−5. Errors resulting from this approximation are typically below

1µEh and thus negligible.

• Sparsity of the MO and PAO coefficient matrices in atomic orbital basis is exploited to accelerate

integral transformations for large systems. Truncation of the coefficients is controlled by a parameter

TCutC. Neglect of these coefficients has to be performed very carefully in order to avoid uncontrollable

errors. The threshold has been chosen so as to make the errors essentially vanish.

• By default, core orbitals are frozen in the MP2 module. However, if core orbitals are subject to an MP2

treatment, it is necessary to use a tighter PNO cutoff for pairs involving at least one core orbital. For

this purpose core orbitals and valence orbitals are localized separately. The cutoff for pairs involving

core orbitals is given by TCutPNO × TScalePNO Core, where TScalePNO Core = 0.01 by default. For more

details refer to section 9.12.4.1.

The UHF-DLPNO-MP2 implementation differs somewhat from the RHF case, particularly regarding con-

struction of PNOs, as described below.

• A separate set of PAOs µ̃′α and µ̃′β is obtained for each spin case.

• For αβ pairs, separate pair domains of PAOs need to be determined for each spin case. For example,

the α pair domain [iαjβ ]α is the union of the domains [iα]α and [jβ ]α. The latter domain [jβ ]α is

determined by evaluating the spatial differential overlap between jβ and α-spin PAOs µ̃′α.

• One set of PNOs is needed for each same-spin pair. Opposite-spin pairs require a set of α-PNOs and a

set of β-PNOs. In total this results in four types of PNO sets.

• Semicanonical amplitudes are obtained as follows, where i, j are spin orbitals and µ̃ν̃ are nonredundant

spin PAOs.

T ijµ̃ν̃ = − 〈ij||µ̃ν̃〉
εµ̃ + εν̃ − Fii − Fjj

(9.120)

In the same-spin case 〈iαjα||µ̃αν̃α〉 = 〈ij|µ̃ν̃〉 − 〈ij|ν̃µ̃〉, while in the opposite-spin case 〈iαjβ ||µ̃αν̃β〉 =

〈ij|µ̃ν̃〉.

• For opposite-spin pairs, α-PNOs and β-PNOs are obtained from diagonalisation of TijTij† and Tij†Tij ,

respectively. For same-spin pairs the pair density is symmetric and only one set of PNOs is needed.

PNOs are discarded whenever the absolute value of their natural occupation number is below the

threshold TCutPNO.
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• The following residual equations need to be solved for the cases Riαjα
ãαb̃α

, R
iβjβ

ãβ b̃β
and R

iαjβ

ãαb̃β
:

Riσjτ
ãσ b̃τ

=
〈
ij
∣∣∣∣∣∣ãb̃〉+

(
εã + εb̃ − Fii − Fjj

)
T ij
ãb̃

−
∑
kσ 6=iσ

∑
c̃σ d̃τ

FikS
ij,kj
ãc̃ T kj

c̃d̃
Skj,ij
d̃b̃
−
∑
kτ 6=jτ

∑
c̃σ d̃τ

FkjS
ij,ik
ãc̃ T ik

c̃d̃
Sik,ij
d̃b̃

= 0
(9.121)

• Most approximations are consistent between the RHF and UHF schemes, with the exception of the PNO

truncation. This means that results would match for closed-shell molecules with TCutPNO = 0 (provided

both Hartree-Fock solutions are identical), but this is not true whenever the PNO space is truncated.

Therefore, UHF-DLPNO-MP2 energies should only be compared to other UHF-DLPNO-MP2 energies,

even for closed-shell species.

• We found that it is necessary to use tighter PNO thresholds for UHF-DLPNO-MP2. With NormalPNO

settings the default value is TCutPNO = 10−9. For an overview of accuracy settings refer to table 9.10.

As in the RHF implementation, the PNO cutoff for pairs involving core orbitals is scaled with

TScalePNO Core.

Table 9.10: Accuracy settings for DLPNO-MP2.

Setting TCutDO TCutPNO (RHF) TCutPNO (UHF)

LoosePNO 2× 10−2 10−7 10−8

NormalPNO 1× 10−2 10−8 10−9

TightPNO 5× 10−3 10−9 10−10

Options specific to DLPNO-MP2 are listed below.

%mp2 DLPNO false # Do DLPNO-MP2 (also requires RI true)

TolE 1e-7 # Energy convergence threshold. Default: TolE of SCF

TolR 5e-7 # Residual convergence threshold. Default: 5 * TolE

MaxPNOIter 100 # Maximum number of residual iterations

MaxLocIter 128 # Maximum number of iterations for orbital localization

LocMet AHFB # Localization method

# options: FB, PM, IAOIBO, IAOBOYS, NEWBOYS, AHFB

LocTol 1e-6 # Localization convergence tolerance

# Default: 0.1 * TolG from SCF

DIISStart_PNO 0 # First iteration to invoke DIIS extrapolation

MaxDIIS_PNO 7 # length of DIIS vector

Damp1_PNO 0.5 # Damping before DIIS is started

Damp2_PNO 0.0 # Damping with DIIS

MP2Shift_PNO 0.2 # level shift in amplitude update (Eh)

# Truncation parameters:

TCutPNO 1e-8 # PNO occupation number cutoff (RHF)

1e-9 # PNO occupation number cutoff (UHF)

TScalePNO_Core 1e-2 # Core PNO scaling factor

TCutDO 1e-2 # Differential overlap cutoff for domain selection
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TCutMKN 1e-3 # Mulliken population cutoff for fitting domain selection

FCut 1e-5 # Occupied Fock matrix element cutoff

TCutPre 1e-6 # Energy threshold for dipole prescreening

TCutDOij 1e-5 # Maximum differential overlap between screened MOs

TCutDOPre 3e-2 # Cutoff to select PAOs for domains in prescreening

TCutC 1e-3 # Cutoff for PAO coefficient truncation

ScaleTCutC_MO 1.0 # Cutoff for MO truncation: TCutC * ScaleTCutC_MO

PAOOverlapThresh 1e-8 # Threshold for constructing non-redundant PAOs

end

9.11.8 Local MP2 gradient

The analytical gradient has been implemented for the RHF variant of the DLPNO-MP2 method. It is a

complete derivative of all components in the DLPNO-MP2 energy, and the results are therefore expected to

coincide with numerical derivatives of DLPNO-MP2 (minus the noise). General remarks:

• No gradient is presently implemented for the UHF-DLPNO-MP2 variant.

• Spin-component scaled MP2 is supported by the gradient.

• Double-hybrid density functionals are supported by the gradient.

• Only Foster-Boys localization is presently supported. The default converger is AHFB with a convergence

tolerance that is automatically bound by a constant factor to the SCF orbital gradient tolerance. Using

a different converger is possible, but discouraged, as the orbital localization needs to be sufficiently

tightly converged.

• When calculating properties without the full nuclear gradient, the relaxed MP2 density should be

requested.

A number of points regarding geometry optimizations (not all of them specific to DLPNO-MP2) are worth

keeping in mind:

• As of 2018, we expect that the DLPNO-MP2 gradient can most beneficially be used for geometry

optimizations of systems containing around 70-150 atoms. It may be faster than RI-MP2 even for

systems containing 50-60 atoms or less, but the timing difference is probably not going to be very large.

Of course, structures containing 200 atoms and above can (and have been) optimized, but this may

take long if many geometry steps are required. On the other hand, single point gradient or density

calculations can be performed for systems containing many hundred atoms.

• DLPNO-MP2 is a substantially more expensive method for geometry optimizations than GGA or

hybrid DFT functionals. Therefore, it is generally a good idea to start a geometry optimization with a

structure that is already optimized at dispersion-corrected DFT level.
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• RIJCOSX can be used to accelerate exchange evaluation substantially. However, great care needs to be

exercised with the grid settings. We found that even GridX6 is insufficient for geometry optimizations

and may lead, for example, to non-planar distortions of planar molecules. On the other hand, GridX7

or GridX8 appear to be sufficiently accurate to optimize neutral main group compounds. We therefore

recommend these grids for general use with some careful checking in more complicated cases. Even

with these grids, the calculation is a lot faster than ”regular” Hartree-Fock with basis sets of triple

zeta quality (or larger).

Using RIJONX is also possible.

• Sufficiently large grids should be used for the exchange-correlation functional of double hybrids. The

SCF calculation takes only a fraction of the time that is needed for DLPNO-MP2, and sacrificing

quality because of an insufficiently accurate grid is a waste of computer time.

• Optimization of large structures is often a challenge for the geometry optimizer. It may help to change

the trust radius settings, to modify the settings of the AddExtraBonds feature, or to change other

settings of the geometry optimizer. Sometimes it may be beneficial to check the geometry optimizer

settings with a less demanding electronic structure method.

• Finally, problems with a geometry optimization may in some cases indeed be caused by the DLPNO

approximations. Using LoosePNO for accurate calculations is not recommended anyway, and difficulties

with NormalPNO settings are possibly rectified by switching to TightPNO.

During the development process, a number of difficulties were encountered related to the orbital localization

Z-vector equations. Great care was taken to work around these problems and to make the procedures as

robust as possible, but a number of settings can be changed. For more information on these aspects, we

recommend consulting the full paper on the DLPNO-MP2 gradient (once it has been published).

• Several different solvers are implemented for the orbital localization Z-vector equations. The default

is an iterative conjugate gradient solver. As an alternative, the DIIS-accelerated Jacobi solver can

be used, but it tends to be inferior to the conjugate gradient solver. Moreover, a direct solver is

available as a fail-safe alternative for smaller systems. As the dimension of the linear equation system

is n(n− 1)/2 for n occupied orbitals, the memory requirement and FLOP count increase as O(n4) and

O(n6), respectively, and using the direct solver becomes unfeasible for large systems.

• Settings for the CPSCF solver are specified the same way as for canonical MP2.

• Under specific circumstances, the orbital Hessian of the orbital localization function may have zero or

near-zero eigenvalues, which can lead to singular localization Z-vector equations. In particular, it is

typically a consequence of continuously degenerate localized orbitals, which may (but do not need to)

appear in some molecular symmetries. [395] A typical symptom are natural occupation number above

2 and below 0 for systems that would be expected to have MP2 density eigenvalues between 2 and 0

without the DLPNO approximations.

• In order to work around the aforementioned problem, a procedure has been implemented to eliminate

singular or near-singular eigenvectors of the localization function orbital Hessian. Vectors with an

eigenvalue smaller than ZLoc EThresh (or ZLoc EThresh core for the core orbitals) are subject to

the modified procedure. If the program eliminates any eigenvectors, it might sometimes be a good

idea to check if calculated properties are reasonable (or at least to check the natural occupation
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numbers). Eigenvectors of the Hessian are calculated by Davidson diagonalization by default, but

direct diagonalization can be chosen for smaller systems, instead.

• Diagonalization of the localization orbital Hessian can be switched off altogether by setting ZLoc EThresh

to 0.

• If the ”Asymmetric localization equation residual norm” exceeds the localization Z-vector equation

tolerance (ZLoc Tol), there are typically two plausible reasons: (1) the localized orbitals are not

sufficiently tightly converged (too large LocTol) or unconverged, or (2) the orbital localization Hessian

has got small eigenvalues that were not eliminated.

This is an overview over the options related to the gradient:

# Settings specific to the localization equation z-solver

%mp2 ZLoc_Solver CG # Use conjugate gradient solver (default)

DIR # Use direct solver

JAC # Use DIIS-accelerated Jacobi solver

ZLoc_Tol 1.0e-6 # Residual convergence tolerance for the

# localization Z-solver

# Default: same value as Z_Tol for CPSCF

ZLoc_MaxIter 1024 # Maximum localization Z-solver iterations

ZLoc_MaxDIIS 10 # Number of DIIS vectors for the Jacobi solver

ZLoc_Shift 0.2 # Shift for the Jacobi solver

# Options for eliminating (near-)singular eigenvectors of the

# orbital Hessian of the localization function.

ZLoc_EThresh 3.0e-4 # Eigenvectors with an eigenvalue below

# this threshold are eliminated.

ZLoc_EThresh_core 3.0e-4 # Same as ZLoc_EThresh, but for the core orbitals.

# Default: identical value as ZLoc_EThresh.

# Options for determining eigenvectors of the localization orbital Hessian.

ZLoc_UseDavidson True # Use Davidson diagonalization.

# If false, use direct diagonalization.

ZLoc_DVDRoots 32 # Number of Davidson roots to be determined.

ZLoc_DVDNIter 256 # Number of Davidson iterations.

ZLoc_DVDTolE 3.0e-10 # Eigenvalue tolerance for the Davidson solver.

# Default: 1e-6 * ZLoc_EThresh

ZLoc_DVDTolR 1.0e-7 # Residual tolerance for the Davidson solver.

# Default: 0.1 * ZLoc_Tol

ZLoc_DVDMaxDim 10 # During Davidson diagonalization, the space of trial

# vectors is expanded up to MaxDim * DVDRoots.

# Choice of the PNO processing algorithm.

DLPNOGrad_Opt AUTO # Chooses automatically between RAM and DISK

# (default and recommended)

RAM # Enforce memory-based one-pass algorithm

DISK # Enforce disk-based two-pass algorithm

BUFFERED # Buffered algorithm. Usage is discouraged.
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# Experimental, unpredictable I/O performance.

end

9.12 The Single Reference Correlation Module

ORCA features a variety of single-reference correlation methods for single point energies (restricted to a

RHF or RKS determinant in the closed-shell case and a UHF or UKS determinant in the open-shell case;

quasi-restricted orbitals (QROs) [210] are also supported in the open-shell case). They are all fairly expensive

but maybe be used in order to obtain accurate results in the case that the reference determinant is a good

starting point for the expansion of the many-body wavefunction. The module is called orca mdci for “matrix

driven configuration interaction”. This is a rather technical term to emphasize that if one wants to implement

these methods (CCSD, QCISD etc.) efficiently, one needs to write them in terms of matrix operations which

pretty much every computer can drive at peak performance. Let us first briefly describe the theoretical

background of the methods that we have implemented in ORCA.

9.12.1 Theory

We start from the full CI hierarchy in which the wavefunction is expanded as:

|Ψ〉 = |0〉+ |S〉+ |D〉+ |T 〉+ |Q〉+ ... (9.122)

where |0〉 is a single-determinant reference and S, D, T, Q, . . . denote the single, double, triple quadruple

and higher excitations relative to this determinant at the spin-orbital level. As usual, labels i, j, k, l refer

to occupied orbitals in |0〉, a, b, c, d to unoccupied MOs and p, q, r, s to general MOs. The action of the

second quantized excitation operators aai = a†aai on |0〉 lead to excited determinants |Φai 〉 that enter |Ψ〉 with

coefficients Cia. The variational equations are:

〈Φai |H − E0| 0 + S +D〉 = ECC
i
a − 〈Φai |H − E0|T 〉 (9.123)

〈
Φabij |H − E0| 0 + S +D

〉
= ECC

ij
ab −

〈
Φabij |H − E0|T +Q

〉
(9.124)

Further equations coupling triples with singles through pentuples etc.

The total energy is the sum of the reference energy E0 = 〈0 |H| 0〉 and the correlation energy

EC = 〈0 |H|S +D〉 (9.125)

which requires the exact singles- and doubles amplitudes to be known. In order to truncate the series to

singles- and doubles one may either neglect the terms containing the higher excitations on the right hand
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side (leading to CISD) or approximate their effect thereby losing the variational character of the CI method

(CCSD, QCISD and CEPA methods). Defining the one- and two-body excitation operators as Ĉ1 =
∑
ia C

i
aa
a
i ,

Ĉ2 = 1
4

∑
ijab C

ij
aba

ab
ij one can proceed to approximate the triples and quadruples by the disconnected terms:

|T 〉 = Ĉ1Ĉ2 |0〉 (9.126)

|Q〉 =
1

2
Ĉ2

2 |0〉 (9.127)

As is well known, the CCSD equations contain many more disconnected contributions arising from the various

powers of the Ĉ1 operator (if one would stick to CC logics one would usually label the cluster amplitudes with

tia, t
ij
ab,. . . and the n-body cluster operators with T̂n; we take a CI point of view here). In order to obtain the

CEPA type equations from (9.123-9.127), it is most transparent to relabel the singles and doubles excitations

with a compound label P for the internal indices (i) or (ij ) and x for (a) or (ab). Then, the approximations

are as follows:

1

2

〈
ΦxP

∣∣∣(H − E0) Ĉ2
2

∣∣∣ 0〉 =
1

2

∑
QRyz

CQy C
R
z

〈
ΦxP |H − E0|ΦyzQR

〉
(9.128)

≈ CPx
∑
Qy

CQy

〈
ΦxP |H|ΦxyPQ

〉
(9.129)

= CPx
∑
Qy

CQy

〈
0 |H|ΦyQ

〉
− CPx

∑
Qy∪Px

CQy

〈
0 |H|ΦyQ

〉
(9.130)

≈ CPx

EC −
∑
Q∪P

εQ

 (9.131)

Here the second line contains the approximation that only the terms in which either Qy or Rz are equal

to Px are kept (this destroys the unitary invariance) and the fourth line contains the approximation that

only “exclusion principle violating” (EPV) terms of internal labels are considered. The notation Qy ∪ Px
means “Qy joint with Px” (containing common orbital indices) and εQ is the pair correlation energy. The

EPV terms must be subtracted from the correlation energy since they arise from double excitations that are

impossible due to the fact that an excitation out of an occupied or into an empty orbital of the reference

determinant has already been performed. Inserting eq. 9.131 into eq. 9.124 CPx EC cancels and effectively is

replaced by the “partial correlation energy”
∑
Q∪P εQ.

The resulting equations thus have the appearance of a diagonally shifted (“dressed”) CISD equation

〈ΦxP |H − E0 + ∆| 0 + S +D〉 = 0. If the second approximation mentioned above is avoided Malrieu’s

(SC)2-CISD arises. [247,350–353] Otherwise, one obtains CEPA/3 with the shift:

−∆ij
ab =

∑
k

(εik + εjk)− εij (9.132)
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CEPA/2 is obtained by −∆ij
ab = εij and CEPA/1 is the average of the CEPA/2 and CEPA/3. As mentioned

by Ahlrichs, [396] no consensus appears to exist in the literature for the appropriate shift on the single

excitations. If one proceeds straightforwardly in the same way as above, one obtains:

〈
Φai

∣∣∣(H − E0) Ĉ1Ĉ2

∣∣∣ 0〉 ≈ Cia
(
EC − 2

∑
k

εik

)
(9.133)

as the appropriate effect of the disconnected triples on the singles. In has been assumed here that only

the singles |Φai 〉 in Ĉ1 contribute to the shift. If |0〉 is a HF determinant, the effect of the disconnected

triples in the doubles projection vanishes under the same CEPA approximations owing to Brillouin’s theorem.

Averaged CEPA models are derived by assuming that all pair correlation energies are equal (except εii = 0).

As previously discussed by Gdanitz [397], the averaging of CEPA/1 yields 2
nEC and CEPA/3 EC

4n−6
n(n−1) where

n is the number of correlated electrons. These happen to be the shifts used for the averaged coupled-pair

functional (ACPF [398]) and averaged quadratic coupled-cluster (AQCC [399]) methods respectively. However,

averaging the singles shift of eq. 9.133 gives 4
nEC. The latter is also the leading term in the expansion of the

AQCC shift for large n. In view of the instability of ACPF in certain situations, Gdanitz has proposed to

use the AQCC shift for the singles and the original ACPF shift for the doubles and called his new method

ACPF/2 [398]. Based on what has been argued above, we feel that it would be most consistent with the

ACPF approach to simply use 4
nEC as the appropriate singles shift. We refer to this as NACPF.

It is readily demonstrated that the averaged models may be obtained by a variation of the modified correlation

energy functional:

EC =
〈0 + S +D |H − E0| 0 + S +D〉

1 + gs 〈S|S〉+ gD 〈D|D〉
(9.134)

with gS and gD being the statistical factors 4
n , 2

n , 4n−6
n(n−1) , as appropriate for the given method. Thus, unlike

the CEPA models, the averaged models fulfil a stationarity principle and are unitarily invariant. However, if

one thinks about localized internal MOs, it appears evident that the approximation of equal pair energies

must be one of rather limited validity and that a more detailed treatment of the electron pairs is warranted.

Maintaining a stationarity principle while providing a treatment of the pairs that closely resembles that of

the CEPA methods was achieved by Ahlrichs and co-workers in an ingenious way with the development of

the CPF method [82]. In this method, the correlation energy functional is written as:

EC = 2
∑
Px

〈
Φxp |H| 0

〉
NP

+
∑
PQxy

〈
Φxp |H − E0|ΦyQ

〉
√
NPNQ

(9.135)

with

NP = 1 +
∑
Q

TPQ
∑
y

(CQy )2 (9.136)

The topological matrix for pairs P =(ij ) and Q = (kl) is chosen as: [294]
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TPQ =
δik + δil

2ni
+
δjk + δjl

2nj
(9.137)

with ni being the number of electrons in orbital i in the reference determinant. The singles out of orbital

i are formally equated with P = (ii). At the spin-orbital level, ni = 1, for closed shells ni = 2. Using the

same topological matrix in ∆P =
∑
Q TPQεQ one recovers the CEPA/1 shifts for the doubles in eq. 9.133. It

is straightforward to obtain the CPF equivalents of the other CEPA models by adjusting the TPQ matrix

appropriately. In our program, we have done so and we refer below to these methods as CPF/1, CPF/2 and

CPF/3 in analogy to the CEPA models (CPF/1 ≡CPF). In fact, as discussed by Ahlrichs and co-workers,

variation of the CPF-functional leads to equations that very closely resemble the CEPA equation and can be

readily implemented along the same lines as a simple modification of a CISD program. Ahlrichs et al. argued

that the energies of CEPA/1 and CPF/1 should be very close. We have independently confirmed that in the

majority of cases, the total energies predicted by the two methods differ by less than 0.1 mEh.

An alternative to the CPF approach which is also based on variational optimization of an energy functional

is the VCEPA method [400]. The equations resulting from application of the variational principle to the

VCEPA functional are even closer to the CEPA equations than for CPF so that the resulting energies are

practically indistinguishable from the corresponding CEPA values. The VCEPA variants are referred to

as VCEPA/1, VCEPA/2, and VCEPA/3 in analogy to CEPA and CPF. A strictly size extensive energy

functional (SEOI) which is invariant with respect to unitary transformations within the occupied and virtual

orbital subspaces is also available [401] (an open-shell version is not implemented yet).

Again, a somewhat critical point concerns the single excitations. They do not account for a large fraction of

the correlation energy. However, large coefficients of the single excitations lead to instability and deterioration

of the results. Secondly, linear response properties are highly dependent on the effective energies of the singles

and their balanced treatment is therefore important. Since the CEPA and CPF methods amount to shifting

down the diagonal energies of the singles and doubles, instabilities are expected if the effective energy of an

excitation approaches the reference energy of even falls below it. In the CPF method this would show up

as denominators NP that are too small. The argument that the CPF denominators are too small has led

Chong and Langhoff to the proposal of the MCPF method which uses a slightly more elaborate averaging

than (NPNQ)1/2 [81].15 However, their modification was solely based on numerical arguments rather than

physical or mathematical reasoning. In the light of eq. 9.133 and the performance of the NACPF, it appears

to us that for the singles one should use twice the TPQ proposed by Ahlrichs and co-workers. The topological

matrix TPQ is modified in the following way for the (very slightly) modified method to which we refer to as

NCPF/1:

Tij,kl =
δik + δil

2ni
+
δjk + δjl

2nj
(9.138)

Tij,k = 0 (9.139)

Ti,kl = 2
δik + δil
ni

(9.140)

15This method – although it has been rather extensively used in the past – is not implemented in ORCA. We
recommend to use our NCPF/1 instead.
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Ti,k = 0 (9.141)

(note that TPQ 6= TQP for this choice). Thus, the effect of the singles on the doubles is set to zero based on

the analysis of the CEPA approximations and the effect of the singles on the singles is also set to zero. This

is a sensible choice since the product of two single excitations is a double excitation which is already included

in the SD space and thus none of them can belong to the outer space. It is straightforward to adapt this

reasoning about the single excitations to the CEPA versions as well as to NCPF/2 and NCPF/3.

The aforementioned ambiguities arising from the use of single excitations in coupled-pair methods can be

avoided by using correlation-adapted orbitals instead of Hartree-Fock orbitals thus eliminating the single

excitations. There are two alternatives: (a) Brueckner orbitals and (b) optimized orbitals obtained from the

variational optimization of the electronic energy with respect to the orbitals. Both approaches have already

been used for the coupled-cluster doubles (CCD) method [402,403] and later been extended to coupled-pair

methods [404]. In the case of CCD, orbital optimization requires the solution of so-called Λ (or Z vector)

equations [405]. There is, however, a cheaper alternative approximating the Z vector by a simple analytical

formula [406].

Furthermore, the parametrized coupled-cluster (pCCSD) method of Huntington and Nooijen [407], which

combines the accuracy of coupled-pair type methods for (usually superior to CCSD, at least for energies

and energy differences) with the higher stability of the coupled-cluster methods, is an attractive alternative.

Comprehensive numerical tests [408] indicate that particularly pCCSD(-1,1,1) (or pCCSD/1a) and pCCSD

(-1.5,1,1) (or pCCSD/2a) have great potential for accurate computational thermochemistry. These methods

can be employed by adding the “simple” keywords pCCSD/1a or pCCSD/2a to the first line of input. As

mentioned in section 8.1.3.8, the LPNO variants of the pCCSD methods are also available for RHF and UHF

references via usage of the simple keywords LPNO-pCCSD/1a and LPNO-pCCSD/2a.

9.12.2 Closed-Shell Equations

Proceeding from spin-orbitals to the spatial orbitals of a closed-shell determinant leads to the actual working

equations of this work. Saebo, Meyer and Pulay have exploited the generator state formalism to arrive at

a set of highly efficient equations for the CISD problem [96]. A similar set of matrix formulated equations

for the CCSD and QCISD cases has been discussed by Werner and co-workers [409] and the MOLPRO

implementation is widely recognized to be particularly efficient. Equivalent explicit equations for the CISD

and CCSD methods were published by Scuseria et al. [410]16 The doubles equations for the residual “vector”

σ are (i 6 j, all a, b):

16Our coupled-cluster implementation is largely based on this nice paper. The equations there have been extensively
verified to be correct.
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σijab = Kij
ab +K

(
Cij
)
ab

+
{
FV Cij + CijFV

}
ab
−∑

k

{
FjkC

ik
ab + FikC

kj
ab

}
+
∑
kl

Kij
klC

kl
ab

+
∑
k

{(
2Cik −Cik+

) (
Kkj − 1

2Jkj
)

+
(
Kik − 1

2Jik
) (

2Ckj −Ckj+
)}
ab

−∑
k

{
1
2Cik+Jjk+ + 1

2JikCkj+ + JjkCik + CkjJik+
}
ab

+CiaF
j
b + CjbF

i
a −

∑
k

{
Kji
kaC

k
b +Kij

kbC
k
a

}
+
{
KiaCj + KjaCi

}
b

−∆ijCijab

(9.142)

The singles equations are:

σia = F ia +
{
FV Ci

}
a
−∑

j

FijC
j
a −

∑
jkb

(
2Kik

jb − J ikjb
)
Ckjba

+
∑
j

{(
2Kij − Jij

)
Cj + Fj

(
2Cij+ −Cij

)
+
〈(

2Kia −Kia+
)
Cij+

〉}
a

−∆iCia

(9.143)

The following definitions apply:

K
(
Cij
)
ab

=
∑
cd

(ac|bd)Cijcd (9.144)

Kpq
rs = (pr|qs) (9.145)

Jpqrs = (pq|rs) (9.146)

〈AB〉 =
∑
pq

ApqBqp (9.147)

The two-electron integrals are written in (11|22) notation and F is the closed-shell Fock operator with FV being

its virtual sub-block. We do not assume the validity of Brillouin’s theorem. The amplitudes Cia, C
ij
ab have

been collected in vectors Ci and matrices Cij wherever appropriate. The shifts ∆i and ∆ij are dependent on

the method used and are defined in Table 9.11 for each method implemented in ORCA.

Table 9.11: Summary of the diagonal shifts used in various singles- and doubles methods discussed in this

chapter. The quantities εi and εij are the correlation energy increments brought about by the

single- and the double excitations respectively. The partial denominators for the CPF type

methods Ni and Nij are specified in eq. 9.136.

Method Doubles Shift Singles Shift

CISD EC EC

CEPA/0 0 0

CEPA/1
1
2 (εi + εj) + 1

4

∑
k

(εik + εjk) 1
2εii + 1

2

∑
k

εik
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CEPA/2 δijεi + εij εi + εii

CEPA/3 (εi + εj)− δijεi − εij + 1
2

∑
k

(εik + εjk) εi +
∑
k

εik

NCEPA/1
1
4

∑
k

(εik + εjk) εii +
∑
k

εik

NCEPA/2 εij 2εii

NCEPA/3 −εij + 1
2

∑
k

(εik + εjk) 2
∑
k

εik

CPF/1 Nij

{
1
2 ( εiNi +

εj
Nj

) + 1
4

∑
k

( εikNik +
εjk
Njk

)

}
Ni

{
1
2
εii
Nii

+ 1
2

∑
k

εik
Nik

}
CPF/2 Nij

{
δij

εi
Ni

+
εij
Nij

}
Ni

{
εi
Ni

+ εii
Nii

}
CPF/3 Nij

{
εi
Ni

(1− δij) +
εj
Nj
− εij

Nij
+ 1

2

∑
k

( εikNik +
εjk
Njk

)

}
Ni

{
εi
Ni

+
∑
k

εik
Nik

}
NCPF/1

1
4Nij

∑
k

( εikNik +
εjk
Njk

) Ni

{
εii
Nii

+
∑
k

εik
Nik

}
NCPF/2 Nij

εij
Nij

2Ni
εii
Nii

NCPF/3 Nij

{
− εij
Nij

+ 1
2

∑
k

( εikNik +
εjk
Njk

)

}
2Ni

∑
k

εik
Nik

ACPF 2
nEC

2
nEC

ACPF/2 2
nEC

[
1− (n−3)(n−2)

n(n−1)

]
EC

NACPF 2
nEC

4
nEC

AQCC
[
1− (n−3)(n−2)

n(n−1)

]
EC

[
1− (n−3)(n−2)

n(n−1)

]
EC

The QCISD method requires some slight modifications. We found it most convenient to think about the

effect of the nonlinear terms as a “dressing” of the integrals occurring in equations 9.142 and 9.143. This

attitude is close to the recent arguments of Heully and Malrieu and may even open interesting new routes

towards the calculation of excited states and the incorporation of connected triple excitations. [411] The

dressed integrals are given by:

F̄ik = Fik +
∑
l

〈
Cil

(
2Kkl −Kkl+

)〉
(9.148)

F̄ab = Fab −
∑
kl

{
Ckl

(
2Kkl −Kkl+

)}
ab

(9.149)

F̄kc = Fkc +
∑
l

(
2Kkl −Kkl+

)
Cl (9.150)

K̄ij
kl = Kij

kl +
〈
KklTkl+

〉
(9.151)

K̄ij
ab = Kij

ab +
∑
k

{
Cik

(
Kkj − 1

2
Kjk

)
+ CkiKkj

}
ab

(9.152)

J̄ ijab = J ijab +
∑
k

{
CkiKjk

}
ab

(9.153)
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The CCSD method can be written in a similar way but requires 15 additional terms that we do not document

here. They may be taken conveniently from our paper about the LPNO-CCSD method [84].

A somewhat subtle point concerns the definition of the shifts in making the transition from spin-orbitals to

spatial orbitals. For example, the CEPA/2 shift becomes in the generator state formalism:

−
〈

Φ̃abij |∆ij |Ψ
〉

= Cijab

(
1

3
εααij +

2

3
εαβij

)
+ Cijba

(
−1

3
εααij +

1

3
εαβij

)
(9.154)

(Φ̃abij is a contravariant configuration state function, see Pulay et al. [405]. The parallel and antiparallel spin

pair energies are given by:

εααij =
1

2

∑
ab

[
Kij
ab −K

ij
ba

] (
Cijab − C

ij
ba

)
(9.155)

εαβij =
1

2

∑
ab

Kij
abC

ij
ab (9.156)

This formulation would maintain the exact equivalence of an orbital and a spin-orbital based code. Only

in the (unrealistic) case that the parallel and antiparallel pair correlation energies are equal the CEPA/2

shift of 9.11 arise. However, we have not found it possible to maintain the same equivalence for the CPF

method since the electron pairs defined by the generator state formalism are a combination of parallel and

antiparallel spin pairs. In order to maintain the maximum degree of internal consistency we have therefore

decided to follow the proposal of Ahlrichs and co-workers and use the topological matrix TPQ in equation

9.137 and the equivalents thereof in the CEPA and CPF methods that we have programmed.

9.12.3 Open-Shell Equations

We have used a non-redundant set of three spin cases (αα, ββ, αβ) for which the doubles amplitudes are

optimized separately. The equations in the spin-unrestricted formalism are straightforwardly obtained from

the corresponding spin orbital equations by integrating out the spin. For implementing the unrestricted

QCISD and CCSD method, we applied the same strategy (dressed integrals) as in the spin-restricted case.

The resulting equations are quite cumbersome and will not be shown here explicitly [90].

Note that the definitions of the spin-unrestricted CEPA shifts differ from those of the spin-restricted formalism

described above (see Kollmar et al. [90]). Therefore, except for CEPA/1 and VCEPA/1 (and of course

CEPA/0), for which the spin-adaptation of the shift can be done in a consistent way, CEPA calculations of

closed-shell molecules yield slightly different energies for the spin-restricted and spin-unrestricted versions.

Since variant 1 is also the most accurate among the various CEPA variants [87], we recommend to use

variant 1 for coupled-pair type calculations. For the variants 2 and 3, reaction energies of reactions involving

closed-shell and open-shell molecules simultaneously should be calculated using the spin-unrestricted versions

only.

A subtle point for open-shell correlation methods is the choice of the reference determinant [412]. Single

reference correlation methods only yield reliable results if the reference determinant already provides a

good description of the systems electronic structure. However, an UHF reference wavefunction suffers from
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spin-contamination which can spoil the results and lead to convergence problems. This can be avoided if

quasi-restricted orbitals (QROs) are used [210,411] since the corresponding zeroth-order wavefunction is an

eigenfunction of the Ŝ2 operator and thus, no severe spin-contamination will appear. The coupled-pair and

coupled-cluster equations will be still solved in a spin-unrestricted formalism but the energy will be slightly

higher compared to the results obtained with a spin-polarized UHF reference determinant. Furthermore,

especially for more difficult systems like e.g. transition metal complexes, it is often advantageous to use

Kohn-Sham (KS) orbitals instead of HF orbitals.

9.12.4 Local correlation

As described in previous sections of the manual, ORCA features the extremely powerful LPNO and DLPNO

methods. “LPNO” stands for “local pair natural orbital” approximation and DLPNO for “domain based

LPNO”. These methods are designed to provide results as close as possible to the canonical coupled-cluster

results while gaining orders of magnitude of efficiency through a series of well-controlled approximations. In

fact, typically about 99.8% to 99.9% of the canonical correlation energy is recovered in such calculations.

Even higher accuracy is achievable but will ultimately come at much higher computational cost. The default

cut-offs are set such that the vast majority of chemically meaningful energy differences are reproduced to

better than 1 kcal/mol relative to the canonical results with the same basis set. Of the LPNO and DLPNO

methods, the LPNO is the older one and will eventually be discarded from ORCA. It has some higher order

scaling steps (up to N5) while DLPNO is linear scaling and of similar accuracy. Amongst the DLPNO

methods, the first generation implementation of the DLPNO methods (DLPNO2013) is only near-linear

scaling, while the DLPNO implementation since ORCA 4.0 is linear scaling.

It is important to understand that the LPNO and DLPNO implementations are intimately tied to the RI

approximation. Hence, in these calculations one must specify a fitting basis set. The same rules as for

RI-MP2 apply: the auxiliary basis sets optimized for MP2 are just fine for PNO calculations. You can specify

several aux bases for the same job and the program will sort it out correctly.

The theory of the LPNO methods has been thoroughly described in the literature in a number of original

research papers. [84, 88,91,92]

Hence, it is sufficient to only point to a few significant design principles and features of these methods:

1. The correlation energy of any molecule can be written as a sum over the correlation energies of pairs of

electrons, labelled by the internal indices (ij) of pairs of orbitals that are occupied in the reference

determinant. If the orbitals (i) and (j) are localized, the pair correlation energy εij falls off very quickly

with distance, quite typically by about an order of magnitude per chemical bond that is separating

orbitals (i) and (j). Hence, by using a suitable cut-off for a reasonable pair correlation energy estimate

many electron pairs can be removed from the high-level treatment and only a linear scaling number of

electron pairs will make a significant contribution to the correlation energy.

2. The natural estimate for the pair correlation energy comes from second order many body perturbation

theory (MP2). However, canonical MP2 is scaling with the fifth power of the molecular size and is

hence not really attractive from a theoretical and computational point of view. Owing to the small

pre-factor RI-MP2 goes a long way to provide reasonably cheap estimates for pair correlation energies.

However, if one uses localized internal orbitals, then the MP2 energy expression must be cast in form

of linear equations. However, if one uses canonical virtual orbitals together with localized internal
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orbitals and neglects the coupling terms coming from purely internal Fock matrix elements F(i,k) and

F(k,j) then one ends up with a fair approximation that is termed “semi-canonical MP2” in ORCA. It

serves as a guess in the older LPNO method. For DLPNO this method is also not attractive.

3. In DLPNO, the guess is more sophisticated. Here the virtual spaces is spanned by projected atomic

orbitals (PAOs) that are assigned to domains of atoms that are associated with each local internal

orbital (i) and with the union of two such domains (i) and (j) for the electron pair (ij). One applies the

semi-local approximation, one obtains an excellent approximation to the semi-canonical MP2 energy.

This is called the “semi-local” approximation and it is linearly scaling with respect to computational

effort. If one iterates these equations to self-consistency to eliminate the coupling terms F(i,k) and

F(k,j) then one obtains the full local MP2 method (LMP2 or L-MP2). If the domains are made large

enough the results approach the canonical MP2 energy to arbitrary accuracy while still being linear

scaling with respect to computational resources. This method is the default for the DLPNO method.

4. Basically, the high-spin open-shell version of the DLPNO uses the same strategy as the closed-shell

variant to efficiently generate the open-shell PNOs in a consistent manner to the closed-shell formalism.

Through the development of the UHF-LPNO-CCSD method, we have realized that use of unrestricted

MP2 (UMP2) approach to define the open-shell PNOs introduces a few complexities; (1) the PNOs

for β spin orbitals cannot be defined for α-α electron pairs and vice versa, (2) the diagonal PNOs

for singly occupied orbitals cannot be properly defined, and (3) the PNO space does not become

identical to that in the closed-shell LPNO framework in the closed-shell limit. However, to program

all the unrestricted CCSD terms in the LPNO basis, those PNOs are certainly necessary. Therefore,

in the UHF-LPNO-CCSD implementation, several terms, which, in many cases, give rather minor

contributions in the correlation energy are omitted. Due to these facts, the UHF-LPNO-CCSD does

not give identical results to that of RHF-LPNO-CCSD in the closed-shell limit. In addition, screening

of the weak pairs on the basis of the semi-canonical UMP2 pair-energy results in somewhat unbalanced

treatment of the closed- and open-shell states in some cases, leading to rather larger errors in the

reaction energies. To overcome those issues, in the high-spin open-shell DLPNO-CCSD method, the

PNOs are generated in the framework of semi-canonical NEVPT2 which smoothly converges to the

RHF-MP2 counterpart in the closed-shell limit. The open-shell DLPNO-CCSD, which is made available

from ORCA 4.0, includes a full set of the open-shell CCSD equations and is designed as a natural

extension to the RHF-DLPNO-CCSD.

5. Screening of the electron pairs according to a truncation parameter (in ORCA it is called TCutPairs) is

not sufficient to obtain a highly performing local electronic structure method. The original work of

Pulay suggested to limit excitations out of the internal orbitals (i) and (j) to the domain associated

with the pair (ij). While this works well and has been implemented to perfection by Werner, Schütz

and co-workers over the years, the pre-factor of such calculations is high, since the domains have to be

chosen large in order to recover 99.9% or more of the canonical correlation energy.

6. The ORCA developers have therefore turned to an approach that has been used with a high degree of

success in the early 1970s by Meyer, Kutzelnigg, Staemmler and their co-workers, namely the method

of “pair natural orbitals” (PNOs). As shown by Loewdin in his seminal paper from 1955, natural

orbitals (the eigenfunctions of the one-particle density matrix) provide the fastest possible convergence

of the correlated wavefunction with respect to the number of one-particle functions included in the

virtual space. It has been amply established that approximate natural orbitals are almost as succesful

as the true natural orbitals (which would require the knowledge of the exact wavefunction) in this

respect. While the success of approximate correlation treatments of many particle systems that use
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approximate natural orbitals of the whole systems are somewhat limited, this is not the case for pair

natural orbitals. The latter have first been suggested as a basis for correlation calculations by England

and co-workers and, at the time, were given the name “pseudonatural orbitals”, a term that was used

by Meyer throughout his pioneering work.

7. The PNOs are approximate natural orbitals of a given electron pair. In order to generate them one

requires a one particle pair density matrix Dij the eigenfunctions of which are the PNOs themselves

while the corresponding eigenvalues are the PNO occupation numbers. While there are many creative

possibilities that can lead to slightly different PNO sets, a quite useful and natural approximation is

to generate such a density from the MP2 amplitudes as an expectation value (the “unrelaxed” MP2

density. One then uses a second threshold (in ORCA TCutPNO) that controls the PNOs to be included

in the calculation. PNOs with an occupation number < TCutPNO are neglected.

8. PNOs of a given electron pair form an orthonormal set. However, PNOs belonging to different electron

pairs are not orthonormal and hence they overlap. This non-orthogonality leads to surprisingly few

complications because the PNOs stay orthogonal to all occupied orbitals. In practice, the equations for

PNO based correlation calculations are hardly more complex than the canonical equations.

9. The nice feature of these pair densities is that they become small when the pair interaction becomes

small. Hence weak pairs are correlated by very few PNOs. Therefore, the PNO expansion of the

wavefunction is extremely compact and there only is a linear scaling number of significant excitation

amplitudes that need to be considered.

10. A great feature of the PNOs is that they are “self-adapting” to the correlation situation that they are

supposed to describe. Hence, they are as delocalized as required by the physics and there is no ad-hoc

assumption about their location in space. However, it is clear that the PNOs are located in the same

region of space as the internal orbitals that they correlate because otherwise they would not contribute

to the correlation energy.

11. In the iterative local MP2, a set of PNOs is calculated for the MP2 calculation from the semicanonical

amplitudes first using the cutoff TCutPNO×LMP2ScaleTCutPNO. The size of the resulting PNO space

should be comparable with DLPNO-MP2. After the iterations have converged, a (smaller) set of PNOs

for the CCSD double excitation amplitudes is generated from the iterated local MP2 amplitudes in the

(larger) PNO basis. The PNOs for the single excitation amplitudes are always calculated using the

semicanonical MP2 amplitudes, as they require a much more conservative PNO truncation threshold.

12. Capitalizing on this feature one can define generous domains and expand the PNOs in terms of the

PAOs and auxiliary fit functions (for the RI approximations) that are contained in these domains. In

ORCA this is controlled by the third significant truncation parameter TCutMKN. This is the basis of

the DLPNO method. In the older LPNO method, the PNOs are expanded in terms of the canonical

virtual orbitals and TCutMKN is only used for a local fit to the PNOs. In the linear-scaling DLPNO

implementation the domains expanding the PNOs in terms of the PAOs are controlled via TCutDO.

13. PNO expansion have the amazing advantage that the PNOs converge to a well-defined set as the basis

set is approaching completeness. Hence, the increase in the number of PNOs per electron pair is very

small upon enlargement of the orbital basis. In other words, correlation calculations with large basis

sets are not that much more expensive than correlation calculations with small basis sets. Thus, the

advantage of PNO over canonical calculations increases with the size of the basis set. This is a great

feature as large and flexible basis sets are a requirement for meaningful correlation calculations.
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14. In summary, DLPNO and LPNO calculations are controlled by only three cut-off parameters with

well-defined meanings: a) TCutPairs, the cut-off for the electron pairs to be included in the coupled-pair

or coupled-cluster iterations, b) TCutPNO which controls how many PNOs are retained for a given

electron pair and c) TCutMKN that controls how large the domains are that the PNOs expand over. For

the linear-scaling DLPNO calculations the domain sizes are controlled via TCutDO.

15. It is clear that owing to the truncations a certain amount of error is introduced in the results. However,

having the LMP2 results available, one can compensate for the errors coming from TCutPairs and

TCutPNO. This is done in ORCA and the correction is added to the final correlation energy, thus

bringing it very close (to mEh accuracy or better) to the canonical result. TCutMKN is best dealt

with by making it conservative (at 1e−3 to 1e−4 the domains are about 20–30 atoms large, which is

sufficient for an accurate treatment).

16. Note that the LPNO and DLPNO methods do not introduce any real space cut-offs. We refrain from

doing so and insist in our method development by making all truncations based on wavefunction or

energy parameters. We feel that this is the most unbiased approach and it involves no element of

“chemical intuition” or “prejudice”. Other researchers have decided differently and we do not criticize

their choices.

17. In the DLPNO method a highly efficient screening mechanism is operative. In this method one first

obtains a (quadratically scaling) multipole estimate for the pair correlation energy that is extremely

fast to compute (a few seconds, even for entire proteins). Only if this estimate is large enough, a given

electron pair is even considered for a LMP2 treatment. Quite typically pairs with energy contributions

of 1e−6 Eh and smaller are very well described by the dipole-dipole estimate. Specifically, we drop pairs

with estimated energies < 0.01× TCutPairs and add their multipole energy sum to the final correlation

energy. These corrections tend to be extremely small, even for large molecules and are insignificant for

the energy. However, importantly, the multipole estimate ensures linear scaling in the MP2 treatment.

The pairs that then do not survive the pair-prescreening are called “weak pairs” in the ORCA or

DLPNO sense. They still play a role in the calculation of the triple excitation correction.

18. The calculation of triple excitation contributions is more involved and one does not have a perturbative

estimate available since the (T) contribution is perturbative itself. While the (T) contribution is

much smaller than the CCSD correlation energy, the errors introduced by the various local and PNO

approximations can be significant. We found that one has to include triples with at least one pair being

a “weak” LMP2 pair (with its LMP2 amplitudes) in order to arrive at sufficiently accurate results.

Given these explanations the various cut-off parameters that can be controlled in LPNO and DLPNO

calculations should be understandable and are listed below. We emphasize again that only the three

thresholds TCutPairs, TCutPNO and TCutMKN should be touched by the user, unless very specific questions

are addressed. The recommended way to control the accuracy of calculations is to specify “TightPNO”,

“NormalPNO” or “LoosePNO” keywords, rather than to change numeric values of cutoffs. Individual thresholds

should normally not be changed, as the defaults are sensible and lead to good cost/performance ratios.

%mdci TCutPairs 1e-4 # cut-off for the pair truncation

TCutPNO 3.33e-7 # cut-off for the PNO truncation

TCutDO 1e-2 # cut-off for the DLPNO domain construction

TCutMKN 1e-3 # cut-off for the local fit
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# for DLPNO2013: also domain construction

# remaining options, tied to the three main cut-offs,

EXPERTS ONLY!

Localize 1 # flag for using localized orbitals

LocMet AHFB # Localization method.

# Options: PM, FB, IAOIBO, IAOBOYS, NEWBOYS, AHFB

LocTol 1e-6 # Absolute threshold for the localization procedure

# Automatically adjusted by default.

LocTolRel 1e-8 # Relative threshold for the localization procedure

LocMaxIter 128 # Maximum number of localization iterations

LocRandom 1 # default, take random seed for any localization

# For internal orbitals: choose best of 32 localizations

# Switched off for AHFB

0 # take constant seed for any localization (for testing)

LocNAttempts np # number of localization attempts

# default: number of processes, minimum 8, if

# randomize true

# 1, if randomize false

# any number larger or equal np, if randomize true

PNONorm MP2Norm # default, old IEPANorm can also be used

(near identical results)

NrMP2Pairs_Trip 1 # number of MP2 pairs to be included in the triples

calculation

PAOOverlapThresh 1e-8 # generation of non-redundant PAOs from redundant ones

UseFullLMP2Guess true # Use iterative full LMP2 (for DLPNO)

SinglesFockUsePNOs true # compute the Singles Fock matrix (SFM) in PNOs.

# DLPNO2013: default for SinglesFockUsePNOs is false,

# by default RIJCOSX is used for the SFM, except when

# RIJK is given. In that case the RIJK-SFM is used.

LMP2MaxIter # max no of iterations in the MP2 equations

LMP2TolE 1e-7 # LMP2 energy convergence tolerance

LMP2TolR 1e-7 # LMP2 residual convergence tolerance

LMP2ScaleTCutPNO # PNO cutoff for LMP2 is: TCutPNO*LMP2ScaleTCutPNO

# Default: TCutPNO(DLPNO-MP2)/TCutPNO(DLPNO-CCSD) with

# respective TCutPNOs specific to Loose/Normal/TightPNO

LMP2FCut 1e-7 # LMP2 neglect cut-off for

off-diagonal Fock matrix elements

LMP2Damp 1.0 # Damping for LMP2 iterations

TCutTNO 0 # Cut-off for triples natural orbitals (0=automatic)

TCutDom -1 # -1= use TCutMKN to make domains

TCutPNOSingles -1 # -1= use 0.03*TCutPNO

TCutPreScr -1 # -1= use 0.01*TCutPairs for

multipole estimate based screening

TCutDeloc 0.1 # delocalization threshold for specification
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of extended domains.

Necessary because PAOs are not strictly localized

TCutOSV 1e-6 # orbital specific virtuals used for pre-screening.

No critical

TScaleMP2Pairs 0.1

TScaleMKNStrong 10

TScaleMKNWeak 100

IMPORTANT NOTE REGARDING ORBITAL LOCALIZATION

• Localized orbitals for DLPNO are obtained via the Foster-Boys method with an aug-

mented Hessian converger (AHFB) by default.

• The localization tolerance (LocTol) is coupled to the SCF gradient tolerance (TolG) with a constant

factor by default. Selecting specific SCF convergence settings (such as TightSCF) therefore also ensures

obtaining a set of appropriately well converged localized orbitals. This can be overridden by setting a

different value for LocTol.

• An important feature of the augmented Hessian converger is that it systematically approaches a local

maximum of the localization function (even though convergence to the global maximum cannot be

guaranteed). As opposed to that, the conventional localization method (FB) may stop, for example,

at a saddle point. In bad cases, this can lead to deviations of several kJ/mol in the DLPNO energy.

Likewise, it can contribute towards lack of reproducibility of results.

• No similar procedure has been implemented for the other localization methods (such as Pipek-Mezey)

yet. The same problems as with the FB converger can occur in these cases.

• No randomization is used for the AHFB converger.

The old default orbital localization settings of ORCA 4.0 can be reproduced with the following options:

%MDCI LocMet FB

LocTol 1.0e-6

LocRandom 1

End

Regarding the methods that employ randomization (FB, PM, IAOIBO, IAOBOYS) only, the following notes

apply:

• Generally better DLPNO results are obtained when several runs of localization are undertaken using

different initial guesses. The different initial guesses are obtained using randomization (LocRandom).

• However, randomization of the initial guess can lead to differently localized MOs in different calculations.

This can yield non-identical correlation energies, varying in the sub-kJ/mol range, for different runs on

the same machine.

• In order to yield identical correlation energy results, randomization can be switched off (LocRandom

0). However, switching off randomization only leads to identical results on the same machine, but can

still lead to slightly different results (in the sub-kJ/mol range) on different machines.
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• Reproducibility of the correlation energy is expected to increase further if LocNAttempts is set to

higher values.

The input below shows how to perform a DLPNO calculation with settings that exactly reproduce the

canonical RI-MP2 result. They are not recommended for production use, but merely to show that if the local

approximations are pushed, then the result coincides with the canonical one. If one would set TCutPNO to

zero this would give canonical RI-CCSD. However, this is an absurdly inefficient calculation and hence not

done.

#

! def2-SV(P) def2/JK RI-JK DLPNO-CCSD VeryTightSCF RI-MP2

# obtain a result that only contains errors from the PNO approximation

# but no others

%mdci TCutPairs 0

TCutMKN 0

UseFullLMP2Guess true

LMP2FCut 1e-9

LMP2MaxIter 25

LMP2TolE 1e-10

LMP2TolR 1e-11

PAOOVerlapThresh 1e-9

end

! Bohrs

* xyz 0 1

C -1.505246952209632 1.048213673267046 -3.005665895986369

C 1.289678561934891 0.246429688933291 -3.259735682020124

C 2.834670835163566 1.157307360133605 -0.990383454919828

C 1.924119415395082 -0.128330938291771 1.465070676514038

C -0.931529472233802 -0.722841293992075 1.397639867298547

C -2.347670084056626 1.213332291655600 -0.217984867773136

H 2.084955694093313 0.973408301535989 -5.037750251258102

H 1.426532559234904 -1.831017720289521 -3.371063003813707

H -1.795307501459984 2.891278294563413 -3.927855043896308

H -2.709613973668925 -0.308515546176734 -4.026627646697411

H -4.404246093821399 0.941639912907262 -0.071175054238094

H -1.962867323232915 3.122079490952855 0.528101313545138

H -1.245096579039474 -2.621186110634707 0.594784162223769

H -1.699155144887690 -0.782162821007662 3.328959985756973

H 2.347109421287126 1.104305785540561 3.087624818244846

H 2.990679065503112 -1.888017241218143 1.775287572161196

H 4.862301668284708 0.796425411350593 -1.279131939569907

H 2.634027658640572 3.226752635113244 -0.827936424652650

*
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9.12.4.1 Including core orbitals in the correlation treatment

In some chemical applications some or all of the chemical core electrons must be included in the correlation

treatment. In this case, it is necessary to tighten the TCutPNO thresholds for electron pairs in which chemical

core electrons are involved. This is now the default in DLPNO calculations.

For instance, one can decide to switch off the frozencore approximation and include all the electrons in the

correlation treatment. In this case, the program will use tighter thresholds by default for all electron pairs

and Singles that involve chemical core electrons. Note that, in this case, the use of properly optimized basis

functions for correlating the inner electrons is highly recommened.

! DLPNO-CCSD(T) def2-SVP def2-SVP/C NoFrozenCore

%mdci TSCALEPNO_CORE 0.01 # scaling factor for TCutPNO for electron pairs and

# Singles involving chemical core electrons

end

* xyz 0 1

Ti 0.0001595288 0.0000775041 0.0000000000

F 1.7595996122 0.0000634675 -0.0000000011

F -0.5865076471 1.6586935196 0.0000000018

F -0.5866248292 -0.8294172469 -1.4362516915

F -0.5866248311 -0.8294172443 1.4362516907

*

Another option is to choose the involved chemical core electrons by using an energy window. In this way all

electron pairs and Singles that involve chemical core electrons, which are in the defined energy window, are

affected by TScalePNO CORE.

! DLPNO-CCSD(T) def2-SVP def2-SVP/C

%method

FrozenCore FC_EWIN

end

%mdci

EWIN -40, 10000

end

* xyz 0 1

Ti 0.0001595288 0.0000775041 0.0000000000

F 1.7595996122 0.0000634675 -0.0000000011

F -0.5865076471 1.6586935196 0.0000000018

F -0.5866248292 -0.8294172469 -1.4362516915

F -0.5866248311 -0.8294172443 1.4362516907

*

A summary with the number of electrons affected by TScalePNO Core for the examples just discussed is

shown in Table 9.12.
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Table 9.12: Number of chemical core electrons included in the DLPNO calculation and affected by

TScalePNO Core for the TiF4 examples

Keyword
Chemical Core Electrons

Valence Electrons
Frozen Includeda

FrozenCore (default) 18 0 40

NoFrozenCore 0 18 40

EWIN -40, 10000 16 2 40

a using TScalePNO Core.

By default, ORCA provides a chemical meaningful definition for the number of electrons which belong to the

chemical core of each element. As already discussed, these default values define which pairs are affected by

TScalePNO Core. However, the user can modify the number of chemical core electrons for a specific element

via the NewNCore keyword.

! DLPNO-CCSD(T) def2-SVP def2-SVP/C NoFrozenCore

%method

NewNCore Ti 8 end

end

* xyz 0 1

Ti 0.0001595288 0.0000775041 0.0000000000

F 1.7595996122 0.0000634675 -0.0000000011

F -0.5865076471 1.6586935196 0.0000000018

F -0.5866248292 -0.8294172469 -1.4362516915

F -0.5866248311 -0.8294172443 1.4362516907

*

In the previous example, the number of chemical core electrons for Ti has been fixed to 8.

NOTE

• Of course, if electrons are replaced by ECPs, they are not included in the correlation treatment.

• If ECPs are used, the number for NewNCore has to include the electrons represented by the ECPs as

well. E.g. if an element is supposed to have 60 electrons in the ECP and additional 8 electrons should

be frozen in the correlation calculation, NewNCore should be 68.

• The different sets of orbitals (chemical core electrons included in the correlation treatment and valence

electrons) are localized separately in order to avoid the mixing of core and valence orbitals.

9.12.4.2 Multi-Level Calculations

In many applications events are investigated that are located in a relatively small region of the system of

interest. In these cases, combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have

been proved to be extremely useful, especially in the modeling of enzymatic reactions. The basic idea of any

QM/MM method is to treat a small region of the system at the QM level and to use an MM treatment for

the remaining part of the system. Alternatively, QM/QM methods, where different parts of a system are
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studied at various quantum mechanical levels, are also available. Quantum mechanical methods are more

computationally demanding than the molecular mechanics treatment, and this limits the applicability of

all-QM approaches. Nevertheless, QM/QM methods retain some strong advantages over QM/MM schemes.

For instance, force field parameters for the molecular mechanics part of the calculation are not necessary,

and thus there are no restrictions on the type of chemical systems that can be treated. Moreover, problems

usually caused by boundaries between QM and MM parts do not occur. Finally, the accuracy of an all-QM

calculation is expected to be higher compared to the accuracy of QM/MM approaches, that is limited by the

MM treatment.

In ORCA, the different methods that can be used in a QM/QM calculations are:

• DLPNO-CCSD(T) with TightPNO thresholds

• DLPNO-CCSD(T) with NormalPNO thresholds

• DLPNO-CCSD(T) with LoosePNO thresholds

• DLPNO-CCSD (not yet available for open-shell case)

• DLPNO-MP2 (not yet available for open-shell case)

• HF (not yet available for open-shell case)

The user can define an arbitrary number of fragments in the input, the level of theory to be used for each

fragment and for the interaction between different fragments. Localized molecular orbitals are then assigned

to a given fragment on the basis of their Mulliken populations.

The following example shows the calculation of a benzene dimer, for which the individual monomers are

calculated on MP2 level, and the interaction between the two monomers is calculated on TightPNO DLPNO-

CCSD(T) level.

! DLPNO-CCSD(T) Def2-SVP Def2-SVP/C

%mdci

UseFullLmp2Guess True

TightPNOFragInter {1 2}
MP2FragInter {1 1} {2 2}

end

*xyz 0 1

C(1) 1.393 0.000 0.0

H(1) 2.474 0.000 0.0

C(1) 0.695 1.206 0.0

H(1) 1.238 2.143 0.0

C(1) -0.695 1.206 0.0

H(1) -1.238 2.143 0.0

C(1) -1.393 0.000 0.0

H(1) -2.474 0.000 0.0

C(1) -0.695 -1.206 0.0

H(1) -1.238 -2.143 0.0
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C(1) 0.695 -1.206 0.0

H(1) 1.238 -2.143 0.0

C(2) 2.333 1.33 3.5

H(2) 3.414 1.33 3.5

C(2) 1.635 2.536 3.5

H(2) 2.178 3.473 3.5

C(2) 0.245 2.536 3.5

H(2) -0.298 3.473 3.5

C(2) -0.453 1.33 3.5

H(2) -1.534 1.33 3.5

C(2) 0.245 0.124 3.5

H(2) -0.298 -0.813 3.5

C(2) 1.635 0.124 3.5

H(2) 2.178 -0.813 3.5

*

• For the calculation of the interaction energy, the energy of the individual benzene monomer should be

calculated on the accuracy level of the monomer in the dimer calculation, i.e. using MP2 with full

LMP2 guess for the above example.

All possible settings for the multi-level calculation are listed below.

# The one-keyword line defines the default method for the multi-level calculation.

# Options here are DLPNO-CCSD(T) or DLPNO-CCSD with the addition of the

# LoosePNO, NormalPNO and TightPNO keyword

!DLPNO-CCSD(T)

# The below given keywords define the changes with respect to the

# above given default method. The user should take care that each intra- or

# interfragment combination is defined only once (unlike in the example given below)

%mdci

LoosePNOFragInter {1 1} {2 2} # use LoosePNO settings for the intrafragment

# pair energies of fragments 1 and 2

NormalPNOFragInter {1 2} # use NormalPNO settings for the interfragment

# pair energies between fragment 1 and 2

TightPNOFragInter {1 3} # use TightPNO settings for the interfragment

# pair energies between fragment 1 and 3

NormalPNOTightPairFragInter {1 2} # use NormalPNO settings but with TCutPairs

# 1.e-5 for the interfragment pair energies

# between fragment 1 and 2

LoosePNOTightPairFragInter {1 3} # use LoosePNO settings but with TCutPairs 1.e-5

# for the interfragment pair energies between

# fragment 1 and 3

NoTriplesFragments 1, 2 # if all MOs of a triple are located on fragment
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# 1 and / or 2, the triple is neglected

# not yet available for open-shell case

MP2FragInter {1 1} {2 2} # compute the intrafragment pair energies of

# fragments 1 and 2 on MP2 level

# not yet available for open-shell case

HFFragInter {1 1} {2 2} # compute the intrafragment energies on HF level

# not yet available for open-shell case

UseFullLmp2Guess false # default = false,

# if MP2FragInter is used: default = true

# The fragments need to be defined in the xyz section.

*xyz 0 1

C(1) 1.393 0.000 0.0

H(1) 2.474 0.000 0.0

...

9.12.5 Hilbert space multireference coupled-cluster approaches

MRCC branch of the MDCI module includes Hilbert space multireference coupled-cluster methods. These

are based on Jeziorski-Monkhorst ansatz of the wave operator [413], i.e. each of the reference configurations

is assigned its own cluster operator.

Ω̂ =
M∑
µ=1

eT̂ (µ)|Φµ〉〈Φµ|, (9.157)

where Φµ are reference configurations spanning a model space.

The cluster equations are then defined for each of the cluster operators. Their most expensive term is

basically the same as in single reference theory, except that it is calculated using cluster amplitudes of the

corresponding reference. The remaining coupling terms in MkCC or disconnected/linked terms in BWCC

have a n2
v times lower scaling than the direct term. The energy is obtained by a diagonalization of effective

Hamiltonian

Heff
µν = 〈Φ(µ)|Ĥ|Φ(µ)〉δµν + 〈Φ(µ)|ĤN (ν)eT̂ (ν)|Φν〉C . (9.158)

The methods are state-specific, so only one eigenvalue of effective Hamiltonian has a physical meaning.

At the moment, the following versions are implemented:

• the MkCCSD [414]

• BWCCSD [415] with a posteriori correction

• LPNO-MkCCSD

• LPNO-BWCCSD
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• MkCCSD(Tu) [416] for closed-shell references

• BWCCSD(T) [417] for closed-shell references

The number of reference configurations is not itself restricted. However, only up to mutually bi-excited

references can be included in the model space in the current implementation.

The truncation of cluster operator and/or the use of LPNO is specified like in the single reference case.

Furthermore, the user needs to specify the following keywords:

mrcc - flag to switch the HS MRCC

”on” = do a MRCC calculation

”off” (default) = single reference calculation

mrcctype - specifies the MRCC variant

”mkcc” for MkCC calculation

”bwcc” for BWCC

refs - sets the reference configurations

each reference is defined by a string of four characters: 2 (doubly occupied orbital), 0 (unoccupied

orbital), a (singly occupied orbital with spin α), b (singly occupied orbital with spin β). References

are separated by a comma. The size of the string of each reference can be reduced by the use of n docc

keyword (see below). We recommend that occupation of active orbitals is specified by ”refs” keyword

and the number of internal (and core) orbitals is specified by n docc.

n docc - number of doubly occupied orbitals not specified in the ”refs” keyword. We recommend that

occupation of active orbitals is specified by ”refs” keyword and the number of internal (and core)

orbitals by n docc.

root - specifies the root (state) requested.

A non-negative integer smaller than the number of references specifies the state directly.

”-1” stands for selection of the root based on the overlap of the eigenstate of effective Hamiltonian

with a given vector specified by ”root overlap” keyword

default: 0 (ie. ground state)

root overlap - specifies the vector in the model space mentioned above.

Example: MkCCSD calculation of CH2 in cc-pVTZ basis set using a CAS(2,2) space

!ccsd cc-pvtz # selects the basis set and the truncation of cluster operator

%mdci

mrcc on # switches on the MRCC branch

mrcctype mkcc # selects MkCC

n docc 3 # there are three doubly occupied core/internal orbitals

refs "20,02" # specifies the two references in the CAS(2,2) space.

# Due to symmetry, only these two references are needed.

root -1 # select the root by overlap

root overlap "-0.9, 0.1" # -0.9 corresponds to "20" reference, 0.1 to "02"

end
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9.12.6 The singles Fock term

In most MDCI calculations, there is an intermediate, which resembles closely to the SCF Fock matrix, and

similar methods are available to efficiently calculate it. In the followings, a short discussion will be given of

the so-called singles Fock term, which in the closed shell case has the form

G(t1)pq =
∑
jb

tjb(2(pq|jb)− (pj|qb)) =
∑
µν

cpµc
q
νG(t1)µν , (9.159)

The singles Fock matrix can be obtained via transformation from its counterpart (G(t1)µν) in the atomic

orbital (AO) basis

G(t1)µν =
∑
jb

tjb(2(µν|jb)− (µj|νb)) =
∑
κτ

P (t1)κτ (2(µν|κτ)− (µκ|ντ)), (9.160)

where

P (t1)κτ =
∑
jb

tjbc
j
κc
b
τ (9.161)

is the analogue of the SCF density matrix for the singles Fock case. For the singles Coulomb (J(t1)µν) case,

the density may be symmetrized (P̃ (t1)κτ = P (t1)κτ + P (t1)τκ), and one may use the resolution of identity

approximation

J(t1)µν =
∑
κτ

P̃ (t1)κτ (µν|κτ) ≈
∑
AB

∑
κτ

P̃ (t1)κτ (µν|r−1
12 |A)V −1

AB(B|r−1
12 |κτ), (9.162)

where A,B are elements of the RI/DF auxiliary fitting basis. Note that the factor of 2 in (9.160) is taken

care of by symmetrization. Since we are using a symmetric density, we may use the same efficient routine to

evaluate the singles Coulomb term as in the SCF case, see 9.3.2.4 and 9.3.2.5.

For the exchange case (K(t1)µν), one possibility is to use the COSX approximation (see 9.3.2.7)

K(t1)µν =
∑
κτ

P (t1)κτ (µκ|ντ) ≈
∑
g

Qµg
∑
τ

Aντ (rg)
∑
κ

P (t1)κτXκg, (9.163)

The COSX routine is able to deal with asymmetric densities as well, and thus, it can be used here similar to

the SCF case.

The other possibility is to use RI for exchange (RIK),

K(t1)µν =
∑
jκτ

cjκC(t1)jτ (µκ|ντ) ≈
∑
jAB

(µj|r−1
12 |A)V −1

AB(B|r−1
12 |νj̃), (9.164)

where

C(t1)jτ =
∑
b

tjbc
b
τ , (9.165)

and the j̃ is an “orbital” transformed using C(t1).

Using these approximations, there are two approximations for the total singles Fock term, RIJCOSX called

by the simple keyword RCSinglesFock and RIJK called by RIJKSinglesFock, see 8.1.3.1. For canonical

and LPNO methods, by default the program chooses the same approximation used in the SCF calculation.
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DLPNO2013 uses RIJCOSX by default, while in DLPNO, the singles Fock term is also evaluated using PNOs

via SinglesFockUsePNOs, see 9.12.4. This behavior can also be changed by keywords in the method block.

%method RIJKSinglesFock 1 # 0 false, 1 true

RCSinglesFock 0 # 0 false, 1 true

end

9.12.7 Use of the MDCI Module

The MDCI module is fairly easy to use. The flags for the “simple” input lines have been described in section

6.2. The detailed listing of options is found below:

%mdci citype CISD # CI singles+doubles

QCISD # quadratic CI (singles+doubles)

CCSD # coupled-cluster singles+doubles

CEPA_1 # coupled-electron pair approximation ‘‘1’’

CEPA_2 #

CEPA_3 #

CPF_1 # Coupled-pair functional approximation ‘‘1’’

CPF_2 # (note that CPF/1 is identical with

CPF_3 # the original CPF of Ahlrichs et al.)

VCEPA_1 # Variational CEPA approximation ‘‘1’’

VCEPA_2 #

VCEPA_3 #

NCEPA_1 # our slightly modified versions of CEPA

NCEPA_2 # and CPF

NCEPA_3 #

NCPF_1 #

NCPF_2 #

NCPF_3 #

VNCEPA_1 #

VNCEPA_2 #

VNCEPA_3 #

ACPF # averaged coupled-pair functional

ACPF_2 # Gdanitz modification of it

NACPF # our modification of it

AQCC # Szalay + Bartlett

SEOI # a strictly size extensive energy functional

# maintaining unitary invariance (not yet

# available for UHF)

MP3 # MP3 calculation. With UseSCS=true it is

# SCS-MP3

ewin -3,1e3 # orbital energy window to determine which

# MOs are included in the treatment
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# (respects settings in %method block)

Singles true # include single excitations in the

# treatment (default true)

Triples 0 # (T) correction in CCSD(T)/QCISD(T)

# default is no triples

1 # Algorithm 1 (lots of memory, fast)

2 # Algorithm 2 (less memory, about 2x slower)

Brueckner true # use Brueckner orbitals

# (default false)

Denmat none # no evaluation of density matrices

linearized # density matrix obtained by retaining

# only CEPA_0-like terms, i.e., those

# linear in the excitation amplitudes

unrelaxed # unrelaxed density matrices, i.e.,

# density matrices without orbital

# relaxation

orbopt # perform orbital optimization yielding

# fully relaxed density matrices (if

# citype chosen as CCSD or QCISD this option

# implies evaluation of the Z vector).

# (default: linearized)

ZSimple true # simplified evaluation of the Z vector

# in case of orbital optimized CCD

# (citype chosen as CCSD or QCISD and

# Denmat as orbopt) by using an

# analytical formula

false # explicit solution of Z vector

# equations

# in case of orbital optimized CCD

# (default: false)

UseQROs # use of quasi-restricted orbitals

# (default false)

Localize 0 # use localized MOs. Presently very little

# use is made of locality. It may help

# for interpretations. Localization is

# incompatible with the (T) correction

PM # Use Pipek-Mezey localized MOs

FB # use Foster-Boys localized MOs

NatOrbIters 0 # Perform natural orbital iterations.

# default is none. Not possible for CCSD

# and QCISD

pCCSDAB # the three parameters for parametrized

pCCSDCD # coupled-cluster (default is 1.0 which

pCCSDEF # corresponds to normal CCSD

# this defines how the rate limiting step is handled



9.12 The Single Reference Correlation Module 513

# MO and AOX need lots of disk and I/O but if they

# can be done they are fast

KCOpt KC_MO # Perform full 4-index transformation

KC_AOBLAS# AO direct with BLAS (preferred)

KC_AO # AO direct handling of 3,4 externals

KC_RI # RI approximation of 3,4 externals

KC_RI2 # Alternative RI (not recommended)

KC_AOX # Do it from stored AO exchange integrals

PrintLevel 2 # Control the amount of output. For 3 and

# higher things like pair correlation

# energies are printed.

MaxIter 35 # Max. number of iterations

# How the integral transformation is done.

# Note that it is fine to do AOX or AO or AOBLAS

# together with trafo_ri

TrafoType trafo_jk # Partial trafo to J+K operators

trafo_ri # RI transformation of all

# integrals up to 2-externals

# (3-ext for (T))and rest on the

# fly

trafo_full # Full four index transformation.

# Automatically chosen for

# KCOpt=KC_MO

MaxCore 350 # Memory in MB - used for integral

# trafos and batching and for storage of

# integrals and amplitudes

# don’t be too generous

STol 1e-5 # Max. element of the residual vector

# for convergence check

LShift 0.3 # Level shift to be used in update of

# coefficients

MaxDIIS 7 # Max number of DIIS vectors to be stored

# this lets you control how much and what is residing

# in central memory. May speed up things. Note that

# MaxCore is not respected here 9

InCore 0 # nothing in core

1 # + sigma-vector and amplitudes (default)

2 # + Jij(a,b) Kij(a,b) operators

3 # + DIIS vectors

4 # + 3-exernal integral Kia(b,c)

5 # + 4-external integrals Kab(c,d)

# this is identical to ALL

# the default is AUTO which means that incore

# is chosen based on MaxCore

end



514 9 Detailed Documentation

9.13 The Complete Active Space Self-Consistent Field (CASSCF)

Module

9.13.1 General Description

The complete active space self-consistent field (CASSCF) method is a special form of a multiconfigurational

SCF method and can be thought of as an extension of the Hartree-Fock method. It is a very powerful method

to study static correlation effects and a solid basis for MR-CI and MR-PT treatments. It can be applied to

the ground state and excited states or averages thereof. The implementation in ORCA is fairly general and

reasonably efficient. However, CASSCF calculations are fairly complex and ultimately require a lot of insight

from the user in order to be successful. In addition to detailed description here, the manual explores some

typical examples in section 8.1.7.8. Furthermore, the manual is supplemented with a tutorial for CASSCF

that covers many practical tips on the calculation design and usage of the program.

The wavefunction. The wavefunction of a given CASSCF state is written as

∣∣ΨS
I

〉
=
∑
k

CkI
∣∣ΦSk 〉. (9.166)

Here,
∣∣ΨS

I

〉
is the CASSCF N -electron wavefunction for state I with total spin S. The set of

∣∣ΦSk 〉 is a set

of configuration state functions (for example linear combination of Slater determinants) each adapted to a

total spin S. The expansion coefficients CkI represent the first set of variational parameters. Each CSF is

constructed from a common set of orthonormal molecular orbitals ψi (r) which are in turn expanded in basis

functions ψi (r) =
∑
µ cµiφµ (r). The MO coefficients cµi form the second set of variational parameters.

The energy. The energy of the CASSCF wavefunction is given by the Rayleigh quotient

E (c,C) =

〈
ΨS
I

∣∣∣ĤBO

∣∣∣ΨS
I

〉
〈
ΨS
I

∣∣ΨS
I

〉 , (9.167)

and represents an upper bound to the true total energy. However, CASSCF calculations are not designed to

provide values for total energy which are close to the exact energy. The purpose of a CASSCF calculation is

to provide a qualitatively correct wavefunction, which forms a good starting point for a treatment of dynamic

electron correlation.

The CASSCF method is fully variational in the sense that the energy is made stationary with respect to

variations in both sets of MO and CI coefficients. At convergence, the gradient of the energy with respect to

the MO and CI coefficients vanishes

∂E (c,C)

∂cµi
= 0, (9.168)

∂E (c,C)

∂CkI
= 0. (9.169)

Orbital spaces. In CASSCF calculations, the MO space is divided into three user defined subspaces:
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• The “inactive orbitals” are the orbitals which are doubly occupied in all configuration state functions

(labels i, j, k, l).

• The “active orbitals” are the orbitals with variable occupation numbers in the various CSFs (labels

t, u, v, w).

• The “external orbitals” (labels a, b, c, d)

Note that in older publications, the inactive and active orbitals are distinguished and referred to as “internal”

orbitals.

The wavefunction and energy is invariant with respect to unitary transformations within the three subspaces.

The special feature of a CASSCF wavefunction is that a fixed number of electrons is assigned to each subspace.

The internal subspace is of course completely filled but the CSFs in the active space constitute a full-CI of

n-electrons in m-orbitals. The CSF list is constructed such, however, that a wavefunction of well defined

total spin (and potential space) symmetry results. Such a wavefunction is referred to as a CASSCF(n,m)

wavefunction. The CSF list grows extremely quickly with the number of active orbitals and the number of

active electrons (basically factorially). Depending on the system, the limit of feasibility is roughly around

∼14 active orbitals or about one million CSFs in the active space. Larger active spaces are tractable with

approximate CI solver such as the Iterative-Configuration-Expansion CI (ICE-CI) described in 9.19 or the

Density Matrix Renormalization Group (DMRG) discussed in 9.17.17

Since the orbitals within the subspaces are only defined up to a unitary transformation, the program needs

to make some canonicalization choice.

In ORCA, the final orbitals by default are:

1. natural orbitals in the active space,

2. orbitals which diagonalize the CASSCF Fock matrix in the internal space and

3. orbitals which diagonalize the CASSCF Fock matrix in the external space.

State averaging. In many circumstances, it is desirable to optimize the orbitals not for a single state but

for the average of several states. In order to see what is done, the energy for state I is re-written as:

EI (c,C) =
∑
pq

Γp(I)q hpq +
∑
pqrs

Γpr(I)qs (pq |rs ) (9.170)

Here, Γ
p(I)
q and Γ

pr(I)
qs are the one-and two-particle reduced electron density matrices for this state (labels

p, q, r, s span the internal and active subspaces):

Γp(I)q =
〈
ΨS
I

∣∣Epq ∣∣ΨS
I

〉
(9.171)

17 For approximate full CI approaches, CASSCF is neither invariant to active-active rotations nor exactly size-
consistent.
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Γpr(I)qs =
1

2

〈
ΨS
I

∣∣EpqErs − δqrEps ∣∣ΨS
I

〉
(9.172)

The average energy is simply obtained from averaging the density matrices using arbitrary weights wI that

are user defined but are constrained to sum to unity.

Γp(av)
q =

∑
I

wIΓ
p(I)
q (9.173)

Γpr(av)
qs =

∑
I

wIΓ
pr(I)
qs (9.174)

∑
I

wI = 1 (9.175)

Optimization of CASSCF wavefunctions. In general, except for trivial cases, CASSCF wavefunctions

are considerably more difficult to optimize than RHF (or UHF) wavefunctions. The underlying reason is that

variations in c and C maybe strongly coupled and the energy functional may have many local minima in (c,C)

space. Consequently, the choice of starting orbitals is of really high importance and the choice which orbitals

and electrons are included in the active space has decisive influence on the success of a CASSCF study. In

general, after transformation to natural orbitals, one can classify the active space orbitals by their occupation

numbers which vary between 0.0 and 2.0. In general, convergence problems are almost guaranteed if orbitals

with occupation numbers close to zero or close to 2.0 are included in the active space. Occupation numbers

between 0.02 and 1.98 are typically very reasonable and should not lead to large convergence problems.

The reason for the occurrence of convergence problems is that the energy is only very weakly dependent on

rotations between internal and active orbitals if the active orbital is almost doubly occupied and similarly for

the rotations between external and weakly occupied active orbitals. However, in some cases (for example in

the study of potential energy surfaces) it may not be avoidable to include weakly or almost inactive orbitals

in the active space and in these cases the use of the most powerful convergence aids is necessary (vide infra).

As in the case of single-determinant wavefunctions (RHF, UHF, RKS, UKS) there are first and second order

converging methods available. The first order CASSCF methods require the transformed integrals (tu|vx)

with x belonging to any subspace. This is a very small subspace of the total transformed integral list and

is readily held in central storage even for larger calculations. On the other hand, second order CASSCF

methods require the integrals (pq|xy) and (px|qy) (p, q = internal, active; x, y = any orbital). This is a fairly

large set of integrals and their generation is laborious in terms of CPU time and disk storage. Second order

CASSCF calculations are therefore more limited in the size of the molecules which can be well treated. It

would be possible to basically avoid the integral transformation also in the case of second-order CASSCF

calculations and proceed to fully direct calculations. Such calculations may become quite time consuming

since there may be a large number of Fock matrix builds necessary.

The augmented Hessian method (Newton-Raphson) solves the eigenvalue problem:(
0 g

g H

)(
1

t

)
= ε

(
1

t

)
(9.176)
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Here, g is the orbital gradient (derivative of the total energy with respect to a non-redundant rotation between

two orbitals) and H is the orbital Hessian (second derivative of the energy with respect to two non-redundant

orbital rotations). The vector t (in intermediate normalization obtained from the CI like vector) summarizes

the rotation angles. The angles are used to define the antisymmetric matrix (Xpq = −Xqp is thus the rotation

angle between orbitals p and q):

X =

(
0 t

−t 0

)
, (9.177)

which is used to parametrize the unitary matrix U = exp (X) which is used to update the orbitals according

to:

cnew = coldU (9.178)

(where c is an MO coefficient matrix).

Starting orbitals. You cannot be careful enough with your starting orbitals. What type of initial guess

works best depends on the system. Quite often it is not the magnitude of the initial gradient, but the

similarity between initial and final active orbitals. The CASSCF tutorial discusses a number of guess options

in more detail. Generally speaking, canonical orbitals HF orbitals from a RHF calculation are not good

choice, as the identification and selection of the active space orbitals is often difficult. Usually DFT orbitals

(quasi-restricted or RKS) perform better in this respect. Alternatively, if CASSCF orbitals from a previous

run or a close-by geometry are available this is a good choice. In many instances, e.g. transition metal

complexes, the PATOM guess produces more reliable start orbitals than the PMODEL guess. For more challenging

complexes, the guess generated with orca mergefrag (see the CASSCF tutorial), is probably the best choice.

Natural orbitals from a simple correlation calculation like MP2 or a calculation with the MRCI module are

usually a good choice and easily generated. For example:

#

# First job provides reasonable natural orbitals

#

! RHF RI-MP2 SVP def2-SVP/C SmallPrint

%mp2 natorbs true

density unrelaxed # or relaxed (more expensive)

end

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*
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Now examine the occupation numbers of the natural orbitals (you will find that in the output of the MP2

part of the calculation):

Natural Orbital Occupation Numbers:

N[ 0] = 2.00000000

N[ 1] = 2.00000000

N[ 2] = 1.98676733

N[ 3] = 1.97726840

N[ 4] = 1.97500109

N[ 5] = 1.96759239

N[ 6] = 1.96423113

N[ 7] = 1.93719340

N[ 8] = 0.05427454

N[ 9] = 0.02555886

N[ 10] = 0.02530580

N[ 11] = 0.01358500

N[ 12] = 0.01096092

N[ 13] = 0.01028129

N[ 14] = 0.00702048

N[ 15] = 0.00627820

A rule of thumb is that orbitals with occupation numbers between 1.98 and 0.02 should be in the active space.

Thus, in the present case we speculate that a 10 electrons in 8 orbitals active space would be appropriate for

the CASSCF of the ground state. Let’s try:

#

# Run a CASSCF calculation for the ground state of H2CO

#

! SVP def2-SVP/C SmallPrint

! moread

%moinp "Test-CASSCF-MP2-H2CO.mp2nat"

%casscf nel 10

norb 8

mult 1

end

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

If we run that calculation it converges (somewhat a little slow in 8 iterations) and produces the following:
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MACRO-ITERATION 10:

--- Inactive Energy E0 = -82.97337099 Eh

E(CAS)= -113.889438276 Eh DE= -0.000000807

--- Energy gap subspaces: Ext-Act = -0.431 Act-Int = -0.240

N(occ)= 1.99763 1.99696 1.98360 1.97923 1.94253 0.05958 0.02153 0.01894

||g|| = 0.000361782 Max(G)= 0.000189613 Rot=9,2

---- THE CAS-SCF GRADIENT HAS CONVERGED ----

--- FINALIZING ORBITALS ---

---- DOING ONE FINAL ITERATION FOR PRINTING ----

--- Forming Natural Orbitals

--- Canonicalize Internal Space

--- Canonicalize External Space

From which we see that we had two orbitals too many in the active space with occupation numbers very close

to two. The presence of barely correlated orbitals (occupation close to 0.0 or 2.0) can cause convergence

problems. Their inclusion in the active space does not significantly change the energy and it might better to

omit these orbitals from the start.

In the present case, we re-run the CASSCF with 6 active electrons in six orbitals. The result is:

MACRO-ITERATION 2:

--- Inactive Energy E0 = -101.16144179 Eh

E(CAS)= -113.882700257 Eh DE= -0.012049926

--- Energy gap subspaces: Ext-Act = -0.411 Act-Int = -0.142

N(occ)= 1.98172 1.97921 1.94092 0.05983 0.02089 0.01743

||g|| = 0.052811635 Max(G)= 0.025065586 Rot=19,7

--- Orbital Update [SuperCI(PT)]

--- Canonicalize Internal Space

--- Canonicalize External Space

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.160674186 Max(X)(5,4) = -0.128053569

--- SFit(Active Orbitals)

MACRO-ITERATION 3:

--- Inactive Energy E0 = -100.78371592 Eh

E(CAS)= -113.885011169 Eh DE= -0.002310912

--- Energy gap subspaces: Ext-Act = -0.434 Act-Int = -0.199

N(occ)= 1.98150 1.97909 1.94143 0.05924 0.02108 0.01766

||g|| = 0.017438409 Max(G)= 0.009231446 Rot=10,4

--- Orbital Update [SuperCI(PT)]

--- Canonicalize Internal Space

--- Canonicalize External Space

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.050337699 Max(X)(6,2) = -0.033671129

--- SFit(Active Orbitals)

MACRO-ITERATION 4:

--- Inactive Energy E0 = -100.72313195 Eh

E(CAS)= -113.885258854 Eh DE= -0.000247685

--- Energy gap subspaces: Ext-Act = -0.438 Act-Int = -0.219

N(occ)= 1.98141 1.97918 1.94178 0.05886 0.02102 0.01776

||g|| = 0.009726271 Max(G)= 0.004281706 Rot=9,2

--- Orbital Update [SuperCI(PT)]

--- Canonicalize Internal Space

--- Canonicalize External Space

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.031123960 Max(X)(22,9) = 0.015789781
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--- SFit(Active Orbitals)

MACRO-ITERATION 5:

--- Inactive Energy E0 = -100.65264536 Eh

E(CAS)= -113.885424851 Eh DE= -0.000165997

--- Energy gap subspaces: Ext-Act = -0.440 Act-Int = -0.238

N(occ)= 1.98140 1.97918 1.94202 0.05857 0.02105 0.01776

||g|| = 0.006606671 Max(G)= 0.003548636 Rot=9,2

--- Orbital Update [SuperCI(PT)]

--- Canonicalize Internal Space

--- Canonicalize External Space

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.019988497 Max(X)(6,2) = -0.014410848

--- SFit(Active Orbitals)

MACRO-ITERATION 6:

--- Inactive Energy E0 = -100.56070274 Eh

E(CAS)= -113.885549550 Eh DE= -0.000124699

--- Energy gap subspaces: Ext-Act = -0.440 Act-Int = -0.268

N(occ)= 1.98138 1.97925 1.94206 0.05849 0.02104 0.01778

||g|| = 0.004483296 Max(G)= 0.002939015 Rot=9,2

--- Orbital Update [SuperCI(PT)]

--- Canonicalize Internal Space

--- Canonicalize External Space

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.011383690 Max(X)(5,4) = 0.005997355

--- SFit(Active Orbitals)

MACRO-ITERATION 7:

--- Inactive Energy E0 = -100.52522560 Eh

E(CAS)= -113.885583124 Eh DE= -0.000033574

--- Energy gap subspaces: Ext-Act = -0.437 Act-Int = -0.283

N(occ)= 1.98132 1.97929 1.94192 0.05861 0.02103 0.01783

||g|| = 0.002275031 Max(G)= -0.001215398 Rot=10,4

--- Orbital Update [SuperCI(PT)]

--- Canonicalize Internal Space

--- Canonicalize External Space

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.002106033 Max(X)(19,10) = -0.001056121

--- SFit(Active Orbitals)

MACRO-ITERATION 8:

--- Inactive Energy E0 = -100.52457962 Eh

E(CAS)= -113.885584276 Eh DE= -0.000001152

--- Energy gap subspaces: Ext-Act = -0.438 Act-Int = -0.283

N(occ)= 1.98134 1.97931 1.94184 0.05868 0.02101 0.01781

||g|| = 0.000752012 Max(G)= -0.000357510 Rot=13,4

---- THE CAS-SCF GRADIENT HAS CONVERGED ----

--- FINALIZING ORBITALS ---

---- DOING ONE FINAL ITERATION FOR PRINTING ----

--- Forming Natural Orbitals

--- Canonicalize Internal Space

--- Canonicalize External Space

MACRO-ITERATION 9:

--- Inactive Energy E0 = -100.52457962 Eh

--- All densities will be recomputed

E(CAS)= -113.885584276 Eh DE= -0.000000000

--- Energy gap subspaces: Ext-Act = -0.858 Act-Int = -0.283
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N(occ)= 1.98172 1.97932 1.94207 0.05845 0.02100 0.01743

||g|| = 0.000752012 Max(G)= -0.000327367 Rot=12,4

--------------

CASSCF RESULTS

--------------

Final CASSCF energy : -113.885584276 Eh -3098.9843 eV

The calculation converges very quickly and the occupation numbers show you that all of these orbitals are

actually needed in the active space. The omission of the two orbitals from the active space came at an

increase of the energy by ∼4 mEh which seems to be tolerable. Let’s look what we have in the active space

in figure 9.3.

(a) MO5 (b) MO6 (c) MO7

(d) MO10 (e) MO9 (f) MO8

Figure 9.3: Orbitals of the active space for the CASSCF(6,6) calculation of H2CO.

Thus, we can see that we got a fairly nice result: our calculation has correlated the in-plane oxygen lone

pair, the C-O σ and the C-O π bond. For each strongly occupied bonding orbital, there is an accompanying

weakly occupied antibonding orbital in the active space that is characterized by one more node. In particular,

the correlating lone pair and the C-O σ∗ orbital would have been hard to find with any other procedure than

the one chosen based on natural orbitals. We have now done it blindly and looked at the orbitals only after

the CASSCF — a better approach is normally to look at the starting orbitals before you enter a potentially

expensive CASSCF calculation. If you have bonding/antibonding pairs in the active space plus perhaps the

singly-occupied MOs of the system you probably have chosen a reasonable active space.
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We can play the game now somewhat more seriously and optimize the geometry of the molecule using a

reasonable basis set:

! def2-TZVP def2-TZVP/C SmallPrint Opt

! moread

%moinp "Test-CASSCF-MP2-H2CO.mp2nat"

%casscf nel 6

norb 6

end

* int 0 1

C 0 0 0 0.00 0.0 0.00

O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

and get:

---------------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal

----------------------------------------------------------------------------

1. B(O 1,C 0) 1.2101 0.000259 -0.0002 1.2100

2. B(H 2,C 0) 1.0942 -0.000029 0.0001 1.0943

3. B(H 3,C 0) 1.0942 -0.000029 0.0001 1.0943

4. A(O 1,C 0,H 3) 122.07 0.000023 -0.00 122.07

5. A(H 2,C 0,H 3) 115.85 -0.000046 0.01 115.86

6. A(O 1,C 0,H 2) 122.07 0.000023 -0.00 122.07

7. I(O 1,H 3,H 2,C 0) -0.00 -0.000000 0.00 -0.00

----------------------------------------------------------------------------

Let us compare to MP2 geometries (this job was actually run first):

! RHF RI-MP2 def2-TZVP def2-TZVP/C SmallPrint TightSCF Opt

%mp2 natorbs true

end

* int 0 1

C 0 0 0 0.00 0.0 0.00
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O 1 0 0 1.20 0.0 0.00

H 1 2 0 1.10 120.0 0.00

H 1 2 3 1.10 120.0 180.00

*

-------------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal

----------------------------------------------------------------------------

1. B(O 1,C 0) 1.2127 0.000374 -0.0002 1.2125

2. B(H 2,C 0) 1.0991 -0.000031 0.0001 1.0992

3. B(H 3,C 0) 1.0991 -0.000031 0.0001 1.0992

4. A(O 1,C 0,H 3) 121.77 0.000023 -0.00 121.77

5. A(H 2,C 0,H 3) 116.45 -0.000046 0.01 116.46

6. A(O 1,C 0,H 2) 121.77 0.000023 -0.00 121.77

7. I(O 1,H 3,H 2,C 0) -0.00 -0.000000 0.00 -0.00

----------------------------------------------------------------------------

The results are actually extremely similar (better than 1 pm agreement). Compare to RHF:

---------------------------------------------------------------------------

Redundant Internal Coordinates

--- Optimized Parameters ---

(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal

----------------------------------------------------------------------------

1. B(O 1,C 0) 1.1784 -0.000164 0.0001 1.1785

2. B(H 2,C 0) 1.0921 0.000010 -0.0000 1.0921

3. B(H 3,C 0) 1.0921 0.000010 -0.0000 1.0921

4. A(O 1,C 0,H 3) 121.93 -0.000003 -0.00 121.93

5. A(H 2,C 0,H 3) 116.13 0.000005 0.00 116.13

6. A(O 1,C 0,H 2) 121.93 -0.000003 -0.00 121.93

7. I(O 1,H 3,H 2,C 0) 0.00 0.000000 -0.00 -0.00

----------------------------------------------------------------------------

Thus, one can observe that the correlation brought in by CASSCF or MP2 has an important effect on the

C=O distance (∼4 pm), while the rest of the geometry is not much affected.

More on the technical use of the CASSCF program.

The most elementary input information which is always required for CASSCF calculations is the specification

of the number of active electrons and orbitals.
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%casscf nel 4 # number of active space electrons

norb 6 # number of active orbitals

end

The CASSCF program in ORCA can average states of several multiplicities. The multiplicities are given as a

list. For each multiplicity the number of roots should be specified:

%casscf mult 1,3 # here: multiplicities singlet and triplet

nroots 4,2 # four singlets, two triplets

end

If the symmetry handling in ORCA is enabled (! UseSym) each multiplicity block must have an irreducible

representation assigned. Numbers corresponding to the “irrep” within a given symmetry are printed in the

output of ORCA.

%casscf mult 1,3 # here: multiplicities singlet and triplet

irrep 0,1 # here: irrep for each mult. block (mandatory!)

nroots 4,2 # four singlets, two triplets

end

Several roots and multiplicities usually imply a state average CASSCF (SA-CASSCF) calculation. The

program by default chooses equal weights for the multiplicity blocks. Roots within a given block have equal

weight. Users can define a custom weighting scheme for the multiplicity blocks and roots:

%casscf mult 1,3 # here: multiplicities singlet and triplet

nroots 4,2 # four singlets, two triplets

bweight 2,1 # singlets and triplets weighted 2:1

weights[0] = 0.5,0.2,0.2,0.2 # singlet weights

weights[1] = 0.7,0.3 # triplet weights

end

The program automatically normalizes these weights such that the sum over all weights is unity. If convergence

on an excited state is desired then the weights[0] array may look like 0.0,0.0,1.0 (this would optimize the

orbitals for the third excited state. If several states cross during the orbital optimization this will ultimately

cause convergence problems.

Orbital optimization methods. In the following we discuss the available options for orbital optimization.

A number of convergence problems can be resolved changing the guess orbitals. The following keywords

are optional and should only be used facing severe convergence difficulties. Aside from the

SuperCI PT (default), [133] several orbital optimization methods (list below) are implemented.
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# Keywords to be used as Orbstep/Switchstep

SuperCI_PT # perturbative SuperCI (first order)

SuperCI # SuperCI (first order)

DIIS # DIIS (first order)

KDIIS # KDIIS (first order)

SOSCF # approx. Newton-Raphson (first order)

NR # augmented Hessian Newton-Raphson

# unfolded two-step procedure

# - still not true second order

The different convergers have different strengths. First order method are cheap but typically require more

iterations compared to second order methods. When the gradient is far off from convergence the program

uses the converger defined as orbstep while close to convergence the switchstep is used. The actual criteria

for switchstep are defined with the keywords SwitchConv and SwitchIter.

%casscf

OrbStep SuperCI # or any other from the list above

SwitchStep DIIS # or any other from the list above

SwitchConv 0.03 # gradient at which to switch

SwitchIter 15 # iteration at which the switch takes place

# irrespective of the gradient

MaxIter 75 # Maximum number of macro-iterations

end

Picking a convergence strategy, the program has to balance speed and robustness. The default strategy uses

the SuperCI PT as converger for orbstep and switchstep. [133] This approach determines the elements Xpq

of the anti-Hermitean matrix used in the orbital update according to

Cnew = ColdeX (9.179)

from first order perturbation theory using the the Dyall-Hamiltonian [418] in zeroth order and a first-order

perturbed wave function given as Ψ(1) =
∑
pq Ψq

pXqp where the Ψq
p represent singly excited functions obtained

from the CASSCF wave function by excitation from orbital ψp to orbital ψq. The SuperCI PT is robust with

respect to orbitals that are exactly doubly occupied or empty. Rotations with orbital close to this critical

occupations can further be eliminated with the keyword DThresh (default=1e-6). However, the method

is quiet aggressive in the orbital optimization. In some cases, such as basis set projection or PATOM guess

(intrinsic basis set projection), the program might pick a step-size that is too big. Then restricting the step-size

via the keyword MaxRot (default=0.2) might be useful. The keywords DThresh and MaxRot described below

are specific to SuperCI PT. For many users, MaxRot is less palpable than level shifting. Therefore, the present

version allows level shifts as well. In contrast to other convergers, level shifts are not needed and

highly discouraged. With the exception of GradScaling (vide infra), other damping techniques described

further below do not apply to the SuperCI PT.
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MaxRot 0.05 # cap stepsize for SuperCI_PT

DThresh 1e-6 # thresh for critical occupation

In case of convergence problems with the default settings, it is recommended to try the combination of

orbstep SuperCI and switchstep DIIS, which in conjuction with a large level shift (2 Eh), which may be

immediately successful. The proposed scheme typically requires more iterations. Moreoever, in contrast to the

SuperCI(PT), the SuperCI, DIIS and KDIIS should not be used when the active orbitals have an occupation

of exactly 2.0 or 0.0! The DIIS may sometimes converge slowly or “trail” towards the end such that real

convergence is never reached. The KDIIS [385] — based on perturbation theory — is an approximation to

the regular DIIS procedure avoiding redundant rotations. Both DIIS schemes avoid linear dependencies in

the expansion space.

MaxDIIS 15 # max. no of DIIS vectors to keep

DIISThresh 1e-7 # overlap criteria for linear dependency

The combination of SuperCI and DIIS (switchstep) is particularly suited to protect the active space

composition. Adjusting the level shift will do the job. Here, level shift is the single most important

lever to control convergence.

# default = dynamic level-shifting based on Ext-Act, Int-Act

ShiftUp 2.0 # static up-shift the virtual orbitals

ShiftDn 2.0 # static down-shift the internal orbitals

MinShift 0.6 # minimum separation subspaces

Level-shift is particularly important if the active, inactive and virtual orbitals overlap in their orbital energies.

The energy separation of the subspaces is printed in the output. Ideally, the entries Ext-Act and Act-Int

should be positive and larger than 0.2 Eh. This will help the program to preserve your active space composition

throughout the iterations. If no shift is specified in the input, ORCA will choose a level-shift to guarantee an

energy separation between the subspaces (MinShift).

E(CAS)= -230.590325053 Eh DE= -0.000798832

--- Energy gap subspaces: Ext-Act = -0.244 Act-Int = -0.002

--- current l-shift: Up(Ext-Act) = 0.54 Dn(Act-Int) = 0.30

In difficult cases the use of the Newton-Raphson method (NR) is recommended even if each individual

iteration is considerably more expensive. It is strong towards the end but it would be a waste to start

orbital optimization with the expensive NR method since its radius of quadratic convergence is quite small.

The computationally cheaper alternative is the SOSCF procedure belonging to the family of quasi-Newton

updates.

Keep in mind that the Newton-Raphson is designed for optimization on a convex surface (Hessian is

semidefinite). If the NR is switched on too early, there is a good chance that this condition is not fulfilled. In

this case the program will complain about negative eigenvalues or diagonal elements of the Hessian as can be

seen in the snippet below. The next optimization step is large and unpredictable. It is a wildcard that can

get you closer to convergence or immediate divergence of the CASSCF procedure.
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||g|| = 0.771376945 Max(G)= 0.216712933 Rot=140,53

--- Orbital Update [ NR]

Warning: NEGATIVE diagonal element D(81,53)= -4.733590

Warning: NEGATIVE diagonal element D(82,53)= -4.737955

...

For larger system, the augmented Hessian equations are solved iteratively (NR iterations). The augmented
Hessian is considered solved when the residual norm, < r|r >, is small enough. Aside from the overall
CASSCF convergence, negative eigenvalues affect these NR iterations.

--- Orbital Update [ NR]

AugHess Tolerance (auto): Tol= 1.00e-07

AUGHESS-ITER 0: E= -0.174480747 <r|r>= 0.558679452

AUGHESS-ITER 1: E= -0.308672359 <r|r>= 0.468254671

AUGHESS-ITER 2: E= -0.434272813 <r|r>= 0.286305469

AUGHESS-ITER 3: E= -0.439149451 <r|r>= 0.286514628

AUGHESS-ITER 4: E= -0.605787445 <r|r>= 0.191691955

AUGHESS-ITER 5: E= -0.607766529 <r|r>= 0.310450670

AUGHESS-ITER 6: E= -0.611674930 <r|r>= 0.141402593

AUGHESS-ITER 7: E= -0.623145299 <r|r>= 0.394505306

AUGHESS-ITER 8: E= -0.658410333 <r|r>= 0.166915094

AUGHESS-ITER 9: E= -0.790571374 <r|r>= 4.722929453

AUGHESS-ITER 10: E= -0.790590554 <r|r>= 4.716012014

AugHess: No convergence in the Davidson procedure

...

There are a number of refined NR settings that influence the convergence behavior on a non-convex energy

surface. We mention the keywords for completeness and dis-encourage from changing the default settings.

If overall convergence cannot be changed due to negative eigenvalues, it is recommended to delay the NR

switchstep (switchconv, switchiter). This will require some trial and error, since the curvature of the

surface is a priori not know.

%casscf

...

aughess

Solver 0 # Davidson (default)

1 # Pople (pure NR steps)

2 # DIIS

MaxIter 35 # max. no. of CI iters.

MaxDim 35 # Davidson expansion space

MaxDIIS 12 # max. number of DIIS vectors

UseSubMatrixGuess true # diag a submatrix of the Hessian

# as an initial guess

NGuessMat 512 # size of initial guess matrix (part of

# the Hessian exactly diagonalized)

ExactDiagSwitch 512 # up to this dimension the Hessian

# is exactly diagonalized (small problems)
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PrintLevel 1 # amount of output during AH iterations

Tol 1e-6 # convergence tolerance

Compress true # use compressed storage

DiagShift 0.0 # shift of the diagonal elements of the

# Hessian

UseDiagPrec true # use the diagonal in updating

SecShift 1e-4 # shift the higher roots in the Davidson

# secular equations

UpdateShift 0.5 # shift of the denominator in the

# update of the AH coefficients

end

end

In general, convergence is strongly influenced by numerical noise, especially in the final iterations. One source

of numerical noise is the incremental Fock build. Thus, it can help to enforce more frequent full Fock matrix

formation.

ResetFreq 1 # reset frequency for direct SCF

If the orbital change in the active space is small, the active Fock matrix in ORCA is approximated using

the density matrix from the previous cycle saving a second Fock matrix build. However, this approximation

might also be a source of numerical instability. The threshold “SwitchDens” can be set to zero to enable

the exact build. The program default starts with a rather large value (1e-2) and will reduce this parameter

automatically when necessary.

switchdens 0.0001 # ˜gtol * 0.1

In all of the implemented orbital optimization schemes the step-size correlates with the gradient-norm.

A constant damping factor can be set with the keyword GradScaling. Note, damping and level shifting

techniques are not recommended for the default converger (SuperCI PT).

GradScaling 0.5 # constant damping in all steps

There are situations when the active space has been chosen carefully, but the initial gradient is still far

off. To keep the “good” active space, we can suppress all rotation but the inactive-external ones until the

gradient-norm is small enough to continue safely. The threshold can be set with FreezeIE keyword. Once

the components of the gradient in the inactive-external direction have a weight of less than FreezeIE, all

constraints are lifted. ORCA by default freezes active rotations if the total gradient norm is larger than 1.0

and the active rotations have a weight of less than 5%. The feature can be turned off setting the threshold to

zero.

Similarly, rotations of the almost doubly occupied orbitals with the inactive orbitals can be damped using

the threshold FreezeActive. Rotations of this type are damped as long as all their weight is smaller than
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FreezeActive. In contrast to the ShiftDn, it damps just the “troublesome” parts of internal-active rotations.

This option applies to all of the orbital optimization schemes but the SuperCI PT.

FreezeIE 0.4 # keep active space until int-ext rotation have

# a contribution of less than 40% to the ||g||

FreezeActive 0.03 # keep almost doubly occupied orbitals as long as

# their contribution is less than 3% to the ||g||

If the calculation starts from a converged Hartree-Fock orbitals, the core orbitals should not change dramatically

by the CASSCF optimization. Often trailing convergence is associated to rotations with low lying orbitals.

Their contribution to the total energy is fairly small. With the keyword FreezeGrad these rotations can be

omitted from the orbital optimization procedure.

FreezeGrad 0.2 # omit hitting a gradient norm ||g|| <0.2

The affected orbitals are printed at the startup of CASSCF.

FreezeGrad ... enabled if ||g|| is below 0.02

Note Convergence can be signaled if the reduced gradient reaches GTol

Last frozen orbital ... 9

First deleted orbital ... 320

Once rotations with core and deleted orbitals are stabilized they will be damped.

By default rotations with frozencore (or deleted virtuals) are not omitted. If the option FreezeGrad is active,

the ratio with respect to the total gradient is printed.

||g|| = 0.001240414 Max(G)= -0.000431747 Rot=319,1

--- Option=FreezeGrad: ||g|| = 0.001081707

= 87.21%

Omitting frozencore elements

Using the RI Approximation.

Aside from the Fock matrices, integrals appearing in the orbital gradient and Hessian require substantial

computation time. A good way to speed up the calculations at the expense of “only” obtaining approximate

results is to introduce the RI approximation. TrafStep RI approximated the aforementioned integrals. Here

are sufficiently large auxiliary basis must be provided - ideally a /JK or /C. Further acceleration can be

achieved approximating the Fock matrix construction with !RIJCOSX or !RIJK as described in section 8.1.7.5.

More details can also be found in the CASSCF tutorial. Note that with ORCA 4.1, there are three destinct

auxiliary basis slots, that need to be set if the auxiliary basis is defined via the %basis block.

TrafoStep RI # RI used in transformation

# Note: Needs an auxiliary basis for

# AuxC slot.

Exact # exact transformation (default)
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Monitoring the active space

During the iterations, the active orbitals are chosen to maximize the overlap with active orbitals

from the previous iterations. Maximizing the overlap does not make any restrictions on the nature of the

orbitals. Thus initially localized orbitals will stay localized and ordered, which is sometimes a desired feature

e.g. in the density matrix renormalization group approach (DMRG). This feature is set with the keyword

ActConstraints and is enabled by default (after the first 3 macroiterations). For some orbital optimization

procedures, such as the SuperCI, natural orbitals are more advantageous. Therefore, the ActConstraints

can be turned off in favor of natural orbital construction (see below). If the keyword is not set by the user,

ORCA picks the best choice for the given orbital optimization step.

ActConstraints 0 # no checks and no changes

1 # maximize overlap of active orbitals and check sanity. (default for DIIS)

2 # make natural orbitals in every iteration (default SuperCI)

3 # make canonical orbitals in every iteration

4 # localize orbitals

In addition to maximizing the overlap, "ActConstraints 1" checks if the composition of the active
space has changed i.e. an orbital has been rotated out of the active space. In this case, ORCA aborts and
stores the last valid set of orbitals. Below is an example error message.

--- Orbital Update [ DIIS]

--- Failed to constrain active orbitals due to rotations:

Rot( 37, 35) with OVL=0.960986

Rot( 38, 34) with OVL=0.842114

Rot( 43,104) with OVL=0.031938

In the snippet above, the active space ranges from 37-43. The program reports that orbitals 37,38 and 43

have changed their character. The overlap of orbital 43 (active) with the previous set of active orbitals is

just 3% and the program aborts. There are a number of reasons, why this happens in the calculation. If

this error occurs constantly with the same orbitals, it is worthwhile to inspect the rotating partner orbitals

(visualize). It might be sign that the active space is not balanced and should be extended. In many instances

changing the level-shift or lowering switchconv is sufficient to protect the active space. In some cases, turning

off the sanity check ("ActConstraints 0") and re-rotating orbitals will bring CASSCF closer to convergence.

Some problems can be avoided by a better design of the calculation. The CASSCF tutorial elaborates on the

subject in more detail.

There are situations such as parameter scans, where ”actconstraints” is counter-productive and should be

disabled. In other words, we want to allow changes in the active space composition. As an example, consider

the rotation of ethylene around its double-bond represented by a CAS(2,2). Although the active space

consists of the bonding and anti-bonding orbitals π-orbitals, their composition in terms of atomic orbitals

changes from the eclipsed to the staggered conformation. Depending on the actual input settings (orbstep

and number of scan points), this might trigger an abort.

Final orbitals options.
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Once the calculation has converged, ORCA will do a final macro-iteration, where the orbital are “finalized”.

For complete active spaces (CAS), these transformations do not alter the final energy and wavefunction. Note,

that solutions from approximate CAS-CI solvers such as the ICE approach or the DMRG ansatz are affected

by the final orbital transformation. The magnitude depends on the truncation level (e.g. TGen, TVar and

MaxM) of the approximated wavefunction. The default final orbitals are canonical in the internal and external

space with respect to state-averaged Fock operator. The active orbitals are chosen as natural orbitals. Other

orbital choices are equally valid and can be selected for the individual subspaces.

#internal space

IntOrbs CanonOrbs # canonical

LocOrbs # localized

unchanged # no changes

# partner orbitals for the active space based

# on various concepts

PMOS # based on orthogonalization tails.

OSZ # based on oszillator orbital

DOI # based on differential overlap

#external space

ExtOrbs CanonOrbs # canonical

LocOrbs # localized

unchanged # no changes

# partner orbitals for the active space based

# on various concepts

PMOS # based on orthogonalization tails.

OSZ # based on oszillator orbital

DOI # based on differential overlap

DoubleShell # based on the shell and angular momentum

# of the highest active orbitals, the first few

# virtual orbitals correspond to the doubled-shell.

# All other virt. orbitals are canonicalized.

# For 3d-metal complexes, these are the 4d orbitals!

# For 4d-metal complexes, these are the 5d orbitals!

# And so on...

#active space

ActOrbs NatOrbs # natural

CanonOrbs # canonical

LocOrbs # localized

unchanged # no changes

dOrbs # purify metal d-orbital and call the AILFT

fOrbs # purify metal f-orbital and call the AILFT

The set of option (PMOS, OSZ, DOI, DoubelShell) are specific for the inactive and external space. They

aim to assist the extension of the current active space. All four options, re-design the first NOrb (number of
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active orbitals) next to the active space, while the remaining orbitals of the same subspace are canonical.

The re-designed orbital are based on different concepts.

• PMOS generates the bonding / anti-bonding partner orbitals for the chosen active space. It is based on

the orthogonalization tail of the active orbitals.

• OSZ generates a single orbital for each active orbital, that maximizes the dipole-dipole interaction.

• DOI follows the same principle as OSZ, but the differential overlap is maximized instead.

• DoubleShell is specific to the external space. The highest active MO or DoubleShellMO is analyzed.

A set of orbitals with the same angular momentum but larger radial distribution is generated.

Optionally, the four options above can be supplemented with a reference MO using the keyword RefMO/DoubleShellMO.

The presence of RefMO/DoubleShellMO changes the default behavior. In case of PMOS, OSZ and DOI, all

orbitals of the given subspace are chosen to maximize a single objective function with respect to the reference

MO (must be active). This contrasts the default settings, where for each active MO an objective function is

maximized and a single “best” orbital is picked. In other words, in the default setting, each active orbital has

a corresponding “best” orbital in the selected subspace neighboring the active space.

RefMO 17 # MO with number 17 (default =-1)

DoubleShellMO 17 # MO with number 17 (default=-1)

The aforementioned options are aids and the resulting orbitals should be inspected prior extension of the

active space. In particular the PMOS option is useful in the context of transition metal complexes to find

suitable Ligand based orbitals. There are more options (dorbs, forbs, DoubleShell), that are specifically

designed for coordination chemistry. A more detailed description is found in the CASSCF tutorial that

supplements the manual. If the active space consists of a single set of metal d-orbitals, natural orbitals may

be a mixture of the d-orbitals. The active orbitals are remixed to obtain ”pure” d-orbitals (ligand field

orbitals) if the actorbs is set to dorbs. The same holds for f-orbitals and the option forbs. Furthermore,

the keyword dorbs automatically triggers the ab initio ligand field analysis (AILFT). [419] The approach has

been reported in a number of applications. [420–426] Note that the actual representation depends on the

chosen axis frame. It is thus recommended to align the molecule properly. For more details on the AILFT

approach, we refer to the original paper and the CASSCF tutorial, where examples are shown. For a few

applications, a printing of the complete wavefunction is useful and can be requested.

PrintWF 0 # (default) prints only the CFGs

csf # Printing of the wavefunction in the basis of CSFs

det # Printing of the wavefunction in the basis of Determinants

The CI-step default setting is CSF based and is done in the present program by generating a partial “formula

tape” which is read in each CI iteration. The tape may become quite large beyond several hundred thousand

CSFs which limits the applicability of the CASSCF module. The accelerated CI (ACCCI) has the same

limitations, but uses a slightly different algorithm that handles multi-root calculations much more efficiently.

For now, properties (spin-orbit coupling, g-Tensor...) as well as NEVPT2 corrections are not available with

ACCCI. Nevertheless, it is the recommended option to converge a CASSCF calculation with multiple roots.

The resulting .gbw file may be used in a successive run to obtain properties or NEVPT2 corrections.



9.13 The Complete Active Space Self-Consistent Field (CASSCF) Module 533

Larger active spaces are tractable with the DMRG approach or the iterative configuration expansion (ICE)

developed in our own group. DMRG and ICE return approximate full CI results. The maximum size of the

active space depends on the system and the required accuracy. Active spaces of 10–20 orbitals should be

feasible with both approaches. The CASSCF tutorial covers examples with ACCCI and ICE as CI solvers.

%casscf

CIStep CSFCI # CSF based CI (default)

ACCCI # CSF based CI solver with faster algorithm for multi-root calculations

ICE # CSF based approximate CI -> ICE/CIPSI algorithm

DMRGCI # density matrix renormalization group approach instead of the CI

end

In the ICE approach, the computation of the coupling coefficients is time-consuming and by default repeated in

every macro-iteration. To avoid the reconstruction, it is recommended to once generate a coupling coefficient

library (cclib) and to use it for all of your ICE calculations. The details of the methodology and the cclib

are described in the ICE section 9.19.

Detailed settings for the conventional CI solvers (CSFCI, ACCCI, ICE) can be controlled in a sub-block. Not

all of the options and properties are available for CISteps apart from the default! NEVPT2,

transition densities and spin-dependent properties such as spin-orbit coupling are not yet available for ACCCI

and ICE.

%casscf ci

MaxIter 64 # max. no. of CI iters.

MaxDim 10 # Davidson expansion space = MaxDim * NRoots

NGuessMat 512 # Initial guess matrix: 512x512

PrintLevel 3 # amount of output during CI iterations

ETol 1e-10 # default 0.1*ETol in CASSCF

RTol 1e-10 # default 0.1*ETol in CASSCF

TGen 1e-4 # ICE generator thresh

TVar 1e-11 # ICE selection thresh, default = TGen*1e-7

end

The CI-step DMRGCI interfaces to the BLOCK program developed in the group of G. K.-L. Chan [427–430].

A detailed description of the BLOCK program, its input parameters, general information and examples

on the density matrix renormalization group (DMRG) approach, are available in the section 9.17 of the

manual.

The implementation of DMRG in BLOCK is fully spin-adapted. However, spin-densities and related

properties are not available in the current version of the BLOCK code. To start a DMRG calculation add

the keyword “CIStep DMRGCI” into a regular CASSCF input. ORCA will set default parameters and generate

and input for the BLOCK program. In general, DMRG is not invariant to rotation in the active space. The

program by default will run an automatic ordering procedure (Fiedler). More and refined options can be

set in the dmrg sub-block of CASSCF — see section 9.17 for a complete list of keywords.
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%casscf

nel 8

norb 6

mult 3

CIStep DMRGCI

# Detailed settings

dmrg

# more/refined options

...

end

end

It is highly recommended to start the calculation with split-localized orbitals. Any set of starting orbitals

(gbw file) can be localized using the orca loc program. Typing orca loc in the shell will return a small

help-file with details on how to setup an input for the localization. Examples for DMRG including the

localization are in the corresponding section of the manual 9.17. The utility program orca loc is documented

in section 9.40.5. Split-localization refers to an independent localization of the internal and virtual part of

the desired active orbitals.

NOTE:

• Let us stress again: it is strongly recommended to first LOOK at your orbitals and make sure that the

ones that will enter the active space are really the ones that you want to be in the active space! Many

problems can be solved by thinking about the desired physical contents of the reference space before

starting a CASSCF. A poor choice of orbitals results in poor convergence or poor accuracy of the

results! Choosing the active orbitals always requires chemical and physical insight into the molecules

that you are studying!

• Please try the program with default settings before playing with the more advanced options. If you

encounter convergence problems, have a look into your output, read the warning and see how the

gradient and energy evolves. Increasing MaxIter will not help in many cases.

• Be careful with keywords such as !tightscf, !verytightscf and so on. These keywords set higher

integral thresholds, which is a good idea, but also tighten the CASSCF convergence thresholds. If you

do not need a tighter energy convergence, reset the criteria in the casscf block using ETol. More many

applications an energy convergence beyond 10−7 is unnecessary.

9.13.2 CASSCF Properties

The CASSCF program is able to calculate UV transition, CD spectra, SOC, SSC, Zeeman splittings, EPR

g-matrices and A-matrices (the latter implemented in the same way as in the DCD-CAS(2) method [431]),

magnetization, magnetic susceptibility and MCD spectra. Note that the results for the Fermi contact

contribution to A will not be reliable if the spin density is dominated by spin polarization, which is a dynamic

correlation effect. The properties are exercised in more detail in the CASSCF tutorial. The techniques used

to calculate SOC, and Zeeman splittings are identical to those implemented into the MRCI program. Input
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and keywords mimic the ones in the MRCI module described in section 9.30.2. As an example, the input file

to calculate g-values and HFC constants A of CO+ is listed below:

!TZVPP Bohrs TightSCF #TightSCF for more accurate integrals

%casscf nel 9

norb 8

nroots 9

mult 2

switchstep NR

etol 1e-7 #reset energy convergence

rel

dosoc true #spin-orbit coupling (and ZFS)

gtensor true

amatrix true

end

end

* xyz 1 2

C 0 0 0.0

O 0 0 2.3504

*

Until ORCA 4.0 it was possible to access spin-spin couplings only via running CAS-CI type calculations in

MRCI. Converged CASSCF orbitals can be read setting the following flags

!MOREAD NOITER ALLOWRHF TZVPP TightSCF Bohrs

%moinp "convergedCASSCF.gbw"

%mrci

...

TPre 0.0

citype mrci

newblock 2 *

excitations none

refs CAS(9,8) end

end

soc

DoSSC true # spin-spin coupling

DoSOC true # spin-orbit coupling

...

end

end

* xyz 1 2
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C 0 0 0.0

O 0 0 2.3504

*

Starting with ORCA 4.1, spin-spin couplings are also directly accessible in the CASSCF module via the

keyword DoSSC true in the rel subblock. Note that the calculation of SSC requires the definition of an

auxiliary basis set, since it is only implemented in conjunction with RI integrals. A common way to introduce

dynamical correlation for the property computation, is to replace the energies entering the quasi-degenerate

perturbation theory. If the NEVPT2 energy correction is computed in CASSCF, there will be additional

printings where CASSCF energies are replaced by the more accurate NEVPT2 values. Alternatively, these

diagonal energies can be taken from the input file similarly how it is described for the MRCI module. A

more detailed documentation is presented in the MRCI property section.

9.13.3 Fully Variational Spin-Orbit Coupled CASSCF

The fully variational spin-orbit coupled CASSCF approach allows the user to account for spin-orbit coupling

effects variationally. In this method the CASSCF wavefunction is presented as a linear combination of several

parts of pre-selected multiplicities S and all possible Ms = S, S − 1, . . . ,−S.

ΨREL = ΨSMS + ΨSMS−1 + . . .+ ΨS−1MS−1 + ΨS−1MS−2 + . . . (9.180)

Each of the building block wavefucntions ΨSMS is itself represented by a sum of CSFs

ΨSMS =

NCSF∑
l

CSMS

l ΦSMS

l (9.181)

The presented approach optimizes the CI coefficients and MO coefficients of a sum of the Born-Oppenheimer

(BO) Hamiltonian and the spin-orbit mean-field Hamiltonian (SOMF) that are given by

ĤREL = ĤBO + ĤSOMF (9.182)

The procedure employs the intermediate coupling scheme to account for SOC. This allows to employ

complex-valued CI coefficients, but real-valued molecular orbital coefficients.

As an example, the input file to calculated g-values of HgH is listed below:

! DKH-TZVP TightSCF Conv DKH Pmodel

% basis

newgto Hg "SARC-DKH-TZVP" end

end
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%casscf

nel 3 # number of electrons

norb 5 # number of orbitals

nroots 3 # number of roots for the guess calculation

mult 2 # multiplicities

etol 1e-9

gtol 1e-05

maxiter 100

rel

dosoc true # accounts for the SOC interaction

soctype 1 # runs a variational calculation

0 # corresponds to the QDPT case

# NOTE: this is different from the soctype

# in the %rel block; see below

orbstep superci # SuperCI algorithm for convergence

diis # DIIS algorithm for convergence

qn # quasi-Newton algorithm for

# convergence

switchstep diis

gradscaling 0.1 # gradient scaling factor

maxiter 100 # number of iteration

0 # corresponds to the diagonalization

# of the BO and SOC operators in the

# basis of CSFs

printlevel 2

nroots 6 # number of relativistic roots

etol 1e-9

gtol 1e-3

socints 0 # SOC integrals are calculated once

# with guess MOs and used during

# every CASSCF iteration

1 # SOC integrals are re-calculated

# on every CASSCF calculation

-1 # SOC integrals are taken from files

# input name.mrci.sox.tmp etc

gtensor true # calculate g-tensor

usekramerssym true # use Kramers symmetry for the CI

# step

Weights = 0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667

# weights for the state-averaging

ci

rtol 5e-14 # residual tolerance for the Davidson

# procedure

maxdim 10 # Davidson expansion space = MaxDim * NRoots

guesstype 0 # guess CI coefficient are obtained

# from diagonalization of
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# a small CI matrix

1 # CI guess vectors a taken as final

# vectors from the previous CI

# iteration

end

end

end

%rel

soctype 2 # reads atomic densities from files

# 0.gbw for the atom 0, 1.gbw for the atom 1 etc.

4 # constructs atomic densities automatically

picturechange true # include picture change effects for

# for the SOC and the Zeeman operator

end

* xyz 0 2

Hg 0 0 0

H 0 0 1.766

*

Here, the non-relativistic (or scalar relativistic, real-valued) CI vectors are calculated first. They are used as

guess vectors for the following variational calculation. The relativistic procedure starts with the message

STARTING RELATIVISTIC CASSCF

INIT CI

SOLVE CI

ORBITAL-IMPROVEMENT-STEP:

Algorithm ... DIIS

Upward level shift ... 1.00e+00

Downward level shift ... 1.00e+00

AO integral handling ... CONVENTIONAL

Energy convergence tolerance ... 1.00e-09

Orbital gradient convergence ... 1.00e-03

Max. number of iterations ... 35

WEIGHTS: 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667

First, the variational procedure diagonalizes the relativistic Hamiltonian in the basis of CSFs. This corresponds,

in fact, to the optimization of the CI coefficients using the Davidson procedure and guess MOs, and denoted

in the output as ZERO MACRO-ITERATION

ZERO MACRO-ITERATION

--------------------------------

COMPLEX DAVIDSON-DIAGONALIZATION



9.13 The Complete Active Space Self-Consistent Field (CASSCF) Module 539

--------------------------------

Dimension of the eigenvalue problem ... 80

Number of roots to be determined ... 6

Maximum number of CI iterations ... 64

Maximum size of the expansion space ... 18

Convergence tolerance for the residual ... 1.00e-14

Orthogonality tolerance ... 1.00e-15

Data storage type ... COMPLEX DOUBLE

Data compression type ... UNCOMPRESSED

At the end of the Davidson procedure the resulting energies and roots contributions are printed:

Eh cm-1 residual norm

-19596.632795883 0.00000 0.000000000000 # energies and

-19596.632795883 0.00001 0.000000000000 # residual norms

-19596.522641797 24176.02753 0.000000000000

-19596.522641797 24176.02754 0.000000000000

-19596.506502189 27718.26205 0.000000000000

-19596.506502189 27718.26205 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

---------------------------------------------# relativistic

RELATIVISTIC CASSCF STATES # states are

---------------------------------------------# printed

ROOT 0: E= -19596.6327958833 Eh

S = 0.5 MS = 0.5 # contribution to

# the root 0 of CSFs

# with S = 1/2 and

# MS = 1/2

( -0.88880371, 0.17857507) 0 # real and image parts

# of the CI

# coefficient of the

# CFS "0"

( -0.02017328, 0.00746783) 1

( -0.00746783, -0.02017328) 2

( -0.08345160, 0.01676678) 3

( -0.02929834, 0.00588651) 4

( -0.08258516, 0.01659270) 9

( 0.07876099, -0.01582436) 10

( 0.04482426, -0.00900592) 11

( 0.04482426, -0.00900592) 16

( -0.02273506, 0.00456784) 19

( 0.05706131, -0.01146454) 22

( 0.03892008, -0.00781967) 23

( 0.03892008, -0.00781967) 28

( 0.05898014, -0.01185007) 31

S = 0.5 MS = -0.5
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( 0.09374074, 0.34621370) 0

( -0.00586884, -0.05405190) 1

( -0.05405190, 0.00586884) 2

( 0.00880151, 0.03250671) 3

( 0.00309005, 0.01141252) 4

( 0.00871013, 0.03216921) 9

( -0.00830680, -0.03067959) 10

( -0.00472754, -0.01746029) 11

( -0.00472754, -0.01746029) 16

( -0.00601817, -0.02222696) 22

( -0.00410484, -0.01516045) 23

( -0.00410484, -0.01516045) 28

( -0.00622054, -0.02297440) 31

Next, the properties specified in the input are calculated. Next, the obtained complex CI coefficients are

used to develop the orbital gradient as it is described in detail in the literature [432]. The orbital gradient is

used for optimizing real-valued MOs.

MACRO-ITERATION 1:

Scaling of the SOC contribution 1.000

--------------------------------

COMPLEX DAVIDSON-DIAGONALIZATION

--------------------------------

Dimension of the eigenvalue problem ... 80

Number of roots to be determined ... 6

Maximum number of CI iterations ... 64

Maximum size of the expansion space ... 18

Convergence tolerance for the residual ... 1.00e-14

Orthogonality tolerance ... 1.00e-15

Data storage type ... COMPLEX DOUBLE

Data compression type ... UNCOMPRESSED

After the CASSCF calculation converged

-19596.632736469 0.00000 0.000000000000 ( 0.00)

-19596.632736469 0.00000 0.000000000000

-19596.522536003 24186.20658 0.000000000000

-19596.522536003 24186.20659 0.000000000000

-19596.506572822 27689.71986 0.000000000000

-19596.506572822 27689.71986 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

E(CAS)=-19596.553948432 Eh DE= 0.000000510

CI-PROBLEM SOLVED

Making density matrices
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SOC Part:

||g||= 0.024945604 Max(G)= -0.012476958 Rot=111,43

||g||= 0.000827087 Max(G)= -0.000742821 Rot=111,43

---- THE CAS-SCF GRADIENT HAS CONVERGED ---

the complex CI vectors are printed again using the same format as indicated above. The program is able to

calculate UV transitions, SOC splittings, and g-tensors for doublet states. The options are similar to those

used for the CASSCF used to calculate SOC splittings are identical to those implemented into the MRCI

program. The output for the calculated g-tensor of HgH is printed in the same format as produced the by

MRCI program.

-------------------

KRAMERS PAIR 1 :

-------------------

Matrix elements Re<1|S|1> -0.441689 -0.391275 0.793281

Matrix elements Re<1|S|2> 0.272168 -0.908540 -0.292499

Matrix elements Im<1|S|2> -0.846822 -0.087922 -0.507771

Matrix elements Re<1|L|1> 0.039367 0.034874 0.005531

Matrix elements Re<1|L|2> -0.024258 0.080977 -0.002039

Matrix elements Im<1|L|2> 0.075476 0.007836 -0.003540

-------------------

ELECTRONIC G-MATRIX

-------------------

raw-matrix g-matrix:

0.496395 -1.657046 -0.589760

1.544481 0.160356 1.023809

-0.805576 -0.713629 1.599477

-------------------

ELECTRONIC gTg-MATRIX

-------------------

3.280781 -0.000000 0.000000

-0.000000 3.280781 0.000000

0.000000 0.000000 3.954328

diagonalized g**2 matrix (sqrt of eigenvalues taken):

1.811293 1.811293 1.988549

0.993455 0.114223 0.000000

0.114223 -0.993455 0.000000

-0.000000 0.000000 1.000000

g-Shifts in ppm (for completeness; 1e6*(g[i]-gel))

g1 = -191026.7

g2 = -191026.7

g3 = -13770.1
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9.13.4 Core excited states with CASCI/NEVPT2

Starting from ORCA 4.1, a CASCI/NEVPT2 protocol can be used to compute core excited spectra, namely

X-ray absorption (XAS) and resonant inelastic scattering (RIXS) spectra.

The XAS/RIXS spectra calculations requires two steps:

• In a first step one needs to optimize the valence active space orbitals in the framework of SA-CASSCF

calculations, e.g. including valence excited states in the range between 6 to 15 eV.

• In a second step the relevant core orbitals are rotated into the active space and the CASCI/NEVPT2

problem is solved by saturating the excitation space with singly core-excited electronic configurations

using the previously optimized sets of orbitals

Further information can be found in reference [433]

A relevant input for Fe L-edge XAS calculation of a Fe(III) complex like Fe(acac)3 is given below:

%scf

rotate

{4,89,90,0,0}
{3,88,90,0,0}
{2,87,90,0,0}
end

end

%rel

picturechange true

FiniteNuc true

end

%method FrozenCore FC_NONE

end

# CASSCF/NEVPT2 on the valence and L-edge excited states

%casscf

nel 11

norb 8

mult 6,4

nroots 16,173

maxiter 1

# account for spin-orbit coupling

rel

DoSOC true

end

# adding the dynamical correlation with NEVPT2

PTMethod SC NEVPT2
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end

* xyz 0 6

...

*

As it is explicitly described in the respective ROCIS section RIXS spectra can be requested by the following

keywords:

RIXS true #Request RIXS calculation (NoSOC)

RIXSSOC true #Request RIXS calculation (with SOC)

Elastic true #Request RIXS calculation (Elastic)

Please consult section 9.24.4 for processing and analyzing the generated spectra

9.14 N-Electron Valence State Pertubation Theory

CASPT2 and NEVPT2 belongs to the family of internally contracted perturbation theories with CASCI

reference wavefunctions. Several studies indicate that CASPT2 and both variants of NEVPT2 produce

energies of similar quality. [142, 143] The NEVPT2 methodology developed by Angeli et al exists in two

formulations namely the strongly-contracted NEVPT2 (SC-NEVPT2) and the partially contracted NEVPT2

(PC-NEVPT2). [139–141] Irrespective of the name ”partially contracted” coined by Angeli et al, the latter

approach employs a fully internally contracted wavefunction (FIC). Hence, we use the term “FIC-NEVPT2”

in place of PC-NEVPT2. ORCA features both variants. Fully internally contracted and strongly contracted

NEVPT2 differ in the basis of the wavefunction expansion. SC-NEVPT2 employs strongly contracted CSFs,

which form a compact and orthogonal basis making it computationally slightly more attractive. Hence, the

SC-NEVPT2 has been the program default for long time. NEVPT2 has many desirable properties - among

them:

• It is intruder state free due to the choice of the Dyall Hamiltonian [418] as the 0th order Hamiltonian.

• The 0th order Hamiltonian is diagonal in the perturber space. Therefore no linear equation

system needs to be solved.

• It is strictly size consistent. The total energy of two non-interacting systems is equal to the sum of

two isolated systems.

• It is invariant under unitary transformations within the active subspaces.

• “strongly contracted”: Perturber functions only interact via their active part. Different subspaces

are orthogonal and hence no time is wasted on orthogonalization issues.

• “fully internally contracted”: Invariant to rotations of the inactive and virtual subspaces.
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The principal methods are called within the CASSCF block and detailed settings can be adjusted in the

PTSettings subblock. We will go through some of the detailed setting in the next few subsections. For

historical reasons, some features, such as the quasi-degenerate NEVPT2, are only available for the strongly

contracted NEVPT2.

Newer additions such as the DLPNO and the F12 correction rely on the FIC variant.

Note that methodology by default employs the frozencore approximation, which can be disabled with the

simple keyword !NoFrozenCore. Frozencore calculations are not significantly faster for the trade-

off in accuracy and hence not recommended. Nevertheless, it is the default to be consistent with the

rest of the ORCA program package. A complete description of the frozecore settings can be found in section

9.10.

%casscf

...

MULT 1,3 # multiplicity block

NRoots 2,2 # number of roots for the MULT blocks

CIStep DMRGCI # optional to run DMRG-NEVPT2

# default: CSFCI

trafostep ri # RI approximation for CASSCF and NEVPT2

# calling the PT2 method of choice

PTMethod SC_NEVPT2 # strongly contracted NEVPT2

FIC_NEVPT2 # fully internally contracted / partially contracted NEVPT2

DLPNO_NEVPT2 # FIC-NEVPT2 using the DLPNO framework for large molecules

# detailed settings (optional) for the PT2 approaches

PTSettings

NThresh 1e-6 # FIC-NEVPT2 cut off for linear dependencies

D4Step Fly # 4-pdm is constructed on the fly

D4Tpre 1e-10 # truncation of the 4-pdm

D3Tpre 1e-14 # trunaction of the 3-pdm

EWIN -3,1000 # Energy window for the frozencore setting fc_ewin

TSMallDenom 1-e2 # printing thresh for small denominators

# option to skip the PT2 correction for a selected multiplicity block and root

# (same input structure as weights in %casscf)

selectedRoots[0]=0,1 # skip the first roots of MULT=1

selectedRoots[1]=0,0 # skip MULT=3 roots

# SC-NEVPT2 specific features

CanonStep 1 # default (exact):canonical orbitals for each state

QDType QD_NAKANO # QD-SCNEVPT2, default = 0

# FIC-NEVPT2 specific features
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F12 true # F12-Correction

Density unrelaxed # unrelaxed density generated for each state.

NatOrbs true # Computes the natural orbitals

# DLPNO specific settings

TCutPNO 1e-8 # controls the accuracy (default 1e-8)

end

end

NEVPT2 can also be set using the simple keywords on top of any valid CASSCF input.

!SC-NEVPT2 # for the strongly contracted NEVPT2

!FIC-NEVPT2 # for the fully internally contracted NEVPT2

!DLPNO-NEVPT2 # for the DLPNO variant of the FIC-NEVPT2

! ...

%casscf ...

The two computationally most demanding steps of the NEVPT2 calculation are the initial integral transfor-

mation involving the two-external labels and the formation of the fourth order density matrix (D4). Efficient

approximations to both issues are available in ORCA.

If not otherwise specified (keyword CIStep), CASSCF and consequently NEVPT2 use a conventional CSF

based solver for the CAS-CI problem. In principle, the NEVPT2 approach can be combined with approximate

CI solution such as the DMRG approach described in section 9.17. Starting with ORCA 4.0 it is possible

to run NEVPT2-DMRG calculations for the FIC and SC type ansatz using the methodology developed by

the Chan group. [434] Aside from the usual DMRG input, the program requires an additional parameter

(nevpt2 MaxM) in the DMRG block.

cistep DMRGCI

%dmrg

...

nevpt2_MaxM 2000 # see Guo, Chan et al. [434]

end

PTMethod SC_NEVPT2 # or FIC_NEVPT2

Using the RI approximation, large molecules with actives spaces of up to 20 orbitals should be computable.

The DMRG extension can be combined with DLPNO and F12 variants. Future version might also support

the CIStep ACCCI and CIStep ICE.
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RI, RIJK and RIJCOSX Approximation

Setting the RI approximation on the CASSCF level, will set the RI options for NEVPT2 respectively. The

three index integrals are computed and partially stored on disk. Three index integral with two internal labels

are kept in main memory. The two-electron integrals are assembled on the fly. The auxiliary basis must be

large enough to fit the integrals appearing in the CASSCF orbital gradient/Hessian and the NEVPT2 part.

The auxiliary basis sets of the type /J does not suffice here.

%casscf

...

TrafoStep RI # enable RI approximation in CASSCF and NEVPT2

PTMethod SC_NEVPT2 # or the NEVPT2 approach or your choice

end

Additional speedups can be obtained if the Fock operator formation is approximated using the !RIJCOSX or

!RIJK techniques. In case of RIJCOSX, an additional auxiliary basis must be provided for the AuxJ auxiliary

basis slot. For more information on the basis set slots see section 9.4.1.

#RIJCOSX one-liner

! def2-svp def2/J RIJCOSX def2-svp/C

# Commented out: Alternative definition via %basis block

#%basis

#auxJ "def2/J" # or for example "AutoAux"

#auxC "def2-svp/C" # or for example "AutoAux"

#end

Whereas the RIJK requires a single auxiliary basis set (AuxJK slot), that is large enough to fit integrals in the

Fock-matrix construction, orbital gradient/Hessian and the correlation part.

#RIJK one-liner, conv is mandatory for RIJK in CASSCF

! def2-svp def2/JK RIJK conv

# Commented out: Alternative definition via %basis block

#%basis

#auxJK "def2/JK" # or "AutoAux"

#end

The described methodology allows the computation of systems with up to 2000 basis functions. Even larger

molecules are accessible in the framework of DLPNO-NEVPT2 described in the next subsection. Several

examples can be found in the CASSCF tutorial.
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Beyond the RI approximation: DLPNO-NEVPT2

For systems with more than 80 atoms, we recommend the recently developed DLPNO-NEVPT2. [144] It

is a successful combination of DLPNO strategy with the FIC-NEVPT2 method. As its single reference

counterparts, DLPNO-NEVPT2 recovers 99.9% of the FIC-NEVPT2 correlation energies even for large

system. The input structure is similar to the parenting FIC-NEVPT2 method. Below you find an input

example for the Fe(II)-complex depicted in 9.4, where the active space consists of the metal-3d orbitals.

The example takes about 9 hour (including 3 hour for one CASSCF iteration) using 8 cores (2.60GHz Intel

E5-2670 CPU) for the calculation to finish. A detailed description of the DLPNO-NEVPT2 methodology can

be found in our article. [144].

# DLPNO-NEVPT2 calculation for quintet state of FeC72N2H100

!PAL8 def2-TZVP def2/JK

!moread noiter

%moinp "FeC72N2H100.gbw-CASSCF"

%MaxCore 8000

%casscf

nel 6

norb 5

mult 5

TrafoStep RI # RI approximation is mandatory for DLPNO-NEVPT2

PTMethod DLPNO_NEVPT2

# detailed settings (optional)

PTSettings

TCutPNO 1e-8 # most important parameter controlling the accuracy (default 1e-8)

MaxIter 20 # maximum for residual iterations

MaxDIIS 7 # DIIS dimension

end

end

*xyz 0 5 FeC72N2H100.xyz

Just like RI-NEVPT2, the calculations requires an auxiliary basis. The aux-basis should be of /C or /JK

type (more accurate). Aside from the paper of Guo et al, [144] a concise report of the accuracy can be found

in the CASSCF tutorial, where we compute exchange coupling parameters. Note that in the snippet above,

we have repeated some of the default setting in the NEVPT sub-block. This is not mandatory and should be

avoided to keep the input as simple as possible.

As mentioned earlier, the CASSCF step can be accelerated with the RIJK or RIJCOSX approximation. Both

options are equally valid for the DLPNO-NEVPT2. The RIJK variant typically produces more accurate

results than RIJCOSX. The input file is almost the same as before, except for the keyword line:

# The combination of RIJK with DLPNO-NEVPT2

!PAL8 def2-TZVP def2/JK conv RIJK
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Figure 9.4: Structure of the FeC72N2H100

Explicitely correlated NEVPT2: NEVPT2-F12

Like single-reference MP2, the NEVPT2 correlation energy converges slowly with the basis set. Aside from

basis set extrapolation, the R12/F12 method are popular methods to reach the basis set limit. For comparison

of F12 and extrapolation techniques we refer to the study of Liakos et al. [86] ORCA features an F12

correction for the FIC-NEVPT2 wavefunction using the RI approximation. [435] The RI approximation is

mandatory as the involved integrals are expensive. Just like in MP2-F12, the input requires an F12 basis, an

F12-cabs basis and a sufficiently large RI basis (/JK or /C).

# aug-cc-pvdz/C used as RI basis

! cc-pvdz-F12 aug-cc-pvdz/C cc-pvdz-f12-cabs

%casscf nel 8

norb 6

mult 3,1

gtol 1e-6

etol 1e-14

TrafoStep RI #RI approximation must be on for F12

PTMethod FIC_NEVPT2 # FIC-NEVPT2 or DLPNO_NEVPT2
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# detailed settings

PTSettings

F12 true #Do the F12 correction

end

end

*xyz 0 3

O 0.0 0.0 0.0

O 0.0 0.0 1.207

*

Approximations for large active CASSCF space

For CASSCF spaces of (8,8) and larger the formation of the fourth order density matrix becomes more and

more the time dominating step of the NEVPT2 calculation. To improve this situation, ORCA truncates

the CASSCF wavefunction during the formation of the fourth and third order density matrices. Only

configurations with a weight larger than a given parameter d4tpre are taken into account. The same

approximation is available for the third order density matrix controlling d3tpre. Both of the parameters can

be adjusted within the nevpt of casscf.

%casscf

...

PTMethod SC_NEVPT2 # or whatever NEVPT2 approach or your choice

# detailed settings (optional)

PTSettings

d4tpre 1e-10 # default

d3tpre 1e-14 # default

end

end

These approximations naturally can affect the “configuration RI” as well. In this context, it should be

noted that a configuration corresponds to a set of configuration state functions (CSF) with identical orbital

occupation. For each state the dimension of the CI and and RI space is printed.

D3 Build ... CI space truncated: 141 -> 82 CFGs

... RI space truncated: 141 -> 141 CFGs

D4 Build ... CI space truncated: 141 -> 82 CFGs

... RI space truncated: 141 -> 141 CFGs

The default values usually produce errors of less than 1 mEh. However, the error introduced by the d4tpre is

system dependent and should be double checked. The exact NEVPT2 energy is recovered with the parameters

set to zero. The approximation is available for all variants of NEVPT2 (SC, FIC and DPLNO-FIC). For

crude cut-offs, the approximation may lead to so called false intruder states. [436] The behavior shows up as
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unreasonably large correlation energy contributions of the 1h (V i) or 1p (V a) excitations class e.g. positive

or large correlation energies compared to the 2h-2p (V ijab) excitation class. This is a system specific issue,

which is avoided with tighter thresholds (D4TPre=1e-12). The default settings is chosen conservative and

rarely produces artifacts.

Storage of the fourth order density matrix can easily reach several gigabytes and thus cannot be kept in core

memory for a large active space. We have implemented a few strategies for the computation of fourth order

density matrix:

1. “fly” , compute elements and immediately contract them

2. “lfly”, less memory demanding version of “fly”

3. “on disk”, the full density matrix is stored on disk

4. “in core”, the full density matrix is kept in core memory

%casscf

...

# detailed settings (optional)

PTSettings

d4step disk # dumped on disk

fly # on the fly (default)

core # in core memory

lfly # less memory demanding

# compared to fly, but substantially slower!

end

end

Selecting or Specific States for NEVPT2

ORCA by default computes all states defined in the CASSCF block input with the NEVPT2 approach.

There are cases, where this is not desired and the user wants to skip some of these states. The input

mask of SelectedRoots is equivalent to the weights keyword in the %casscf block: The enumeration

SelectedRoots[0] refers to the numbering of the multiplicity blocks and the respective roots defined in

CASSCF.

!NEVPT2 ...

%casscf

...

MULT 1,3 # multiplicity block

NRoots 2,2 # number of roots for the MULT blocks

# detailed settings (optional) for the PT2 approaches PTSettings

# option to skip the PT2 correction for a selected multiplicity block and root
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# (same input structure as weights in %casscf)

selectedRoots[0]=0,1 # skip the first roots of MULT=1

selectedRoots[1]=0,0 # skip MULT=3 roots

end

end

Unrelaxed Densities and Natural Orbitals

With the FIC-NEVPT2 ansatz, it is possible to request state-specific unrelaxed densities

γ(p, q) =< ΨI |Epq |ΨI >,

where ΨI refers to NEVPT2 wave function of the I’th state. The code is implemented using the ORCA AGE

tool-chains. [437] In its present form the code runs serial. Note that the density can be used to generate

natural orbitals.

%casscf

...

PTMethod FIC_NEVPT2

# detailed settings (optional)

PTSettings

# densities are disabled by default

Density Unrelaxed # unrelaxed density <0+1|E(p,q)|0+1>

Cu4 # cumulant 4-rdm approximated unrel. density

Cu34 # cumulant 3/4-rdm approximated unrel. density

FirstOrder# approximate unrel. density <0|E(p,q)|1>

NatOrbs True # off by default

end

end

The density as well the natural orbitals are state-specific. Thus, ORCA repeats the population analysis for

each state. Natural orbitals are stored in the gbw file-format as .nat file with a prefix corresponding to the

jobname, multiplicity and root. The density can be used to generate natural orbitals.

A typical output takes the following form:

Unrelaxed Density ...

Incorizing ADC ... done in 0.6 sec

Norm <Psi|Psi> ... done in 0.1 sec (NORM= 1.064186836)

RDM1 <Psi|E|Psi> ... done in 0.7 sec

Reference Weight ... 0.939684618
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Trace RDM1 ... 20.000000000 (prior correction)

*** Repeating the population analysis with unrelaxed density.

Orbital energies/occupations assumed diagonal. ***

(Note: Temporarily storing unrelaxed densities as cas.scfp)

------------------------------------------------------------------------------

ORCA POPULATION ANALYSIS

------------------------------------------------------------------------------

...

Natural Orbital Occupation Numbers:

...

N[ 4] = 1.98812992

N[ 5] = 1.98308480

N[ 6] = 1.93858508

N[ 7] = 1.49303660

N[ 8] = 1.49303660

N[ 9] = 1.48519842

N[ 10] = 1.48519842

N[ 11] = 0.05922342

N[ 12] = 0.00921465

N[ 13] = 0.00921465

N[ 14] = 0.00794869

N[ 15] = 0.00620254

...

===============================================================

NEVPT2 Results

===============================================================

...

NEVPT2 natural orbital can be used to do natural orbital iterations (!MORead NoIter). They might also be

a useful tool to find suitable orbital to improve the active space. [438]

State-averaged NEVPT2

In the definition of the Dyall Hamiltonian [418] the CASSCF orbitals are chosen to diagonalize the Fock

operator (pseudo-canonicalized). Therefore, using a state-averaged CASSCF wave function, the NEVPT2

procedure involves the construction and diagonalization of the “state-specific” Fock operators and is thus

resulting in a unique set of orbitals for each state. This becomes quickly inefficient for large number of states

or large molecular systems since each orbital set implies an integral-transformation. This is the default

setting for NEVPT2 and is printed in the output
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NEVPT2-SETTINGS:

Orbitals ... canonical for each state

Other orbital options can be set using the keyword canonstep.

%casscf

...

# detailed settings (optional)

PTSettings

canonstep 0 # state-averaged orbitals and specific orbital energies

1 # canonical for each state

2 # state-averaged orbitals and orbital energies

3 # 1-step orbital relaxation

# and canonical for each state (partially relaxed)

end

end

The final orbitals of the state-averaged CASSCF diagonalize the state-averaged Fock operator. Large

computational savings can be made if these orbitals are employed for all of the states. canonstep 0 chooses

orbital energies as diagonal elements of the state-specific Fock operators. In previous version of ORCA,

this has been the default setting. These options work best if the averaged states are similar in nature. For

SC-NEVPT2, we have implemented two more canonsteps, which trade accuracy for speed and vice versa.

canonstep 2 is more approximate and employs orbital energies from the state-averaged calculation. Thus

there is no contribution to excitation energies from the perturber class V abij at this level of approximation.

If the states under consideration are substantially different, these approximations will be of poor quality and

should be turned off. Better results can be achieved, if the state-averaged orbitals are partially relaxed for

each state before the actual SC-NEVPT2 calculation. [439] Often it is not possible to optimize the excited

states separately. Thus canonstep 3 will try a single steepest descent step for each state before running the

actual SC-NEVPT2 calculation with canonicalized orbitals. Optionally, instead of a steepest descent using

an approximate diagonal Hessian, a single Newton-Raphson step can be made.

%casscf

...

PTMethod SC_NEVPT2

# detailed settings (optional)

PTSettings

gstep SOSCF true # steepest descent step

NR false # Newton-Raphson step

end

end

Despite a converged state-averaged calculation, the gradient for the individual states can be surprisingly large.

As a consequence, the orbital relaxation might fail as both methods might be outside their convergence radius.
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ORCA will retry the relaxation with an increased damping. If the orbital update still fails, the program will

stick with the initial orbitals. Setting an overall damping manually, might help the relaxation procedure.

PTMethod SC_NEVPT2

PTSettings

gscaling 0.5 # damp gradient with a pre-factor

end

Quasi-Degenerate NEVPT2

NEVPT2 as it is presented in the previous subsections follows the recipe of “diagonalize and perturb”. The

0th order wavefunction is determined by the diagonalization of the CAS-CI matrix. The space spanned by

the CAS-CI vectors is often referred to as “model space”. The subsequent perturbation theory is constructed

based on the assumption that the states under consideration are well described within the model space.

Consequently, the first order correction to the wavefunction Ψ
(1)
I does not affect the composition of the

reference state |I〉. Corrections to the wavefunction and energy arise from the interaction of the reference

state with the functions |k〉 of the contributing first order interacting space

Ψ
(1)
I =

∑
k

Ck |k〉 (9.183)

E
(2)
I =

∑
k

〈I |H| k〉 〈k |H| I〉
E

(0)
I − Ek

(9.184)

This is problematic, when the interaction/mixing of states are falsely described at the CASSCF level. A

typical example is the dissociation of lithium fluoride.

!def2-tzvp nevpt2 nofrozencore

%casscf

nel 2

norb 2 #Li(2s), F(2pz)

mult 1

nroots 2

end

%paras

r = 3,7,200

end

*xyz 0 1

Li 0 0 0

F 0 0 {r}

*

Here, the ground and first excited state of Σ+ should not cross. However, at the NEVPT2 level, an erratic

double crossing is observed instead.
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Figure 9.5: SC-NEVPT2 and QD-SC-NEVPT2 Li-F dissociation curves of the ground and first
excited states for a CAS(2,2) reference

A re-organizing of the reference states can be introduced in the framework of quasi-degenerate perturbation

theory. In practice, an effective Hamiltonian is constructed allowing “off-diagonal” corrections to the second

order energy

HIJ = δIJE
(0)
I +

∑
k

〈I |H| k〉 〈k |H| J〉
E

(0)
I − Ek

(9.185)

Diagonalization of this eff. Hamiltonian yields improved energies and rotation matrix (right eigenvectors) that

introduces the desired re-mixing of the reference states. The quasi-degenerate extension to SC-NEVPT2 [440]

can be switched on with the keyword QDType.

%casscf

...

PTMethod SC_NEVPT2 # Must be SC_NEVPT2

PTSettings

QDType 0 # disabled (default)

QD_Nakano # Explicitly Hermitian eff. Hamiltonian (recommended)

QD_Bloch # non-Hermitian eff. Hamiltonian
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QD_Cloiszeaux # Hermitian eff. Hamiltonian

end

end

ORCA will print the eff. Hamiltonian matrix and its eigenvectors at the end of the calculation.

===============================================================

QD-NEVPT2 Results

===============================================================

*********************

MULT 1,

*********************

Total Hamiltonian to be diagonalized

0 1

0 -107.074594 -0.012574

1 -0.011748-107.003810

Right Eigenvectors

0 1

0 -0.987232 0.170171

1 -0.159292 -0.985414

--------------------------

ROOT = 0

--------------------------

Total Energy Correction : dE = -0.25309172934720

Zero Order Energy : E0 = -106.82353108218946

Total Energy (E0+dE) : E = -107.07662281153667

--------------------------

ROOT = 1

--------------------------

Total Energy Correction : dE = -0.23103459727281

Zero Order Energy : E0 = -106.77074682157986

Total Energy (E0+dE) : E = -107.00178141885267

By construction the Hamiltonian is non-Hermitian (QDType QD Bloch). Hence the computation of properties
with the revised wave function e.g. expectation values require left- and right eigenvectors. A single set of
eigenvectors (“right”) can be constructed using the Des Cloizeaux scheme (QDType QD Cloiszeaux) leading
to an Hermitian effective Hamiltonian. [441] The transformation does not change the energies but affects the
mixing of states. The diagonalization of the general matrices appearing in both formulations may occasionally
lead to complex eigenpairs - an undesired artifact. Although, the eigenvalues have typically only a small
imaginary component, the results are not reliable and ORCA prints a warning.

--- complex eigenvalues and eigenvectors

WARNING! QD-Matrix has eigenvalues with imaginary component! iE(0)=-0.000016

WARNING! QD-Matrix has eigenvalues with imaginary component! iE(1)=0.000016

For such cases, avoiding the general diagonalization, the QDType QD Nakano is the better choice. Here the

initial effective Hamiltonian is symmetrized prior diagonalization. [442] The solution is always real and
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properties are easily accessible. The Nakano formulism is the recommended approach.

In all three formulations, the energy denominator in the quasi-degenerate NEVPT2 is very sensitive to

approximations. The canonicalization options with averaged orbitals and orbitals energies (canonstep 0/2)

have the tendency to lessen the energy-denominator. To avoid artifacts, the calculation is restricted to

canonstep 1 — each state has its own orbitals.

If properties are requested within the casscf module i.e. zero-field splitting, there will be an additional printing

with the “improved” CI vectors and energies. For technical reasons, properties that are not computed in

CASSCF such as the Mössbauer parameters do not benefit from the QD-NEVPT2 correction.

9.15 Complete Active Space Peturbation Theory

The fully internally contracted CASPT2 (FIC-CASPT2) approach shares its wave function ansatz with the

FIC-NEVPT2 approach mentioned in the previous section. [146] The two approach differ in the definition of

the zero’th order Hamiltonian. The CASPT2 approach employs the generalized Fock-operator, which may

result in intruder states problems (singularities in the perturbation expression). Real and imaginary level

shifting techniques are introduced to avoid intruder states. [147, 148] Note that both level shifts are mutually

exclusive. Since level shifts in general affect the total energies, they should be avoided or chosen as small as

possible.

The CASPT2 methodology is called in complete analogy to the NEVPT2 branch in ORCA and can be

combined with the resolution of identity (RI) approximation. The RI approximated results are comparable to

the CD-CASPT2 approach presented elswhere. [149] For a general discussion of the RI and CD approximation,

we refer to the litterature. [150] Many of the input parameter are shared with the FIC-NEVPT2 approach.

We note passing, that the ORCA implementation is validated against OpenMOLCAS. [151] The ORCA
version differs in the implementation of the IPEA shifts and thus yields different results. [152]. The IPEA

shift, λ, is added to the matrix elements of the internally contracted CSFs ,Φpr
qs = EpqE

r
s |Ψ0 >, with the

generalized Fock operator

< Φp
′r′

q′s′ |F̂ |Φprqs > + =< Φp
′r′

q′s′ |Φprqs > ·
λ

2
· (4 + γpp − γqq + γrr − γss),

where γpq =< Ψ0|Epq |Ψ0 > is the expectation value of the spin-traced excitation operator with the reference

wave function. [153] The labels p,q,r,s refer to general molecular orbitals (inactive, active and virtual).

Irrespective of ORCA implementation, the validity of the IPEA shift in general remains questionable and is

thus by default disabled. [154]

As mentioned the input is structured in complete analogy to the FIC-NEVPT2 implementation. Below is

concise list with the accessible options. Not all of the NEVPT2 features are available with the CASPT2 f.i.

the DLPNO approximation and the combination with approximate reference wave function (DMRG)

%casscf

...
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MULT 1,3 # multiplicity block

NRoots 2,2 # number of roots for the MULT blocks

TrafoStep RI # optional for RI approximation for CASSCF and CASPT2

PTMethod FIC-CASPT2

# Detailed settings (this is optional)

PTSettings

CASPT2_ishift 0.0 # imaginary level-shift

CASPT2_rshift 0.0 # real level-shift

CASPT2_IPEAshift 0.0 # IPEA shift.

MaxIter 20 # Maximum for the CASPT2 iterations

TSmallDenom 1e-2 # printing thresh for small denominators

# general settings

NThresh 1e-6 # FIC-CASPT2 cut off for linear dependencies

D4Tpre 1e-10 # truncation of the 4-pdm

D3Tpre 1e-14 # trunaction of the 3-pdm

EWIN -3,1000 # Energy window for the frozencore setting fc_ewin

# Option to skip the PT2 correction for a selected multiplicity blocks and roots

# (same input structure as weights in %casscf)

selectedRoots[0]=0,1 # skip the first roots of MULT=1

selectedRoots[1]=0,0 # skip MULT=3 roots

end

end

CASPT2 can also be set using the simple keywords on top of any valid CASSCF input.

!CASPT2 # FIC-CASPT2

!RI-CASPT2 # FIC-CASPT2 with RI approximation

! ...

%casscf ...

Since CASPT2 is sensitive to intruder states, it is important to monitor the reference weight, smallest

denominators and the convergence of the CASPT2 iterations. The program will not abort automati-

cally.

9.16 Dynamic Correlation Dressed CAS

DCD-CAS(2) is a post-CASSCF MRPT method of the perturb-then-diagonalize kind, i.e. it can modify the

CAS wavefunction compared to the previous CASSCF. In cases where CASSCF already provides a good 0th
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order wavefunction, DCD-CAS(2) energies are comparable to NEVPT2.

9.16.1 Theory of Nonrelativistic DCD-CAS(2)

The DCD-CAS(2) method is based on solving the eigenvalue problem of an effective Hamiltonian of the

form

HDCD,S
IJ = 〈ΦSSI |H|ΦSSJ 〉 −

∑
K∈FOIS

〈ΦSSI |H|Φ̃SSK 〉〈Φ̃SSK |H|ΦSSJ 〉
ESK − ES0

(9.186)

for each total spin S separately. The 0th order energies ESK of the perturbers |Φ̃SSK 〉 are obtained by

diagonalizing Dyall’s Hamiltonian in the first-order interacting space (FOIS). The effective Hamiltonian has

the form of a CASCI Hamiltonian that is dressed with the effect of dynamic correlation (dynamic correlation

dressed, DCD), hence the name for the method. ES0 is chosen to be the ground state CASSCF energy for the

respective total spin S. Since this choice is worse for excited states than for the ground state, excitation

energies suffer from a ”ground state bias”.

For the contribution coming from perturbers in which electrons are excited from two inactive (ij) to two

virtual (ab) orbitals, we use (when writing the DCD Hamiltonian in a basis of CASCI states) the alternative

expression

〈ΨSS
I |HDCD(ij → ab)|ΨSS

J 〉 = −δIJEMP2 (9.187)

EMP2 =
∑
ijab

(ib|ja)2 − (ib|ja)(ia|jb) + (ia|jb)2

εa + εb − εi − εj
(9.188)

Since in this version the ij → ab perturber class does not contribute at all to excitation energies (like it is

assumed in the difference-dedicated configuration interaction method), we call this the difference-dedicated

DCD-CAS(2) method. Since the ij → ab class contributes the largest part of the dynamic correlation energy,

this also removes the largest part of the ground state bias. This option is used as default in DCD-CAS(2)

calculations. In order to also remove the ground state bias from the other perturber classes, we furthermore

apply a perturbative correction to the final energies. At first order (which is chosen as default), it takes the

form

∆EI = −∆I

∑
K∈FOIS

〈Ψ̃I |H|Φ̃K〉〈Φ̃K |H|Ψ̃I〉
(EK − E0)2

(9.189)

∆I = 〈Ψ̃I |H|Ψ̃I〉 − E0 (9.190)

for the correction ∆EI to the total energy of the Ith DCD-CAS(2) root |Ψ̃I〉.

9.16.2 Treatment of spin-dependent effects

The theory so far is valid for a nonrelativistic or scalar-relativistic Hamiltonian H. If we modify it to a

Hamiltonian H + V , where V contains effects that are possibly spin-dependent, this leads us to a theory [431]

which has a similar form as QDPT with all CAS roots included. The form of the spin-dependent DCD-CAS(2)

effective Hamiltonian is

〈ΦSMI |HDCD|ΦS′M ′J 〉 = δSS′δMM ′H
DCD,S,corr
IJ + 〈ΦSMI |V |ΦS′M ′J 〉. (9.191)

HDCD,S,corr = CDCDE(CDCD)T . (9.192)
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In order to construct it, we first need to solve the scalar-relativistic DCD-CAS(2) problem to construct the

matrix HDCD,S,corr from the bias corrected energies E and DCD-CAS(2) CI coefficients C and then calculate

the matrix elements of the operators contributing to V in the basis of CSFs |ΦSMI 〉.

Zero field splitting D tensors are extracted using the effective Hamiltonian technique, i.e. fitting the model

Hamiltonian to a des-Cloiseaux effective Hamiltonian that is constructed from the relativistic states and

energies by projection onto the nonrelativistic multiplet (see section 9.30.2.1 and the reference [443]). There

are limitations to this approach if spin orbit coupling becomes so strong that the relativistic states cannot

uniquely be assigned to a single nonrelativistic spin multiplet.

Hyperfine A-matrices and Zeeman g-matrices for individual Kramers doublets consisting of states |Φ〉, |Φ〉 are

extracted by comparing the spin Hamiltonians

HZeeman = µB ~B · g · ~S (9.193)

HHFC =
∑
A

~IA ·AA · ~S (9.194)

to the matrix representation of the many-electron Zeeman and HFC operators in the basis of the Kramers

doublet. This yields [431]

gk1 = 2<〈Φ|Lk + geSk|Φ〉 (9.195)

gk2 = 2=〈Φ|Lk + geSk|Φ〉 (9.196)

gk3 = 2〈Φ|Lk + geSk|Φ〉 (9.197)

Ak1 = −2γA<〈Φ|BHFC
k (~RA)|Φ〉 (9.198)

Ak2 = −2γA=〈Φ|BHFC
k (~RA)|Φ〉 (9.199)

Ak3 = −2γA〈Φ|BHFC
k (~RA)|Φ〉 (9.200)

where BHFC
k (~RA) is the kth component of the magnetic hyperfine field vector at the position of nucleus A

and γA is the gyromagnetic ratio.

9.16.3 List of keywords

The following keywords can be used in conjunction with the DCD-CAS(2) method:

%casscf

dcdcas true # Do a DCD-CAS(2) calculation

diffded true # Use difference-dedicated DCD-CAS(2) for the

# ij->ab class

corrorder 1 # Maximum order for the perturbative bias correction

# (lower orders come for free)

dcd_ritrafo false # Use RI approximation for electron repulsion integrals

dcd_soc false # Relativistic DCD-CAS(2) with spin orbit coupling
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dcd_ssc false # Relativistic DCD-CAS(2) with direct electronic

# spin-spin coupling

dcd_domagfield 0 # Number of user-specified finite magnetic fields

dcd_dtensor false # Calculate an effective Hamiltonian D-tensor

dcd_nmultd 1 # The number of nonrelativistic multiplets for which the

# D-tensor is calculated

dcd_gmatrix false # Calculate an effective Kramers pair Zeeman g-matrix

dcd_amatrix false # Calculate an effective Kramers pair Hyperfine A-matrix

dcd_kramerspairs 1 # The number of Kramers pairs for which g and/or A

# is calculated

dcd_magnetization false # Calculate the magnetization of the molecule in an

# external magnetic field

dcd_cascimode false # Run relativistic calculation in CASCI mode, i.e.

# without the dynamic correlation dressing

dcd_natorbs false # Calculate natural orbitals for each state and write

# them to disk

dcd_populations false # Perform population analysis on the DCD-CAS(2) states

end

Note that the calculation of SSC requires the definition of an auxiliary basis set, since it is only implemented

in conjunction with RI integrals. If dcd magnetization is requested, the values for magnetic flux density

and temperature to be used can be specified via the keywords MAGTemperatureMIN, MAGTemperatureMAX,

MAGTemperatureNPoints, MAGFieldMIN, MAGFieldMAX, MAGNpoints of the rel subblock of the %casscf block

(see section 9.30.2.4). If the keyword dcd domagfield is set to a number different than 0, the magnetic fields

can be entered as a matrix of xyz coordinates (in Gauss), e.g.

%casscf

dcdcas true

...

dcd_domagfield 2

dcd_magneticfields[0] = 10000, 0, 0

dcd_magneticfields[1] = 0, 10000, 0

end

Furthermore, there is the keyword DCD EDIAG that when running the DCD-CAS(2) code in CASCI mode

works analogously to the keyword EDiag in the soc subblock of the %mrci block (see section 9.30.2.1). The

only difference is that the energies should be entered in atomic units, not in wavenumbers, e.g.

%casscf

...

dcdcas true

dcd_cascimode true
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dcd_soc true

DCD_EDIAG[0] -2220.920028

DCD_EDIAG[1] -2220.834377

DCD_EDIAG[2] -2220.835871

DCD_EDIAG[3] -2220.810290

DCD_EDIAG[4] -2220.812293

DCD_EDIAG[5] -2220.756732

end

9.17 Density Matrix Renormalization Group

The BLOCK code in ORCA is only available on the Linux platform!

BLOCK is an implementation of the density matrix renormalization group (DMRG) algorithm from the Chan

group. [427–430,444] The references given should be cited when using this part of the program.

The DMRG is a variational wavefunction method. It can be viewed as (i) an efficient method for strong

correlation in large complete active spaces, (ii) a brute force method to systematically approach FCI for a large

number of electrons and orbitals, (iii) a polynomial cost route to exact correlation in pseudo-one-dimensional

molecules, such as chains and rings.

Although the algorithm is somewhat complicated compared to many quantum chemistry methods, significant

effort has been devoted in BLOCK to ensure that it can be run in a simple black-box fashion. In most cases,

only a single keyword needs to be specified.

To provide an idea of how the DMRG can be used, here are some examples. The timings will vary depending

on your computational setup, but the following are calculations that run in a few hours to a day, on a single

12-core Xeon Westmere cluster node:

• Complete active space (CAS) CI calculations for active spaces with up to 30 electrons in 30 active

orbitals, targetting up to 1–10 states, e.g. Jacobsen’s catalyst in a 32 electron, 25 orbital active space,

• One-dimensional chain molecules, with “widths” of up to 4 orbitals, and about 100 orbitals in total,

e.g. the π-active space of a 4×25 graphene nanoribbon,

• FCI benchmark solutions in molecules with fewer than 20 electrons, and up to 100 orbitals, e.g. C2 in

a cc-pVTZ basis, D2h symmetry (12 electrons in 60 orbitals),

• Accuracies in energy differences or total energies of about 1 kcal/mol.

The following are calculations which are possible with the BLOCK code, but which are challenging, and require

large memory (e.g. up to 8 GB per core) and computational time (e.g. from a day to more than a week on

up to 6 12-core Xeon Westmere nodes),
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• Complete active space (CAS) CI calculations in active spaces with around 40 electrons in 40 active

orbitals, targetting a few states, for example, an Fe(II)-porphine (40 electrons in 38 orbitals) with

an active space of Fe 3d, 4d and all porphine π and σ donor orbitals, or an Fe 3d, S 3p active space

calculation for [Fe4S4(SCH3)4]2−,

• One-dimensional chain molecules, with “widths” of up to 6 orbitals, and about 100 total orbitals,

• Champion FCI benchmark solutions in small molecules, such as butadiene in a cc-pVDZ basis (22

electrons in 82 orbitals),

• Accuracies in energy differences or total energies of about 1 kcal/mol.

If any these calculations interest you, then you might want to try a DMRG calculation with BLOCK!

9.17.1 Technical capabilities

Currently, BLOCK implements the following

• An efficient DMRG algorithm for quantum chemistry Hamiltonians

• Full spin-adaptation (SU(2) symmetry) and Abelian point-group symmetries

• State-averaged excited states

Note that the standalone version of BLOCK may provide more capabilities than are available through the

external interface. See the BLOCK website for details [445].

9.17.2 How to cite

We would appreciate if you cite the following papers in publications resulting from the use of BLOCK :

• G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002),

• G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004),

• D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys., 128, 144117 (2008),

• S. Sharma and G. K-.L. Chan, J. Chem. Phys. 136, 124121 (2012).

In addition, useful DMRG references relevant to quantum chemistry can be found in the review below by

Chan and Sharma.

• G. K-.L. Chan and S. Sharma, Ann. Rev. Phys. Chem. 62, 465 (2011),
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9.17.3 Overview of BLOCK input and calculations

Within ORCA, the BLOCK program is accessed as part of the CASSCF module. BLOCK can be run in two

modes: CASCI mode (no orbital optimization) or CASSCF mode. To enable CASCI mode, set maxiter

1.

%casscf

maxiter 1 # remove if doing CASSCF

CIStep DMRGCI

...

end

For small molecule CASCI it may be possible to correlate all orbitals. In general, similar to a standard

CASSCF calculation, it is necessary to select a sensible active space to correlate. (See Section 9.17.4.1 on

CASSCF). This is the responsibility of the user.

9.17.4 Standard commands

Once the orbitals to correlate have been chosen, and the wavefunction symmetries and quantum numbers are

specified, the accuracy of the DMRG calculation is governed by two parameters: the maximum number of

renormalized states M ; and, the order and localization of the orbitals.

The most important parameter in the DMRG calculation is M , the number of renormalized states. This

defines the maximum size of the wave-function expansion, which is O(M2) in length in the renormalized

basis. As M is increased, the DMRG energy converges to the exact (FCI or CASCI) limit.

The DMRG maps orbitals onto a 1D lattice, thus the best results are achieved if strongly interacting orbitals

are placed next to each other. For this reason, the DMRG energy is not generally invariant to orbital rotations

within the active space, and orbital rotation and ordering can improve the DMRG energy for a given M . As

M is increased, the DMRG energy becomes less and less sensitive to the orbital ordering and localization.

To minimize the number of wavefunction optimization steps, it is often advantageous to perform DMRG

calculations at small M , then increase M to the final maximum value. This sequence of optimizations is

governed by the sweep schedule, which specifies how many optimization steps (sweeps) to perform at each

intermediate value of M .

The above may seem to make running a DMRG calculation more complicated than a usual quantum chemistry

calculation, however, BLOCK provides a set of default settings which eliminate the need to specify the above

parameters by hand. We highly recommend that you first learn to use the BLOCK program with these default

settings. In the default mode, the orbitals are ordered automatically (Fiedler vector method [446–449]) and a

default sweep schedule is set.

An example of a default CASCI calculation on the C2 molecule correlating all electrons in a VTZ basis, is

given here:
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!cc-pvtz pal4

%MaxCore 16000

%casscf

nel 8

norb 58

nroots 1

mult 1

maxiter 1

CIStep DMRGCI

DMRG

maxM 5000

end

end

* xyz 0 1

C 0 0 -0.621265

C 0 0 0.621265

*

Once you are familiar with the default mode, we recommend exploring the localization of orbitals. In general,

DMRG benefits from the use of localized orbitals, and these should be used unless the high-symmetry of

the molecule (e.g., D2h symmetry) provides compensating computational benefits. We recommend using

“split-localized” orbitals, which correspond to localizing the occupied and virtual orbitals separately. An

example of a split-localized default DMRG calculation on the porphine molecule, correlating the full π-space

(26 electrons in 24 orbitals), in a cc-pVDZ basis is given in Sec. 9.17.5.

For a given maxM, it can take a long time to tightly converge DMRG calculations (e.g. to the default 1e-9

tolerance). To decrease computation time, you may wish to loosen the default tight sweep tolerance or control

the maximum number of sweep iterations with the commands sweeptol and maxIter.

9.17.4.1 Orbital optimization

Orbital optimization (mixing the external/internal space with the active space, not to be confused with

orbital rotation and ordering in the active space) in DMRG calculation can be performed by using the BLOCK

program as the “CIStep” within a CASSCF calculation, as described above. For the moment, spin-densities

and related properties are not available for this CIStep.

During the optimization iterations it is important that the active orbitals maintain their overlap and ordering

with previous iterations. This is done using actConstrains. This flag is set by default.

%casscf

ActConstrains 1 # maintain shape and ordering of active orbitals

...

end
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In general, performing a DMRG calculation with orbital optimization is quite expensive. Therefore, it is often

best to carry out the orbital optimization using a small value of maxM (enabled by the default parameters

maxM=25 and the resulting sweep schedule), and to carry out a final single-point calculation using a larger

value of maxM.

9.17.4.2 Advanced options

There may be times when one wants finer control of the DMRG calculation. All keywords are shown in the

complete set of BLOCK options 9.17.4.4 below. The startM command allows to change the starting number

of states in DMRG calculations. It is also possible to specify the entire sweep schedule manually. A sweep

schedule example follows:

%casscf

...

dmrg

MaxIter 14

switch_rst 1e-3

TwoDot_to_oneDot 12

NSchedule 3

sche_iteration 0, 4, 8

sche_M 50, 100, 500

sche_sweeptol 1e-4, 1e-6, 1e-9

sche_noise 1e-8, 1e-11, 0.0

end

end

The commands above are:

• MaxIter, corresponds to the maximum number of sweeps done by DMRG;

• NSchedule, specifies the total number of schedule parameters we will specify;

• Sche iteration, details the sweep number at which to change the parameters of the calculation.

Notice count begins at 0;

• Sche M, is the number of renormalized states at each sweep;

• Sche sweeptol, is the tolerance of the Davidson algorithm;

• Sche noise, is the amount of perturbative noise we add each sweep;

• Twodot to onedot, specifies the sweep at which the switch is made from a twodot to a onedot algorithm.

The recommended choice is to start with twodot algorithm and then switch to onedot algorithm a few

sweeps after the maximum M has been reached. To do a calculation entirely with the twodot or the

onedot algorithm, replace the twodot to onedot line with twodot 1 or onedot 1;
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• switch rst, defines the switching threshold of orbital gradient below which DMRG turns to onedot

algorithm and restarts from previous operators and wavefunction. This is essential to avoid oscillation

of energy values in the orbital optimization.

The default DMRG sweep schedule is selected automatically according to the choice of computational mode.

By default two different sets of predefined schedules are supported for CASCI and CASSCF computations,

respectively.

In CASCI mode, the default schedule corresponds to the following: starting from a given startM (where the

default is 250 and 8 sweeps), increase to a value of 1000 (8 sweeps) and increment by 1000 every 4 iterations

until maxM is reached. The algorithm switches from twodot to onedot two sweeps after the maxM has been

reached.

In CASSCF mode, the orbital optimization requires much fewer renormalized states to converge the wavefunc-

tion with respect to orbital rotations. The default schedule therefore starts with startM (where the default

is 25 and 2 sweeps), and increments by a factor of 2 every 2 sweeps util maxM is reached. The algorithm

continues the sweep at maxM by decreasing the Davison tolerance sche sweeptol and noise level sche noise

every 2 cycles by a factor of 10, until sche sweeptol becomes smaller than sweeptol.

For better control of the orbital ordering, we also provide a genetic algorithm minimization method of a

weighted exchange matrix. The genetic algorithm usually provides a superior orbital ordering to the default

ordering, but can itself take some time to run for large numbers of orbitals. The genetic algorithm can be

enabled by

%casscf

...

DMRG

auto_ordering GAOPT

end

end

within the %casscf input.

9.17.4.3 Troubleshooting

The two most common problems with DMRG calculations are that (i) convergence with maxM is slower than

desired, or (ii) the DMRG sweeps get stuck in a local minimum. (i) is governed by the orbital ordering /

choice of orbitals. To improve convergence, turn on the genetic algorithm orbital ordering.

If you suspect (ii) is occurring, the simplest thing to do is to increase the starting number of states with the

startM (e.g. from 500 to 1000 states). Local minima can also sometimes be avoided by increasing the noise

in the DMRG schedule, e.g. by a factor of 10. To check that you are stuck in a local minimum, you can carry

out a DMRG extrapolation (see extended Manual in the BLOCK website).

Note that the present DMRG-SCF establishes the input order of active space orbitals according to their

Hartree-Fock occupancy, even if these orbitals are ultimately canonical or split-localized canonical in nature.
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This is specified by hf occ in which the Hartree-Fock occupancy is derived by default from the one-electron

integrals. Other options for obtaining the occupancy are available (see 9.17.4.4).

Somet times the energy values produced from one SCF cycle to another may oscillate. Such a nonlinear

numerical behaviour may occur typically by the last few iterations, most likely caused by the loss of a

certain distribution of quantum numbers (eg, particle number, irrep symmetry and spin) in the blocking and

decimation procedure due to incomplete many-body basis. On the other hand, the loss of quantum numbers

is the main source of energy discontinuities on potential energy curves calculated by DMRG-SCF using a

small number of renormalized states.

In the current release of DMRG-SCF implementation, the number of quantum states is locked to avoid these

problems. The locking mechanism is turned on when the orbital gradient falls below a certain threshold

defined by the keyword switch rst (default: 0.001). The DMRG calculation then starts from previous

operators and wavefunction in which a perturbative noise is not added. Locking quantum states and restaring

DMRG wavefunction not only ensures a smooth convergence towards the final energy but also minimizes the

number of iterations. Note that the locking procedure introduces an arbitrariness to the final energy, when

a very small M is used, since the final digits of energy depend on where the locking begins. It is therefore

not recommended to start locking too early in iterations which could trap the orbital solution in a local

mimimum. Finally the quality of resulting orbitals can be checked by carrying out a DMRG calculation

with sufficient renormalized states. Using the default value of switch rst DMRG-SCF usually results in the

orbitals that are good enough to reproduce the CASSCF energy.

9.17.4.4 Complete set of BLOCK options

%casscf

...

dmrg

startM 25 # CASSCF mode: number of re-normalized states for a singlee root

250 # CASCI mode: number of re-normalized states for a single root

maxM 25 # CASSCF mode: number of re-normalized states for a singlee root

250 # CASCI mode: number of re-normalized states for a single root

DryRun false # just create an input for Block

SweepTol 1e-9 # energy tolerance for the sweeps

auto_ordering NOREORDER # auto_ordering is an int. If set to 0

# or the alias NOREORDER, the reordering is skipped.

FIEDLER # (default) let Block optimize the active orbital ordering

GAOPT # let Block optimize the active orbital ordering

# using genetic algorithm

hf_occ 0 # user-defined initial Hartree-Fock occupancy manually

1 # default: initial Hartree-Fock occupancy based on the values of

the one-electron integrals

2 # initial Hartree-Fock occupancy based on the energy ordering

of canonical orbitals



9.17 Density Matrix Renormalization Group 569

TwoDot_to_OneDot 1 # Switch from two-dot expressions to one-dot

OneDot 0 # Only one-dot expressions. %In CASCI mode only.

TwoDot 0 # Only two-dot expressions. %In CASCI mode only.

switch_rst 1e-3 # Specify the threshold of orbital gradient below which DMRG

swithches to one-dot expression by reading previous wavefunction.

warmup 1 # wilson warm-up type

2, 3 or 4 # n=3 is the default option.

The full configuration space of the n sites next to the system

constitutes the environment states in the warm-up.

The remaining sites use the Hartree-Fock guess occupation

nonspinadapted 0 # default: spin-adapted DMRG

1 # non-spin-adatped DMRG in which the spin-density calculation

is available

# Define a schedule for DMRG

MaxIter 14 # Specify maximum number of iterations

NSchedule -1 # default sweep schedule in CASSCF mode

0 # default sweep schedule in CASCI mode

>0 # Number of manual sweep schedule parameters

# All schedule parameters must be set if this flag is set manually!

sche_iteration 0, 4, 8 # vector with sweep-number to execute changes

# (schedule parameter)

sche_M 50,100,500 # vector with corresponding M values (schedule parameter)

sche_sweeptol 1e-4,1e-6,1e-9 # vector with sweep tolerances (schedule parameter)

sche_noise 1e-8, 1e-11,0.0 # vector with the noise level (schedule parameter)

# Define a separate maxM for DMRG-NEVPT2

nevpt2_maxm 25 # set maximum number of renormalized states

for DMRG-NEVPT2 calculation (default: MaxM)

end

end

9.17.5 Appendix: Porphine π-active space calculation

We provide a step-by-step basis on localizing the π-orbitals of the porphine molecules and running a CASSCF-

DMRG calculation on this system. It will be important to obtain an initial set of orbitals, rotate the orbitals

which are going to be localized, localize them, and finally run the CASSCF calculation. We will abbreviate

the coordinates as [. . . ] after showing the coordinates in the first input file, but please note they always need

to be included.

1. First obtain RHF orbitals:
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# To obtain RHF orbitals

!cc-pvdz

* xyz 0 1

N 2.10524 -0.00000 0.00000

N -0.00114 1.95475 -0.00000

N -2.14882 0.00000 -0.00000

N -0.00114 -1.95475 0.00000

C 2.85587 -1.13749 -0.00000

C 2.85587 1.13749 0.00000

C 1.02499 2.75869 -0.00000

C -1.10180 2.78036 0.00000

C -2.93934 1.13019 -0.00000

C -2.93934 -1.13019 0.00000

C -1.10180 -2.78036 -0.00000

C 1.02499 -2.75869 0.00000

C 4.23561 -0.67410 -0.00000

C 4.23561 0.67410 0.00000

C 0.69482 4.18829 -0.00000

C -0.63686 4.14584 -0.00000

C -4.25427 0.70589 -0.00000

C -4.25427 -0.70589 0.00000

C -0.63686 -4.14584 0.00000

C 0.69482 -4.18829 0.00000

H 5.10469 -1.31153 0.00000

H 5.10469 1.31153 -0.00000

H 1.36066 5.02946 0.00000

H -1.28917 5.00543 0.00000

H -5.12454 1.34852 0.00000

H -5.12454 -1.34852 -0.00000

H -1.28917 -5.00543 -0.00000

H 1.36066 -5.02946 -0.00000

C 2.46219 2.41307 0.00000

C -2.39783 2.44193 0.00000

C -2.39783 -2.44193 -0.00000

C 2.46219 -2.41307 -0.00000

H 3.18114 3.22163 -0.00000

H -3.13041 3.24594 -0.00000

H -3.13041 -3.24594 0.00000

H 3.18114 -3.22163 0.00000

H 1.08819 0.00000 -0.00000

H -1.13385 -0.00000 0.00000

*

2. We then swap orbitals with π-character so they are adjacent to each other in the active space. (π

orbitals are identified by looking at the MO coefficients). When they are adjacent in the active space,

they can be easily localized in the next step.
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#To rotate the orbitals (so that we can localize them in the next step)

!cc-pvdz moread noiter

%moinp "porphine.gbw"

%scf

rotate

# Swap orbitals

{70, 72}
{65, 71}
{61, 70}
{59, 69}
{56, 68}
{88, 84}
{92, 85}
{93, 86}
{96, 87}
{99, 88}
{102, 89}
{103, 90}
{104, 91}

end

end

* xyz 0 1

[...]

*

3. After rotating the orbitals, we localize the 13 occupied π-orbitals. This is performed using the orca loc

code. The input file follows.

porphine_rot.gbw

porphine_loc.gbw

0

68

80

120

1e-3

0.9

0.9

1

4. After localizing the occuppied orbitals, we localize the 11 virtual π-orbitals using the orca loc code

once again. The input file follows.

porphine_loc.gbw

porphine_loc2.gbw

0

81
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91

120

1e-3

0.9

0.9

1

5. After these steps are complete, we run a CASSCF-DMRG calculation. The standard input file is shown

below

!cc-pvdz moread pal4

%moinp "porphine_loc2.gbw"

%MaxCore 16000

%casscf nel 26

norb 24

nroots 1

CIStep DMRGCI

end

* xyz 0 1

[...]

*

9.18 Relativistic Options

The relativistic methods in ORCA are implemented in a fairly straightforward way but do require some

caution from the user. The options are controlled through the %rel block which features the following

variables:

%rel

#----------------------------------------------------

# Basic scalar relativistic method

#----------------------------------------------------

method DKH # Douglas-Kroll-Hess

ZORA # ZORA (numerical integration)

IORA # IORA (numerical integration)

IORAmm # IORA with van Wuellens

# modified metric

ZORA_RI # ZORA (RI approximation)

IORA_RI # IORA (RI approximation)

IORAmm_RI # IORA (RI approximation)

# and modified metric

# ---------------------------------------------------

# Choice of the model potential for ALL methods
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# ---------------------------------------------------

ModelPot VeN, VC, VXa, VLDA

# Flags for terms in the model potential (see eq. 9.217)

# these settings do not have any effect for DKH

# =0 not included =1 included

# WARNING: default is currently 1,1,1,1 for ZORA and IORA and

# VeN = nuclear attraction term

# VC = model Coulomb potential

# VXa = model Xalpha potential

# VLDA= VWN-5 local correlation model pot.

Xalpha 0.7 # default value for the X-Alpha potential,

# only has an effect when VXa is part of the model potential

# --------------------------------------------------

# This variable determines the type of fitted atomic

# density that enters the Coulomb potential part of the

# model potential (has no effect when using DKH):

# --------------------------------------------------

ModelDens rhoDKH # DKH4 model densities (default)

rhoZORA # ZORA model densities

rhoHF # Hartree-Fock model densities

# --------------------------------------------------

# This flag controls whether only one center terms

# retained. If this is true an approximate treat-

# ment of relativistic effects result but geom-

# try optimizations CAN BE PERFORMED WITH ALL

# METHODS AND MODEL POTENTIAL

# In addition one gets NO gauge noninvariance

# errors in ZORA or IORA

# --------------------------------------------------

OneCenter false # default value

# --------------------------------------------------

# Specify the speed of light used in relativistic

# calculations

# --------------------------------------------------

C 137.0359895 # speed of light used (137.0359895 is the default value)

# synonyms for C are VELIT, VELOCITY

# --------------------------------------------------

# Picture change for properties

# ---------------------------------------------------

PictureChange 0 # (or false): no picturechange (default)

1 # (or true): include picturechange

2 # for DKH: use second-order DKH transformation of the

# SOC operator (see section 9.30.2.7)

# ---------------------------------------------------

# Order of DKH treatment (this has no effect on ZORA calculations)
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# ---------------------------------------------------

order 1 # first-order DKH Hamiltonian

2 # second-order DKH Hamiltonian

# ---------------------------------------------------

# Kind of Foldy-Wouthuysen transformation for picturechange effects

# in g tensors (see section 9.18.4)

# ---------------------------------------------------

fpFWtrafo true # do not include vector potential into momentum (default)

false # include vector potential

# ---------------------------------------------------

# Finite Nucleus Model: (see section 9.18.5)

# ---------------------------------------------------

FiniteNuc false # Use point-charge nuclei (default)

true # Use finite nucleus model

end

9.18.1 Approximate Relativistic Hamiltonians

In the relativistic domain, calculations are based on the one-electron, stationary Dirac equation in atomic

units (rest mass subtracted)

hDΨ =
(
(β − 1) c2 + cα · p+ V

)
Ψ = EΨ. (9.201)

The spinor Ψ can be decomposed in its so-called large and small components

Ψ =

(
ΨL

ΨS

)
(9.202)

These are obviously coupled through the Dirac equation. More precisely, upon solving for ΨS , the following

relation is obtained:

ΨS =
1

2c

(
1 +

E − V
2c2

)−1

σ · pΨL = RΨL (9.203)

Through the unitary transformation

U =

(
Ω+ −R+Ω

RΩ+ Ω−

)
with Ω+ = 1√

1+R+R
,Ω− = 1√

1+RR+
,

the Hamiltonian can be brought into block-diagonal form

U+hDU =

(
h̃++ 0

0 h̃−−

)
(9.204)
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The (electronic) large component thus has to satisfy the following relation

h++ΨL = Ω+

(
h++ + h±R+R+ (h∓ + h−−R)

)
Ω+ΨL = E+ΨL. (9.205)

The approximate relativistic schemes implemented in ORCA use different methods to substitute the exact

relation 9.205 with approximate ones.

Two approximation schemes are available in ORCA: the regular approximation and the Douglas-Kroll-Hess

(DKH) approach.

9.18.2 The Regular Approximation

In the regular approximation, 9.205 is approximated by

R =
c

2c2 − V σ · p. (9.206)

At the zeroth-order level (ZORA), Ω± = 1, so that the ZORA transformation is simply

UZORA =

(
1 −R+

R 1

)
(9.207)

and the corresponding Hamiltonian given by

h̃ZORA
++ = V + cσ · p 1

2c2 − V cσ · p. (9.208)

At the infinite-order level (IORA), Ω±is taken into account, so that

UIORA = UZORA

(
Ω+ 0

0 Ω−

)
(9.209)

and

h̃IORA
++ = Ω+

(
V + cσ · p 1

2c2 − V cσ · p
)

Ω+ (9.210)

is the corresponding Hamiltonian. Note that despite the name – infinite-order regular approximation – this

is still not exact.

In ORCA, the spin-free (scalar-relativistic) variant of ZORA and IORA are implemented. These are obtained

from those above through the replacement

σ · p 1

2c2 − V σ · p→ p
1

2c2 − V p. (9.211)
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The regular Hamiltonians contain only part of the Darwin term and no mass-velocity term. A problem with

relations 9.210 and 9.208 is that due to the non-linear dependence of the resulting regular Hamiltonians on V ,

a constant change of V , which in the Dirac and Schrödinger equations will result in a corresponding change

of energy

E → E + const (9.212)

does not so in the regular approximation. Several attempts have been made to circumvent this problem.

The scaled ZORA variant is one such procedure. Another one is given through the introduction of model

potentials replacing V . Both approaches are available in ORCA.

The scaled ZORA variant

This variant goes back to van Lenthe et al. [450]. The central observation is that the Hamiltonian

hscaledZORA =
hZORA

1 +
〈

ΨL

∣∣∣cσ · p 1
(2c2−V )2

cσ · p
∣∣∣ΨL

〉 (9.213)

produces constant energy-shifts E → E+const when the potential V is changed by a constant – for hydrogenic

ions. For many-electron systems, the scaled-ZORA Hamiltonian still does not yield simple, constant energy

shift for V → V + const. But it produces the exact Dirac energy for hydrogen-like atoms and performs better

than the first-order regular approximation for atomic ionization energies.

The regular approximation with model potential

The idea of this approach goes back to Van Wüllen [158], who suggested the procedure for DFT. However

we also use it for other methods. The scalar relativistic ZORA self-consistent field equation is in our

implementation (in atomic units):

[
p

c2

2c2 − V p + Veff

]
ψi = εiψi (9.214)

where c is the speed of light. It looks like the normal nonrelativistic Kohn–Sham equation with the KS

potential Veff :

Veff (r) = −
∑
A

ZA
|r−RA|

+

∫
ρ (r′)

|r− r′|dr
′ + Vxc [ρ] (r) (9.215)

(ZA is the charge of nucleus A and RA is its position; ρ(r) is the total electron density and Vxc [ρ] the

exchange-correlation potential – the functional derivative of the exchange-correlation energy with respect to

the density). The kinetic energy operator T = − 1
2∇2 of the nonrelativistic treatment is simply replaced by

the ZORA kinetic energy operator:
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TZORA = p
c2

2c2 − V p (9.216)

Clearly, in the regions where the potential V is small compared to c2, this operator reduces to the nonrelativistic

kinetic energy. V could be the actual KS potential. However, this would require to solve the ZORA equations

in a special way which demands recalculation of the kinetic energy in every SCF cycle. This becomes expensive

and is also undesirable since the ZORA method is not gauge invariant and one obtains fairly large errors

from such a procedure unless special precaution is taken. Van Wüllen [158] has therefore argued that it is a

reasonable approximation to replace the potential V with a model potential Ṽmodel which is constructed as

follows:

Ṽmodel = −
∑
A

ZA
|r−RA|

+

∫
ρmodel (r′)

|r− r′| dr′ + V LDA
xc

[
ρmodel

]
(r) (9.217)

The model density is constructed as a sum over spherically symmetric (neutral) atomic densities:

ρmodel (r) =
∑
A

ρA (r) (9.218)

Thus, this density neither has the correct number of electrons (for charged species) nor any spin polarization.

Yet, in the regions close to the nucleus, where the relativistic effects matter, it is a reasonable approximation.

The atomic density is expanded in a sum of s-type gaussian functions like:

ρA (r) =
∑
i

di exp
(
−αi |r−RA|2

)
(9.219)

The fit coefficients were determined in three different ways by near basis set limit scalar relativistic atomic

HF calculations and are stored as a library in the program. Through the variable ModelDens (vide supra)

the user can choose between these fits and study the dependence of the results in this choice (it should be

fairly small except, perhaps, with the heavier elements and the HF densities which are not recommended).

The individual components of the model potential (eq. 9.217) can be turned on or off through the use of the

variable ModelPot (vide supra).

Van Wüllen has also shown that the calculation of analytical gradients with this approximation becomes close

to trivial and therefore scalar relativistic all electron geometry optimizations become easily feasible within

the ZORA approach. However, since TZORA is constructed by numerical integration it is very important that

the user takes appropriate precaution in the use of a suitable integration grid and also the use of appropriate

basis sets! In the case of OneCenter true the numerical integration is done accurately along the radial

coordinate and analytically along the angular variables such that too large grids are not necessary unless

your basis set is highly decontracted and contains very steep functions.

9.18.3 The Douglas-Kroll-Hess Method

The Douglas-Kroll-Hess (DKH) method expands the exact relation 9.205 in the external potential V. In

ORCA the first- and second-order DKH methods are implemtented. The first-order DKH Hamiltonian is

given by



578 9 Detailed Documentation

h̃
(1)
++ = Ep +ApV Ap +BpV

(p)Bp, (9.220)

with

EP =
√
c4 + c2p2, Ap =

√
Ep + c2

2Ep
, Bp =

c√
2Ep(Ep + c2)

(9.221)

At second order, it reads

h̃
(2)
++ = h̃

(1)
++ +

1

2
[Wp, O] (9.222)

where

{Wp, Ep} = βO, O = Ap [Rp, V ]Ap, Rp =
cσp

Ep + c2
(9.223)

define the second-order contribution. In ORCA, the spin-free part of h̃
(2)
++ is implemented.

The occurrence of the relativistic kinetic energy, EP , which is not well-defined in position space, makes a

transformation to the p2-eigenspace necessary. Thus any DKH calculation will start with a decontraction of the

basis set, to ensure a good resolution of the identity. Then the non-relativistic kinetic energy is diagonalized

and the EP -dependent operators calculated in that space. The potential V and V (p) are transformed to

p2-eigenspace. After all contributions are multiplied to yield the (first- or second-order) Hamiltonian, the

transformation back to AO space is carried out and the basis is recontracted.

The (spin-free) DKH-Hamiltonians contain all spin-free, relativistic correction terms, e.g. the mass-velocity

and Darwin terms. As the potential enters linearly, no scaling or model potential is necessary to introduce

the correct behaviour of the energy under a change

V → V + const. (9.224)

In all these respects the DKH Hamiltonians are much cleaner than the regular Hamiltonians.

9.18.4 Picture-Change Effects

Irrespective of which Hamiltonian has been used in the determination of the wave function, the calculation of

properties requires some special care. This can be understood in two ways: First of all, we changed from

the ordinary Schrödinger Hamiltonian to a more complicated Hamiltonian. As properties are defined as

derivatives of the energy, it is clear that a new Hamiltonian will yield a new expression for the energy and

thus a new and different expression for the property in question. Another way of seeing this is that through

the transformation U , we changed not only the Hamiltonian but also the wave function. To obtain the

property at hand as the expectation value of the property operator with the wave function, we have to make



9.18 Relativistic Options 579

sure that property operator and wave function are actually given in the same space. This is done through a

transformation of either the property operator or the wave function.

In any case, the difference between the non-relativistic and (quasi) relativistic property operator evaluated

between the (quasi) relativistic wave function is called the picture-change effect. From what was said above,

this is clearly not a physical effect. It describes how consistent the quasi relativistic calculation is carried out.

A fully consistent calculation requires the determination of the wave function on the (quasi) relativistic level

as well as the use of the (quasi) relativistic property operator. This is obtained through the choice

%rel picturechange true end

in the %rel block. It may be that the (quasi) relativistic and non-relativistic property operator do produce

similar results. In this case, a calculation with picture changes turned off (PictureChange false) may

be a good approximation. This is, however, not the rule and cannot be predicted before carrying out the

calculation. It is therefore highly recommended to set PictureChange true in all (quasi) relativistic property

calculations! Consistent picture-change effects on the DKH2 level have been implemented for the g-tensor

and the hyperfine coupling tensor. Using

%rel picturechange 1 end

only first-order changes on the property operators are taken into account. This reduces the computational

cost of course. But since this is in no way a significant reduction, this choice is not recommended.

For magnetic properties, the DKH transformation and consequently the DKH Hamiltonian and the corre-

sponding property operators are not unique. Depending on whether the magnetic field is included in the

free-particle Foldy–Wouthuysen (fpFW) transformation carried out in the first step of the DKH protocol

or not, two different Hamiltonians result. If the magnetic field is included in the fpFW transformation, the

resulting Hamiltonian is a function of the gauge invariant momentum

π = p + A. (9.225)

It is therefore gauge invariant under gauge transformations of the magnetic vector potential A and thus are

the property operators derived from it. This is referred to as fπFW DKH Hamiltonian. If the magnetic field

is not included in the FW transformation, the resulting Hamiltonian is a function of the kinetic momentum

p only and thus is not gauge invariant. The latter Hamiltonian is referred to as fpFW DKH Hamiltonian. A

comparison of both Hamiltonians is given in Table 9.13.
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Table 9.13: Comparison of the properties of the fpFW and fπFW

DKH Hamiltonians. For details see Ref. [451].

Criterion fpFW Hamiltonian fπFW Hamiltonian

Convergence of Eigenvalues
? yes

to Dirac Eigenvalues

1st order is bounded no yes

Reproduces Pauli Hamiltonian no yes

Gauge invariance no yes

Lorentz invariance no no

From this Table, it becomes clear that the fπFW DKH Hamiltonian is clearly preferred over the fpFW

Hamiltonian. To obtain the property operators, it is however necessary to take the derivatives of these

Hamiltonians. It turns out that in the case of the hyperfine-coupling tensor, the necessary derivatives produce

divergent property operators in the case of the fπFW DKH Hamiltonian. This may be due to the unphysical

assumption of a point-dipole as a source of the magnetic field of the nucleus. As a physical description of the

magnetization distribution of the nucleus is not available due to a lack of experimental data, the magnetization

distribution is assumed to be the same as the charge distribution of the nucleus, see Section 9.18.5. This is

unphysical as the magnetization is caused by the one unpaired nucleon in the nucleus whereas the charge

distribution is generated by the protons in the nucleus. So, physically, the magnetization should occupy

a larger volume in space than the charge. This might also be the reason why the resulting finite-nucleus

model is insufficient to remedy the divergencies in the fπFW hyperfine-coupling tensor. Consequently, the

hyperfine-coupling tensor is only implemented in the version resulting from the fpFW DKH Hamiltonian. In

the case of the g-tensor both versions are implemented and accessible via the keyword

%rel fpFWtrafo true/false end

By default, this keyword is set to true. A detailed form of the property operators used for the g-tensor and

hyperfine-tensors can be found in Ref. [451].

9.18.5 Finite Nucleus Model

Composite particles like nuclei have, as opposed to elementary particles, a certain spatial extent. While the

point-charge approximation for nuclei is in general very good in nonrelativistic calculations, in relativistic

calculations it might lead to nonnegligible errors. A finite-nucleus model is available for all calculations in

the ORCA program package. It is accessible from the %rel block via

%rel FiniteNuc true/false end

By default, this keyword is set to false. If the keyword is set to true, finite-nucleus effects are considered in

the following integrals:

• nucleus potential V
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• DKH-integral V (p)

• one-electron spin-orbit integrals SOC (also in one-electron part of SOMF)

• electric-field gradient EFG (and thus, as a consequence in the Fermi-contact and spin-dipole terms of

the hfc tensor)

• nucleus-orbit integral NUC

• angular-momentum integral l

The finite-nucleus model implemented in ORCA is the Gaussian nucleus model of Ref. [452].

9.18.6 Basis Sets in Relativistic Calculations

For relativistic calculations, special basis sets have been designed, both as DKH and ZORA recontractions of

the non-relativistic Ahlrichs basis sets (in their all-electron versions) for elements up to Xe, and as purpose-

built segmented all-electron relativistically contracted (SARC) basis sets for elements beyond Xe [5–9]. Their

names are ”ZORA-” or ”DKH-” followed by the conventional basis set name. See section 9.4 for a complete

list.

NOTES:

• It is important to recognize that in the one-center approximation (OneCenter true) ALL methods

can be used for geometry optimization. Several papers in the literature show that this approximation

is fairly accurate for the calculation of structural parameters and vibrational frequencies. Since

this approximation is associated with negligible computational effort relative to the nonrelativistic

calculation it is a recommended procedure.

• The ZORA/RI, IORA/RI and IORAmm/RI methods are also done with the model potential. Here

we do the integrals analytically except for the XC terms which has clear advantages. However, the

RI approximation is performed in the actual orbital basis sets which means that this set has to be

large and flexible. Otherwise significant errors may arise. If the basis sets are large (ZORA/RI) and

the numerical integration is accurate (ZORA), the ZORA and ZORA/RI (or IORA and IORA/RI)

methods must give identical within to µEh accuracy.

9.19 Approximate Full CI Calculations in Subspace: ICE-CI

9.19.1 Introduction

In many circumstances, one would like to generate a wavefunction that is as close as possible to the full-CI

result, but Full CI itself is out of the question for computational reasons. Situations in which that may be

desirable include a) one wants to generate highly accurate energies for small molecules or b) one wants to

sort out a number of low-lying states or c) one wants to run CASSCF calculations with larger active spaces

than the about fourteen orbitals that have been the state of the art for a long time.
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ORCA features a method that has been termed Iterative-Configuration Expansion Configuration Interaction

(ICE-CI). It is based on much older ideas brought forward by Jean-Paul Malrieu and his co-workers in the

framework of the CIPSI (an abbreviation for a method with a rather bulky name Configuration Interaction

by Perturbation with multiconfigurational zeroth-order wave functions Selected by Iterative process) in the

early 1970s.

The goal of the ICE-CI is to provide compact wavefunction(s) (e.g. one or several states) close to the full-CI

limit at a small fraction of the computational cost. However, ICE-CI itself is not designed to deal with

hundreds of atoms or thousands of basis functions. Thus, unlike, say DLPNO-CCSD(T) which is a high

accuracy method for treating large sytems, ICE-CI is either a highly robust high accuracy method for very

small systems or a “building block” for large systems. By itself it can treat a few dozen electrons and

orbitals – e.g. much more than full CI – but it cannot do wonders. Its scope is similar to the density matrix

renormalization group (DMRG) or Quantum Conte Carlo Full CI (QMCFCI) procedures.

ICE-CI should be viewed as a multireference approach. It is self-adaptive and robust, even in the presence

of near or perfect degeneracies. It yields orthogonal states (when applied to several states) and spin

eigenfunctions. It also yields a density and a spin density.

9.19.2 The ICE-CI and CIPSI Algorithms

The general idea of ICE-CI is straightforward: Consider a many-particle state that has at least a sizeable

contribution from a given configuration n0 (this is a set of occupation numbers for the active orbitals that are

n0
p = 0, 1 or 2 (p = any active orbital). By nature of the non-relativisitic Hamiltonian only configurations

that differ by at most two orbital occupations from n0 will interact with it. We can use perturbation theory

to select the subset of singles- and doubles that interact most strongly with n0 and then solve the variational

problem. We can then analyze the CI vector for configurations that make a dominant contribution to

the ground state. Say, we single out the configurations with C2
I > Tgen. This defines the “generator” set

of configurations. The other configurations are called “variational” configurations. They are treated to

infinite order by the variational principle, but are not important enough to bring in their single- and double

excitations. In the next iteration, we perform singles- and doubles relative to these general configurations

and select according to their interaction with the dominant part of the previous CI vector (truncated to the

generators). This procedure can be repeated until no new important configurations are found and the total

energy converges (See Figure 9.6).

The described procedure is very similar to Malrieu’s three level CIPSI procedure. One major technical

difference, is that ICE is centered around configurations and configuration state functions rather than

determinants. A configuration is a set of occupation numbers 0, 1 or 2 that describes how the electrons are

distributed among the available spatial orbitals. A configuration state function (CSF) is created by coupling

the unpaired spins in a given configuration to a given total spin S. In general there are several, if not many

ways to construct a linearly independent set of CSFs. CSFs on the other hand can be expanded in terms

of Slater determinants, but there are more Slater determinants to a given configuration than CSFs. For

example for a CAS(14,18) calculation one has about 109 determinants, but only about 3x108 CSFs and 3x107

configurations. In the configuration based ICE (CFG-ICE) all logic happens at the level of configurations.

That is, it is the relationship between two configurations that determines whether and if yes, by which

integrals the CSFs or determinants of two given configurations interact. Since the configuration space is

so much more compact than the determinant space substantial computational benefit can be realized by
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Figure 9.6: Flowchart of the ICE-CI procedure.

organizing the calculation around the concept of a configuration. In general, in CFG-ICE all CSFs that

belong to a given configuration are included and all selection quantities are summed over all CSFs of a

given configuration before it is decided whether this CSFs is included or not. In the configuration state

functions based ICE (CSF-ICE) the logic of generation and selection occurs at the level of individual CSFs

and therefore we get rid of the requirement to carry around all the CSFs for a given configuration. This

provides substantial gains in the case of molecules containing a large number of transition metal atoms,

where each atom contains a high-spin center. In such cases only a few CSFs of a the dominant CFG plays a

dominant role and other show negligible contribution to the wavefunction. Finally, in some cases the original

determinant based CIPSI procedure could be preferred. Such cases can be handled by the determinant based

ICE termed DET-ICE. The three variants of ICE therefore cover all the possible types of multi-reference

systems that one encounters in quantum chemistry.

It should be noted that although the procedure contains a perturbative element, the final energy is strongly

dominated by the variational energy and hence, for all intents and purposes, the ICE-CI procedure is

variational (but not rigorously size consistent – size consistency errors are on the same order of magnitude as

the error in absolute energy).

9.19.3 A Simple Example Calculations

Let us look at a simple calculation on the water molecule:

#

# Check the ICECI implementation

#

! SV

%ice nel 10 # number of active electrons
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norb 13 # number of active orbitals

nroots 1 # number of requested roots

integrals exact # exact 4-index transformation

# can be set to RI to avoid bottlenecks

icetype CFGs # The configuration based ICE-CI

CSFs # The CSF based ICE-CI

DETs # The determinnat based ICE-CI

Tgen 1e-04 # value for Tgen. Default is 1e-4

Tvar 1e-11 # value for Tvar. Default is 1e-11 (1e-7*Tgen)

etol 1e-06 # energy convergence tolerance

end

* int 0 1

O 0 0 0 0.0 0.000 0.000

H 1 0 0 1.0 0.000 0.000

H 1 2 0 1.0 104.060 0.000

*

Let us look at the output:

------------------------------------------------------------------------------

ORCA Iterative Configuration Expansion

- a configuration driven CIPSI type approach -

------------------------------------------------------------------------------

(some startup information)

Integral transformations ... done ( 0.3 sec)

Making an initial ’Aufbau’ configuration ... done

Performing S+D excitations from 1 configs ... done ( 0.0 sec) NCFG=581

Performing perturbative selection ... done ( 0.0 sec)

# of configurations before selection ... 581

# of configurations after selection ... 187

’rest’ energy (probably not very physical) ... -3.444299e-10

******************************

* CIPSI MACROITERATION 1 *

******************************

# of active configurations = 187

Now calling CI solver (265 CSFs)

(...)

CI SOLUTION:

STATE 0 MULT= 1: E= -76.0458673135 Eh W= 1.0000 DE= 0.000 eV 0.0 cm**-1

0.95841 : 2222200000000

0.00111 : 2122100001001

...

Selecting new configurations ...done ( 0.0 sec)

# of selected configurations ... 187

# of generator configurations ... 67

Performing single and double excitations relative to generators ... done ( 0.0 sec)
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# of configurations after S+D ... 13174

Selecting from the generated configurations ... done ( 0.1 sec)

# of configurations after Selection ... 3828

Root 0: -76.045867314 -0.000000061 -76.045867375

(etc.)

******************************

* CIPSI MACROITERATION 4 *

******************************

# of active configurations = 3870

Initializing the CI ...done ( 0.0 sec)

Building coupling coefficients ...done ( 0 sec)

Now calling CI solver (9611 CSFs)

CI SOLUTION:

STATE 0 MULT= 1: E= -76.0539541874 Eh W= 1.0000 DE= 0.000 eV 0.0 cm**-1

0.95101 : 2222200000000

0.00327 : 2221100001100

...

********* CIPSI IS CONVERGED *********

(one final CI)

********************************************

** ICECI Problem solved in 7.5 sec **

********************************************

FINAL CIPSI ENERGIES

Final CIPSI Energy Root 0: -76.053954243 EH

From the output the individual steps in the calculation are readily appreciated. The program keeps cycling

between variational solution of the CI problem, generation of new configurations and perturbative selection

until convergence of the energy is achieved. Normally, this occurs rapidly and rarely requires more than five

iterations. The result will be close to the Full CI result.

Let us look at a H2O/cc-pVDZ calculation in a bit more detail (See Figure 9.7). The calculation starts out

with a single Hartree-Fock configuration. The first iteration of ICE-CI creates the singles and doubles and

altogether 544 configurations are selected. These singles and doubles bring in about half of the correlation

energy. Already the second iteration, which leads to 73000 selected CSFs provides a result close to the full

CI. At this point up to quadruple excitations from the Hartree-Fock reference have been included. It is well

known that such quadruple excitations are important for the correct behavior of the CI procedure (near size

consistency will come from the part of the quadruple excitations that are products of doubles). However,

only a very small fraction of quadruples will be necessary for achieving the desired accuracy. In the first

iteration the procedure is already converged and provides 99.8% of the correlation energy, using 0.5% of the

CSFs in the full CI space and at less than 0.2% the calculation time required for solving the full CI problem.

Hence, it is clear that near exact results can be obtained while realizing spectacular savings.

9.19.4 Accuracy

The accuracy of the procedure is controlled by two parameters Tgen and Tvar Since we have found that

Tvar = 10−7 Tgen always provides converged results, this choice is the default. However, Tvar can be
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Figure 9.7: An ICE-CI calculation on the water molecule in the cc-pVDZ basis (1s frozen)

set manually. It can be reduced considerably in order to speed up the calculations at the expense of some

accuracy. Our default values are Tgen = 10−4 and Tvar = 10−11. This provides results within about 1

mEh of the full CI results (roughly speaking, a bit better than CCSDT for genuine closed-shell systems).

During the development of ICE-CI systematic test calculations have been performed using a reference set of

21 full CI energies on small molecules. The convergence pattern of the mean absolute error is shown in Figure

9.8. It is evident from the figure that the convergence of ICE-CI towards the FCI result is very smooth and

that high accuracy can be obtained. In fact, the default settings lead to an accuracy of <1 mEh deviation to

the full-CI result. µEh accuracy can be achieved by further tightening. The achieved accuracy relative to

accurate coupled-cluster results shows that the accuracy of even CCSDTQ can be surpassed by ICE-CI. The

achievable accuracy is only limited by the value of Tgen and much less so by the value of Tvar. Hence, it is

advisable to use a value for Tvar that is essentially converged and control the accuracy of the procedure by

Tgen.

9.19.5 Scaling behavior

ICE-CI will break the factorial scaling of the full CI problem and scale polynomially. The actual order of

the polynomial scaling is system dependent and accuracy dependent. In order to provide some impression,

consider some calculations on linear polyene chains.

The results are displayed in the Figure 9.10. It is evident from Figure 9.10 that ICE-CI breaks the factorial

scaling of the full CI problem. In fact, for a thresholds of Tgen =10−4, 10−3 and 10−2 the observed scalings are

approximately O(N8), O(N7) and O(N6) respectively. These numbers will obviously be very system dependent

but should serve as a rough guide. The calculations become quickly much more expensive if Tgen is tightened.

A rule of thumb is that each order of magnitude tightening of Tgen increases the computation time by a

factor of 10. The above calculations have been performed on a simple desktop computer and it was already

possible to solve a CAS(30,30) problem in less than one day of elapsed time using the default thresholds.

Large active spaces will require either loosening of the tresholds or large, more powerful machines.
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Figure 9.8: Convergence of the ICE-CI procedure towards the full CI results for a test set of 21 full
CI energy. Shown is the RMS error relative to the Full CI results. The corresponding
errors for various coupled-cluster variants is shown by broken horizontal lines.

Figure 9.9: Polyene chains used for scaling calculations.
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Figure 9.10: Scaling behavior of ICE-CI for linear polyene chains (Full π-electron active space) as
a functions of system size for different generator thresholds.

9.19.6 Accuracy of the Wavefunction

The accuracy of the many particle wavefunction is not straightforward to check. A reasonable measure,

however, is how well it converges towards the exact result for one-electron expectation values. Since every

expectation value can be written in terms of natural orbitals of the one-particle density as:〈
Ô
〉

=
〈

Ψ
∣∣∣∑

o
ô(xi)

∣∣∣Ψ〉 =
∑
pq

Dpq 〈ψp|ô|ψq〉 =
∑
p

np

〈
ψ̃p|ô|ψ̃p

〉

where ô(xi) is an arbitrary one-particle operator, Dpq is the density matrix of the ICE-CI wavefunction, ψ̃p

are the natural orbitals of the ICE-CI wavefunction and np are their occupations numbers. It is reasonable to

take the deviation of the natural orbital occupation numbers as a measure for wavefunction convergence.

For example, we treat the H2O/cc-pVDZ problem again. From the results in Figure 9.11 it becomes evident

that the ICE-CI wavefunction is fairly accurate. At the default threshold the occupation numbers agree

to within 10−3 with the full CI reference numbers, which means that expectation values will be of similar

accuracy. Interestingly, the largest errors occur in the region of the HOMO-LUMO gap, where apparently

all approximate wavefunction approaches tend to depopulate the high lying orbitals too much and put too

much electron density in the low lying empty orbitals. From comparison, it is seen, that the CCSD natural

occupation numbers for this problem are significantly less accurate. Hence, this is evidence that the ICE-CI

wavefunction is properly converging to the right result.
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Figure 9.11: Convergence of the ICE-CI natural orbital occupation numbers. The upper panel is
showing the Full CI occupation numbers, the lower panel the deviation of the ICE-CI
values from these exact values. For comparison, the CCSD natural orbital occupation
numbers are also provided.
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9.19.7 Potential Energy Surfaces

You can use ICE-CI to scan entire potential energy surfaces. In general, the non-parallelity error along a

potential energy surface is very small. Thus, ICE-CI yields consistent quality throughout the surface.

For example, let us look at the potential energy surface of the N2 molecule (Figure 9.12) – a common test

case for quantum chemical methods. There are not too many methods that would disscociate the triple bond

of N2 correctly – ICE-CI is one of them. The potential energy surface is entirely smooth and also correctly

behaves in the dissociation limit. Near the minimum it is very close to high-level coupled-cluster methods

that, however, all fail badly as the bond is stretched.

Figure 9.12: Potential energy surface of the N2 molecule in the SV basis. For comparison higher
level coupled-cluster results are also shown.

It is interesting to observe the variations of the ICE-CI wavefunction along the dissociation potential energy

surface. As an example, we look at the dissociation curve of H2O where both O-H bonds are simultaneously

stretched (Figure 9.13). It is seen that the ICE-CI method is extremely parallel to the full CI curve at all

distances. Hence, the description of the bond remains consistent, even when Hartree-Fock becomes a bad

approximation. The agreement is particularly good if MP2 natural orbitals are used in the ICE-CI procedure.

With the default value of Tgen = 10−4 and MP2 natural orbitals the error is consistently below 0.2 mEh. For

tighter thresholds, the error is below 0.05 mEh. By contrast, the CCSD(T) method shows relatively large

deviations from the full CI results and also behaves very non-parallel as a function of O-H distance.

It is instructive to analyze the ICE-CI wavefunction along the dissociation pathway (Figure 9.14). It becomes

apparent that the wavefunctions stays compact along the entire surface, even in the dissociation limit, where

the weight of the Hartree-Fock wavefunction drops to less than 25%. Even in this drastic limit, the ICE-CI

wavefunction consists of only about 60000 CSFs, which is very similar to the size of the wavefunction at
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Figure 9.13: Non-parallelity error of ICE-CI for the H2O molecule in the SV basis. Shown is the
deviation from the full CI value as a function of O-H distance (both bonds stretched).
For comparison, the CCSD(T) curve is also shown

.

equilibrium geometry. As the wavefunction becomes more multiconfigurational, the number of generator

configurations goes slightly up from the equilibrium value of 77 to a maximum of 118 and finally 112 at

dissociation. It is also interesting to note that along the entire dissociation pathway no configuration with

more than 8 open shells is generated, which means that no more than quadruple excitations are contained in

the ICE-CI wavefucntion. The number of iterations required in the ICE-CI procedure also stays constant

along the surface at 4 iterations, which impressively shows that a dominant configuration is not necessary for

a successful ICE-CI calculation.

9.19.8 Excited States

ICE-CI can be used to obtain some insight into excited states starting from no knowledge at all. Of course,

the best was to start an excited state calculation is to have some idea which configurations are important for

the low-lying states of the system. If this is not the case, an automated procedure is used. The program

will first generate an “Aufbau” configuration using the orbitals that are provided on input. Starting from

this Aufbau configuration, single excitations at the configuration level are performed an the Hamiltonian is

diagonalized for the required number of roots. These roots are then analyzed for the leading configurations

and the regular ICE-CI procedure is started from those configurations. For example, look at a calculation on

the CN radical. In this case, we know the relevant orbitals and leading configurations for the lowest four

roots (a doublet Σ ground state, a doublet Π excited state and a doublet Σ excited state) and hence can

provide them in the input file as shown below.
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Figure 9.14: Analysis of the ICE-CI wavefunction along the O-H dissociation pathway.

#

! cc-pVDZ VeryTightSCF

%casscf nel 7

norb 4

nroots 4

mult 2

end

%ice nel 9

norb 26

nroots 4

cimode 3

tvar 1e-11

tgen 1e-4

refs { 2 2 2 2 1 }
{ 2 2 2 1 2 }
{ 2 2 1 2 2 }
{ 2 1 2 2 2 }
end

end

* xyz 0 2

C 0 0 0

N 0 0 1.07

*

The result is shown below. The excitation energies are reasonable but not highly accurate due to the

limitations of the basis set (experimentally the doublet Π state is at 1.32 eV and the doublet Σ state at 3.22

eV). There is a very slight symmetry breaking In the doublet Π state that arises from the selection procedure.
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It should be noted that the state averaged CASSCF excitation energies are 0.25 eV and 3.18 eV.

STATE 0 MULT= 2: E= -92.4544563186 Eh DE= 0.000 eV 0.0 cm**-1

0.46140 : 22212000000000000000000000

0.38091 : 21222000000000000000000000

STATE 1 MULT= 2: E= -92.3776568076 Eh DE= 2.090 eV 16855.5 cm**-1

0.81854 : 22221000000000000000000000

STATE 2 MULT= 2: E= -92.3776333181 Eh DE= 2.090 eV 16860.7 cm**-1

0.82067 : 22122000000000000000000000

STATE 3 MULT= 2: E= -92.3413460793 Eh DE= 3.078 eV 24824.8 cm**-1

0.40430 : 22212000000000000000000000

0.42974 : 21222000000000000000000000

Below, it is described how to do ICE-CI calculations on excited states if the dominant configurations are not

known.

9.19.9 Tips and Tricks

ICE-CI can be used very fruitfully together with, say, MP2 natural orbitals. This usually results in results

that are closer to full CI results and at the same lead to more compact wavefunctions (it may be called

nICE). The use of MP2 natural orbitals is requested by choosing UseMP2nat true inside the %ice block.

Alternatively, improved virtual orbitals can be used (requested by UseIVOs true). A comparison is shown in

Scheme 9.15. It is evident that the calculations based on the MP2 natural orbitals show an error relative to

full CI that is almost a factor of two smaller than the corresponding result with canonical orbitals while at

the same time the wavefunction is more compact by more than 30%. Hence, the use of MP2 natural orbitals

appears to be a very good idea in conjunction with the ICE-CI procedure. This also holds when MP2 itself is

a bad approximation (for example in the dissociation limit of the H2O molecule as shown above). On the

other hand, the IVOs behave very similar to canonical orbitals and hence, seem to offer fewer advantages.

Figure 9.15: Comparison of MP2 natural orbitals and improved virtual orbitals for the ICE-CI
procedure (H2O molecule, cc-pVDZ basis, equilibrium geometry)

If ICE-CI is used in conjunction with MP2 natural orbitals, there also is the possibility of letting the program

automatically choose the active space (this is called auto-ICE). The general idea is simple – we base the

active space on the MP2 natural orbitals and their occupation numbers. All orbitals between occupation

number say 1.98 down to 0.02 will be included in the active space. A relevant input is shown below.
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! cc-pVDZ aug-cc-pV6Z/C Auto-ICE

%ice nmin 1.99 nmax 0.01 end

%paras R= 1.0 end

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 { R} 0 0

H 1 2 0 { R} 104 0

*

If we scan along the H2O dissociation surface one can see that despite changing active spaces, the dissociation

curves are smooth and remain fairly parallel to the full CI dissociation curve. Depending on the tightness

of the thresholds the active space may change from a small 6 electrons in 5 orbitals to a larger 8 electrons

in 7 or 8 orbitals upon dissociation. This is the expected behavior as the σ-antibonding orbital becomes

more stable along the bond stretching coordinate. Hence, these results are encouraging in as far as in many

situations the program will be able to select a sensible active space without extended input from the user.

Figure 9.16: Automatic active space selection along the H2O dissociation surface. The reference
curve (blue triangles) is the ICE-CI method for the full orbital space with the default
parameters.

Another place, where automatic selection comes in conveniently is in the calculation of excited states. If

there are no user supplied configurations, what happens is that the program will first choose an Aufbau

“reference” configuration and then perform all single excitations relative to this configuration. The program

will then diagonalize the Hamiltonian over the this set of configurations to create 0th order approximations

for the chosen number of roots of interest and then initiate the ICE-CI procedure starting from the leading

configurations of these states. Here is an example for the benzene molecule:
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! RHF def2-SVPD def2-SVP/C Auto-ICE

%cclib "/Users/neese/prog_c/orca/cclib/orcacc"

%ice nroots 5

nmin 1.98

nmax 0.02

integrals ri

end

* int 0 1

C 0 0 0 0.000000 0.000 0.000

C 1 0 0 1.389437 0.000 0.000

C 2 1 0 1.389437 120.000 0.000

C 3 2 1 1.389437 120.000 0.000

C 4 3 2 1.389437 120.000 0.000

C 5 4 3 1.389437 120.000 0.000

H 1 2 3 1.082921 120.000 180.000

H 2 1 3 1.082921 120.000 180.000

H 3 2 1 1.082921 120.000 180.000

H 4 3 2 1.082921 120.000 180.000

H 5 4 3 1.082921 120.000 180.000

H 6 5 4 1.082921 120.000 180.000

*

(The %cclib statement is explained below and is not mandatory here). The Auto-ICE procedure comes

up with as many as 24 electrons in 19 orbitals, which already is a fairly heavy calculation. The procedure

converges in five iterations and provides indeed the correct states: the gorund state, the 1B2u state at 6.4 eV,

the 1B1u state at 8.9 eV and a degenerate 1E1u state at 10.0 eV. These excitation energies are still in error

by about 2 eV relative to experiment, which is mainly due to missing dynamic correlation. However, the

correct states and their sequence has been found.

The ICE-CI can be used to find the ground state if the actual ground state is not known. To this end, one

simply has to turn off the selection steps. This makes the calculations more expensive, but they will converge

to the lowest state. In the example below (again, the H2O molecule) we start from a random quintuply

excited configuration – the ICE-CI still finds the ground state after four iterations:

%ice nel 8

norb 23

nroots 1

tvar 1e-11

tgen 1e-04

etol 1e-06

# selection

SelStart false

SelIter false

# algorithm details

useivos false

integrals exact

cimaxdim 5 #Davidson expansion space = MaxDim * NRoots

cimode 3

# spatial sym (buggy)
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irrep 0

# startup (optional)

refs { 2 1 0 1 0 2 1 0 1 }
end

end

However, if one wants to converge to an excited state, one should turn on the selection. In the example below

(once more the water molecule) one can converge to the second excitated singlet state by judicious choice of

the start configuration:

%ice nel 8

norb 23

nroots 1

tvar 1e-11

tgen 1e-04

etol 1e-06

# selection

SelStart true

SelIter true

# algorithm details

useivos false

integrals exact

cimaxdim 5

cimode 3

# spatial sym (buggy)

irrep 0

# startup (optional)

refs { 2 2 1 2 0 1 }
end

end

9.19.10 Large-scale approximate CASSCF: ICE-SCF

ICE-CI can be used as a replacement for the CI step in a CASSCF framework. In this way, much larger

CASSCF calculations than previously possible can be envisioned. In using the ICE-CI in this way, the active

orbitals should be chosen as natural orbitals in order to ensure a proper canonicalization. In general, ICE-CI

results will not be invariant with respect to the choice of orbitals. However, in practice we have not found

this to be problematic. We refer to this as ICE-SCF.

The use is simple: in the %casscf block choose:

%casscf

...

cistep ice

# optional input with refined settings

ci

tgen 1e-4 # controls accuracy (default = 1e-4)

tvar 1e-11 # default = 1e-7 * TGen

maxiter 100 # number of allowed cycles (default = 64)

end

end
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The entire remaining input is the one for standard CASSCF calculations. In this way one can do CASSCF

calculations with very large active space in reasonable turnaround times. We have not observed convergence

problems that are worse than in the standard CASSCF procedure. The results in Figure 9.17 show that the

deviations from regular CASSCF energies are very small. The largest deviation observed for C2H4 is on the

order of 0.2 mEh, which appears acceptable. Note that the CASSCF tutorial also covers larger examples

and excitations energies computed with the ICE-CI as CI solver. As mentioned in the CASSCF section 9.13,

some feature are not supported for ICE-CI e.g. magnetic properties as well NEVPT2 corrections are not yet

available.

Figure 9.17: Deviations of ICE-SCF from CASSCF energies for a selection of molecules (standard
truncation parameters Tgen = 10−4 and Tvar = 10−11)

Since CASSCF is fully variational, it is possible to optimize geometries with that procedure. It is our

experience so far, that the ICE-SCF geometries are virtually indistinguishable from CASSCF geometries (an

example is shown in Figure 9.18).

Figure 9.18: CASSCF and ICE-SCF optimized geometries for methylene and ozone (cc-pVDZ basis
set, default parameters).
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9.19.11 The entire input block explained

For completeness, the parameters that can be specified in the input block are summarized below:

%ice

nel 8 # number of active electrons

norb 23 # number of active orbitals

nroots 1 # number of roots

mult 1 # requested multiplicity

irrep 0 # requested irrep (buggy :-()

tgen 1e-04 # generator threshold

tvar -1e-7 # negative -> 1e-7*tgen

etol 1e-06 # convergence tolerance

# algorithm details

useMP2nat false # use MP2 natural orbitals

useivos false # use improved virtual orbitals

useQROs false # For UHF: use quasi-restricted MOs?

integrals exact # exact or ri transformation

cimaxdim 10 # max. size of expansion space in Davidson procedure

cimode 3 # default=accelerated CI, other settings not recommended

# startup configurations(optional)

refs { 2 2 2 2 0 }
{ 2 2 2 0 2 }
end

end

9.19.12 A Technical Note: orca cclib

We should finally mention a technical aspect. The CI procedure in ICE-CI is based around the so-called one

particle coupling coefficients

AIJpq =
〈
I|Eqp |J

〉
(9.226)

where AIJpq is a coupling coefficient, I and J are configuration state functions (CSFs) and Eqp is the spin-free

excitation operator that promotes an electron from orbital p to orbital q. The values of these coupling

coefficients only depend on the logical relationship between the CSFs I and J but not on the absolute values

of I, J , p, q. In fact, they only depend on the number of unpaired electrons in I and the total spin S that

both CSFs refer to. Hence, prototype coefficients can be pre-tabulated. This is normally done in a CI run at

the beginning of the run. However, in ICE-CI it may have to be repeated several dozen times and for large

numbers of open shells (say 14), the process is time and memory consuming.

In order to ease the computational burden, we have provided a small utility program that tabulates the

coupling coefficients for a given total spin S (rather the multiplicity M = 2S + 1) and maximum number of

open shells. This program is called orca cclib. It is called like:

orca_cclib Mult MaxNOpen
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It will produce a series of files orcacc.el.mult.nopen (electron density coupling coefficients) and orcacc.sp.mult.nopen

(spin-density coupling coefficients) in the current directory. These files are binary files. They can be copied to

an arbitrary directory. You instruct the program to read these coefficients (rather than to recalculate them

all the time) by setting the path to this directory:

# My Job

! def2-SVP Auto-ICE

%cclib "/user/me/orca/cclib/orcacc"

The remaining part of the filename will be automatically added by the program. This option can save

humongous amounts of time. The coupling coefficient library needs to be made for the desired multiplicities

only once. The practical limit will be 14-16 open shells. If you are running the calculation on a cluster using

some submit script, you have to ensure that the provided cclib path is accessible from the compute node.

9.20 CI methods using generated code

The AUTOCI module is replacement of the orca mdci for cases, where manual implementation of the method

would be tedious or practically impossible. The module works with all types of reference wave function

available in ORCA, i.e. RHF, ROHF, UHF and CASSCF and offers CI and related methods. At current

stage, only the energies are available and all computational modules do run only in serial mode, i.e. no

parallelization is implemented. All the methods are implemented in canonical orbital basis and storing all

integrals on disk.

9.20.1 Introduction

All the theories are obtained by the means of automated programming within the ORCA-AGE (Automated

Generator Environment for ORCA). The CI module reads in the SCF wavefunction and optimizes the

coefficient of the CI expansion. Conceptually, the module is very similar to orca mdci, therefore the input

and output do have a lot in common.

9.20.2 Input

All parameters applicable to the autoci module are shown below.

%autoci

# Algorithm selection

citype # Type of the CI expansion to be applied (one of following)

CISD # configuration interaction with single and double substitutions

POLYCI # Polynomial CI

CCSD # Polynomial CI of the order 4 for RHF reference

FICMRCI # Fully internally contracted MRCI

FICMRCEPA0 # Fully internally contracted CEPA0

FICMRACPF # Fully internally contracted ACPF

FICMRAQCC # Fully internally contracted AQCC
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FICDDCI3 # FIC-MRCI without the IJAB excitation

polycidegree 1 # Degree of the polynomial CI expansion (1=CISD, 2˜QCISD,

4=CCSD)

# converger details

stol 1e-06 # residue convergence tolerance

maxiter 50 # maximum number of iterations

maxdiis 5 # depth of the DIIS memory

diisstartiter 2 # Apply DIIS starting at iteration 1

denomopt # Type of denominator used for update (one of following)

0 # Orbital energies

1 # Dyall Hamiltonian

2 # Full Born-Oppenheimer Hamiltonian

# CAS settings similar to the CASSCF input

nel 6 # number of active electrons (for CAS)

norb 7 # number of active orbitals (for CAS)

mult 1 # requested multiplicity block

nroots 1 # number of roots for mult block

irrep 0 # requested irrep for mult block

nthresh 1e-6 # Threshold for lin. dependencies in the IC-CSFs basis

D3TPre 1e-14 # Density truncation in D3

D4TPre 1e-14 # Density truncation in D4

# Algorithm details

maxcore 2000 # Maximum memory limit in MB

printlevel 3 # Amount of printing

trafotype 0 # Type of integral transformation

0 # Full canonical

1 # Full using RI (RI basis needed)

2 # Up to three-ext (ibac) using RI

3 # Up to three-ext (tbac) using RI

keepints # Keep the transformed integrals on disk

useoldints # Use the transformed integrals found on disk

# Property calculations

density # type of density requested

NONE # No density calculation

LINEARIZED # Linear part of the density (exact for CISD and POLY-1)

end

N.B. In the case of a UHF reference, only the CISD (polycidegree 1) and CCSD (polycidegree 4) methods

are available. For a ROHF reference, only CISD (polycidegree 1) and quadratic CCSD (polycidegree 2)

calculations can be performed in the current version.

If one wishes to experiment with the module itself and the reference wavefunction stays constant, it is

possible to store the transformed MO integrals on disk (keepints) and reuse them (useoldints). The program

checks only whether the dimension of the integrals on disk match the problem acutally solved, ie. the user is

responsible for valid data.
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9.20.3 Fully internally contracted MRCI

Starting point for any multireference approach is a reference wavefunction that consists of multiple deter-

minants or configurations state functions (CSFs). In many instances this is the complete active space SCF

(CASSCF) wavefunction. In the uncontracted MRCI approach, as implemented in the orca mrci module, the

wavefunction is expanded in terms of excited CSFs that are generated by considering excitations with respect

to all reference CSFs. The methodology scales with the number of reference CSFs and hence is restricted to

small reference spaces. Moreover, the configuration driven algorithm used in orca mrci keeps all integrals in

memory, which further limits the overall size of the molecule.

Internal contraction as proposed by Meyer and Siegbahn avoids these bottlenecks. [453,454] Here, excited

CSFs are generated by applying the excitation operator to the reference wavefunction as whole. The fully

internally contracted MRCI presented here (FIC-MRCI) uses the same internal contraction scheme as the

FIC-NEVPT2 (aka PC-NEVPT2). The entire methodology as well as a comparison with the conventional

uncontracted MRCI is reported in our article. [455] The CEPA0, ACPF and AQCC variants are straight

forward adoptions. [456] The residue of the FIC-MRCI ansatz

RK =< Φprqs |H − ECAS − λEc|ΨFIC >,

is modified by the factor

λ =


1 MRCI

0 CEPA0
2
Ne

ACPF
1−(Ne−3)(Ne−2)

Ne·(Ne−1) AQCC

Here, Ec is the correlation energy and Φprqs denote the internally contracted CSF that arise from the action of

the spin-tracted excitaiton operators on the CAS-CI reference wave function

Φprqs = EpqE
r
s |ΨCAS > .

In case of ACPF and AQCC the λ factor explicitly depends on the number of correlated electron, Ne.

The general input structure is similar to the CASSCF e.g. the following example input reads an arbitrary set

of orbitals and starts the FIC-MRCI calculation.

!def2-tzvp moread allowrhf noiter nofrozencore

%moinp "start.gbw" # could be from CASSCF

%autoci

citype FICMRCI # Fully internally contracted MRCI (singles,doubles)

FICMRCEPA0 # CEPA0 version of FIC-MRCI

FICMRACPF # ACPF version of FIC-MRCI

FICMRAQCC # AQCC version of FIC-MRCI

FICDDCI3 # FIC-MRCI without the IJAB excitation

# CAS-CI reference wavefunction

nel 2

norb 2
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mult 1,3

nroots 3,1

nthresh 1e-6 # removal of linear dependencies in the IC-CSFs

# Davidson correction for the FIC-MRCI

DavidsonOpt 0 # none (default)

1 # Davidson correction

end

Currently, the program is capable of computing total energies and vertical excitation energies. More features

will be available with future releases. Note that the program is not yet fully parallelized.

9.21 Geometry Optimization

ORCA is able to calculate equilibrium structures (minima and transition states) using the quasi Newton

update procedure with the well known BFGS update [160–165], the Powell or the Bofill update. The

optimization can be carried out in either redundant internal (recommended in most cases) or Cartesian

displacement coordinates. As initial Hessian the user can choose between a diagonal initial Hessian, several

model Hessians (Swart, Lindh, Almloef, Schlegel), an exact hessian and a partially exact Hessian (both

recommended for transition state optimization) for both coordinate types. In redundant internal coordinates

several options for the type of step to be taken exist. The user can define constraints via two different paths.

He can either define them directly (as bond length, angle, dihedral or Cartesian constraints) or he can define

several fragments and constrain the fragments internally and with respect to other fragments. The ORCA
optimizer can be used as an external optimizer, i.e. without the energy and gradient calculations done by

ORCA.

9.21.1 Input Options and General Considerations

The use of the geometry optimization module is relatively straightforward.18

%method RunTyp Opt # use geometry optimization.

#(equivalent is RunTyp=Geom)

end

# or simply "! Opt" in the keyword line

18But that doesn’t mean that geometry optimization itself is straightforward! Sometimes, even when it is not expected
the convergence can be pretty bad and it may take a better starting structure to come to a stationary point. In
particular floppy structures with many possible rotations around single bonds and soft dihedral angle modes are
tricky. It may sometimes be advantageous to compute a Hessian matrix at a “cheap” level of theory and then do
the optimization in Cartesian coordinates starting from the calculated Hessian.
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# details of the optimization are controlled here

%geom

MaxIter 50 # max. number of geometry iterations

# (default is 3N (N = number of atoms), at least 50 )

# coordinate type control

coordsys redundant # New redundant internal coords

redundant_old # old set of redundant internal

# coords (molecules might explode)

redundant_new # New set of redundant internal coords

# (includes non-covalent bonds, i.e. H-bonds)

cartesian # Cartesian coordinates

# transition state (TS) optimization

TS_search EF # Switch on TS search, EF means

# "eigenvector following"

# alternatively use "! OptTS"

TS_Mode {M 0} end # Choose the mode to follow uphill in the

# TS optimization. {M X}: eigenvector of

# the Hessian with X. lowest eigenvalue

# (start counting at zero) (default: X=0)

# Instead of a mode choose an internal coordinate strongly

# involved in the eigenmode followed uphill

TS_Mode {B 0 1} end # bond between atoms 0 and 1 or

TS_Mode {A 2 1 0} end # angle between atoms 2, 1 and 0 or

TS_Mode {D 3 2 1 0} end # dihedral of atoms 3, 2, 1 and 0

# add or remove internal coordinates from the automatically

# generated set of redundant internal coords

modify_internal

{ B 10 0 A } # add a bond between atoms 0 and 10

{ A 8 9 10 R } # remove the angle defined

# by atoms 8, 9 and 10

{ D 7 8 9 10 R } # remove the dihedral angle defined

end # by atoms 7, 8, 9 and 10

# constrain internal coordinates:

Constraints

{ B N1 N2 value C } # the bond between N1 and N2

{ A N1 N2 N1 value C } # the angle defined by N1, N2

# and N3

{ D N1 N2 N3 N4 value C } # the dihedral defined by N1,

# N2, N3 and N4

{ C N1 C } # the cartesian position of N1

{ B N1 * C} # all bonds involving N1

{ B * * C} # all bonds

{ A * N2 * C } # all angles with N2 as central atom

{ A * * * C } # all angles

{ D * N2 N3 * C } # all dihedrals with N2 and N3 as
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# central atoms

{ D * * * * C } # all dihedrals

end

# scan an internal coordinate:

Scan B N1 N2 = value1, value2, N end

# perform constrained optimizations with varying N1-N2-

# distance from value1 up to value2 in N steps;

# works as well for angles (use A N1 N2 N3) and for

# dihedrals (use D N1 N2 N3 N4)

Scan B N1 N2 [value1 value2 value3 ... valueN] end

# perform constrained optimizations with N1-N2-distances

# as given in the list;

# works as well for angles (use A N1 N2 N3) and for

# dihedrals (use D N1 N2 N3 N4)

fullScan true # if !ScanTS is requested, fullScan assures

# that the relaxed surface scan is fully

# carried out before the TS optimization is

# started (Default is false)

# fragment optimization:

# 1. all atoms have to belong to a fragment

# 2. you have to connect the fragments

ConnectFragments

{1 2 C} # constrain the internal coordinates

# connecting fragments 1 and 2

{1 2 C N1 N2}# constrain the internal coordinates

# connecting fragments 1 and 2, the

# fragments are connected via atoms

# N1 and N2

{1 3 O} # optimize the internal coordinates

# connecting fragments 1 and 3

{1 3 O N1 N2}# optimize the internal coordinates

# connecting fragments 1 and 3, the

# fragments are connected via atoms

# N1 and N2

end

# 3. you can constrain the fragment internally

ConstrainFragments # constrain all internal coordinates

{ 1 } # containing only atoms of fragment 1

end

# optimize hydrogens

optimizeHydrogens true

# in the context of a normal optimization all internal

# coordinates not involving any hydrogens are constrained

# in the context of a fragment optimization all internal

# coordinates involving hydrogens are optimized (also in a
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# constrained fragment)

# freeze the hydrogen positions with respect to the

# heteroatoms

freezeHydrogens true

# invert the defined constraints, i.e. optimize the

# constraints and constrain the remaining coordinates

# this only works for the redundant internal coordinates

# Cartesian coordinates are not affected by invertConstraints

invertConstraints true # step type control

Step qn # quasi-Newton step

rfo # Rational function step (Default for !Opt)

gdiis # gdiis step

prfo # partitioned RFO step (Default for !OptTS)

UseGDIIS false # use GDIIS step (in Cartesian optimization)

# Default is false.

GDIISStart 1.0 # Gradient at which to start GDIIS algorithm

# (in Cartesian optimization)

GDIISMaxE 10 # number of last steps to use in GDIIS

# algorithm

# Step size control

MaxStep 0.3 # maximum step length in internal coordi-

# nates. Default is 0.3 au

Trust -0.3 # Initial trust radius. Default is -0.3 au

# Trust <0 - use fixed trust radius

# of size -trust. I.e. -0.3 means fix

# the trust radius at 0.3

# Trust >0 - use trust radius update. I.e. 0.3

# means start with trust radius 0.3 and update

# the trust radius after each optimization step

# Convergence tolerances. Note that the calculation is

# only converged if all criteria are fullfilled. All

# values given are default values.

TolE 5e-6 # Energy change (a.u.)

TolRMSG 1e-4 # RMS gradient (a.u.)

TolMaxG 3e-3 # Max. element of gradient (a.u.)

TolRMSD 2e-3 # RMS displacement (a.u.)

TolMaxD 4e-3 # Max. displacement (a.u.)

# keyword for frequently used sets of convergence thresholds

Convergence normal # Default

loose

tight

ProjectTR false # project translation and rotation

# default is false. MUST be false for

# redundant internals

end
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Keywords for the control of the Hessian (especially important for the TS optimization):

# initial Hessian control

inhess unit # unit matrix

Read # Hessian in a .hess file (e.g. from

# a previous NumFreq run), this command

# comes with the following:

InHessName "filename.hess" # filename of

# Hessian input file

# these only for redundants

Lindh # Lindh’s model Hessian

Almloef # Almloef’s model Hessian

Schlegel # Schlegel’s model Hessian

Swart # Swart and Bickelhaupt‘s model Hessian

# additional Hessian control for TS optimization

Calc_Hess true # calculate the Hessian numerically at the beginning

Recalc_Hess 5 # calculate the Hessian at the beginning

# and recalculate it after 5,10,.. cycles

Hybrid_Hess {0 1 5 6} end # calculates a Hybrid Hessian

# exact calculation for

# atoms 0, 1, 5 and 6; works also

# with Calc_Hess and Recalc_Hess

NumHess true # requests use of numerical Hessian

# modification of the internal Hessian

Hess_Internal

{A 3 2 1 D 2.0} # define a diagonal Hessian value of

# 2 Eh/Bohr2 for the angle between

# atoms 3 2 1. This can also be done for

# bonds, dihedrals and Cartesian

# coordinates.) The Hessian values of

# multiple coordinates can be modified

reset 5 # reset the modified internal Hessian values

# after 5 cycles

# The following is only recommended

# after a relaxed surface scan

# in this example of the scan coordinate B 1 0;

# "basename.004.xyz" contains the optimized structure

# of the scan step with highest energy

{B 1 0 C}
XYZ1 "scanName.003.xyz" # the xyz-files of the structures

XYZ2 "ScanName.005.xyz" # next to the highest energy point

GBW1 "ScanName.003.gbw" # the gbw-files of the structures
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GBW2 "ScanName.005.xyz" # next to the highest energy

# the gbw-files are optional

end

# Hessian update procedure

Update Powell

Bofill # default for TS optimization

BFGS # default for geometry optimization

# Hessian modification (only for P-RFO step)

HESS_Modification Shift_Diag # shift the diagonal elements

# (default)

EV_Reverse # reverse the

# diagonal elements

# Minimal value of Hessian eigenvalues (only P-RFO step)

HESS_MinEV 0.0001 # if an absolute Hessian eigenvalue

# is smaller than this value, it is

# set to HESS_MinEV

# Rebuilding the model Hessian after a number of cycles can

# accelerate the convergene of the optimization

NResetHess 20 # Set the number of geometry steps after which

# a new model Hessian is built (only with BFGS

# update)

NStepsInResetHess 5 # since previous steps and gradients are

# available, it is possible to include

# information about the PES in the

# newly built Hessian (via a BFGS

# update). This number should be

# smaller than NResetHess

end

As for parameter scan runs ORCA has some special options that may help to speed up the optimization:

%geom UseSOSCF false # switches the converger to SOSCF

# after the first point. SOSCF may

# converge better than DIIS if the

# starting orbitals are good.

# default = false

ReducePrint true # reduce printout after the first

# point default=true

# the initial guess can be changed after the first

# point. The default is MORead. The MOs of the pre-

# vious point will in many cases be a very good guess

# for the next point. In some cases however, you may

# want to be more conservative and use a general guess.

OptGuess = OneElec # the one electron matrix
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= Hueckel # the extended Hueckel guess

= PAtom; # the PAtom guess

= Pmodel # the PModel guess

= MORead # MOs of the prev. point (default)

end

Redundant Internal Coordinates

There are three types of internal coordinates: redundant internals, old redundant internals (redundant old)

and a new set of redundant internals (redundant new, with improved internals for nonbonded systems). All

three sets work with the same “primitive” space of internal coordinates (stretches, bends, dihedral angles

and improper torsions). Only the redundant internals works with one more type of bends in cases where

a normal bend would have been approximately 180◦. In redundant internal coordinates the full primitive

set is kept and the Hessian and gradient are transformed into this – potentially large – space. A geometry

optimization step requires, depending on the method used for the geometry update, perhaps a diagonalization

or inversion of the Hessian of dimension equal to the number of variables in the optimization. In redundant

internal coordinates this space may be 2-4 times larger than the nonredundant subspace which is of dimension

3Natoms − 6(5). Since the diagonalization or inversion scales cubically the computational overhead over

nonredundant spaces may easily reach a factor of 8–64. Thus, in redundant internal coordinates there are

many unnecessary steps which may take some real time if the number of primitive internals is greater than

2000 or so (which is not so unusual). The timing problem may become acute in semiempirical calculations

where the energy and gradient evaluations are cheap.

We briefly outline the theoretical background which is not difficult to understand:

Suppose, we have a set of nI (redundant) primitive internal coordinates q constructed by some recipe and a

set of nC = 3Natoms Cartesian coordinates x. The B-matrix is defined as:

Bij =
∂qi
∂xj

(9.227)

This matrix is rectangular. In order to compute the internal gradient one needs to compute the “generalized

inverse” of B. However, since the set of primitive internals is redundant the matrix is rank-deficient and one

has to be careful. In pratice one first computes the nI × nI matrix G:

G = BBT (9.228)

The generalized inverse of G is denoted G− and is defined in terms of the eigenvalues and eigenvectors of

G:

G− =

(
U

R

)T (
Λ−1 0

0 0

)(
U

R

)
(9.229)
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Here U are the eigenvectors belonging to the nonzero eigenvalues Λ which span the nonredundant space

and R are the eigenvectors of the redundant subspace of the primitive internal space. If the set of primitive

internals is carefully chosen, then there are exactly 3Natoms − 6(5) nonzero eigenvalues of G. Using this

matrix, the gradient in internal coordinates can be readily computed from the (known) Cartesian gradient:

gq = G−Bgx (9.230)

The initial Hessian is formed directly in the redundant internal space and then itself or its inverse is updated

during the geometry optimization.

Before generating the Newton step we have to ensure that the displacements take place only in the nonredun-

dant part of the internal coordinate space. For this purpose a projector P ′:

P′ = GG− = G−G (9.231)

is applied on both the gradient and the Hessian:

g̃q = P′gq (9.232)

H̃q = P′HqP′ + α (1−P′) (9.233)

The second term for H̃ sets the matrix elements of the redundant part of the internal coordinate space to

very large values (α = 1000).

Coordinate steps

A Quasi-Newton (QN) step is the simplest choice to update the coordinates and is given by:

∆q = −H̃−1q g̃q (9.234)

A more sophisticated step is the rational function optimization step which proceeds by diagonalizing the

augmented Hessian:

(
Hq gq

gq 0

)(
∆q

1

)
= v

(
∆q

1

)
(9.235)

The lowest eigenvalue ν0 approaches zero as the equilibrium geometry is approached and the nice side effect of

the optimization is a step size control. Towards convergence, the RFO step is approaching the quasi-Newton

step and before it leads to a damped step is taken. In any case, each individual element of ∆q is restricted to

magnitude MaxStep and the total length of the step is restricted to Trust. In the RFO case, this is achieved

by minimizing the predicted energy on the hypersphere of radius Trust which also modifies the direction of

the step while in the quasi-Newton step, the step vector is simply scaled down.
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Thus, the new geometry is given by:

qnew = qold + ∆q (9.236)

However, which Cartesian coordinates belong to the new redundant internal set? This is a somewhat

complicated problem since the relation between internals and Cartesians is very nonlinear and the step

in internal coordinates is not infinitesimal. Thus, an iterative procedure is taken to update the Cartesian

coordinates. First of all consider the first (linear) step:

∆x = A∆q (9.237)

with A = BTG−. With the new Cartesian coordinates xk+1 = xk + ∆x a trial set of internals qk+1 can be

computed. This new set should ideally coincide with qnew but in fact it usually will not. Thus, one can refine

the Cartesian step by forming

∆∆q = qnew − qk+1 (9.238)

which should approach zero. This leads to a new set of Cartesians ∆x′ = A∆∆q which in turn leads to a

new set of internals and the procedure is iterated until the Cartesians do not change and the output internals

equal qnew within a given tolerance (10−7 RMS deviation in both quantities is imposed in ORCA).

Constrained Optimization

Constraints on the redundant internal coordinates can be imposed by modifying the above projector P ′ with

a projector for the constraints C:

P = P′ −P′C (CPC)
−1

CP′ (9.239)

C is a diagonal matrix with 1’s for the constraints and 0’s elsewhere. The gradient and the Hessian are

projected with the modified projector:

g̃q = Pgq (9.240)

H̃q = PHqP + α (1− P ) (9.241)
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Constrained Fragments Optimization

The constrain fragments option was implemented in order to provide a convenient way to handle constraints

for systems consisting of several molecules. The difference to a common optimization lies in the coordinate

setup. In a common coordinate setup the internal coordinates are built up as described in the following:

In a first step, bonds are constructed between atom pairs which fulfill certain (atom type specific) distance

criteria. If there are fragments in the system, which are not connected to each other (this is the case when

there are two or more separate molecules), an additional bond is assigned to the nearest atom pair between

the nonbonded fragments. All other internal coordinates are constructed on the basis of this set of bonds.

Here, in a second step, bond angles are constructed between the atoms of directly neighboured bonds. If

such an angle reaches more than 175◦, a special type of linear angles is constructed. In a third step, dihedral

angles (and improper torsions) are constructed between the atoms of directly neighboured angles.

If the constrain fragments option is switched on, the set of bonds is constructed in a different way. The user

defines a number of fragments. For each fragment a full set of bonds (not seeing the atoms of the other

fragments) is constructed as described above. If using this option, the user also has to define which fragments

are to be connected. The connection between these fragments can either be user-defined or automatically

chosen. If the user defines the connecting atoms N1 and N2, then the interfragmental bond is the one between

N1 and N2. If the user does not define the interfragmental bond, it is constructed between the atom pair

with nearest distance between the two fragments. Then the angles and dihedrals are constructed upon this

(different) set of bonds in the already described fashion.

Now let us regard the definition of the fragment constraints: A fragment is constrained internally by

constraining all internal coordinates that contain only atoms of the respective fragment. The connection

between two fragments A and B is constrained by constraining specific internal coordinates that contain

atoms of both fragments. For bonds, one atom has to belong to fragment A and the other atom has to belong

to fragment B. Regarding angles, two atoms have to belong to fragment A and one to fragment B and vice

versa. With respect to dihedrals, only those are constrained where two atoms belong to fragment A and the

other two belong to fragment B.

9.21.2 Transition State Optimization

As transition state finder we implemented the well-established eigenvector following algorithm using a P-RFO

step as implemented by Baker [165]. This algorithm is a quasi-Newton like algorithm.

The Taylor series of the energy, truncated after the quadratic term, is:

E = E0 + gq
+∆qq +

1

2
∆q +Hq∆q (9.242)

The Newton-Raphson step to get from the actual point to a stationary point is:

∆q = −H−1
q gq =

∑
−V

+
i gqVi
bi

(9.243)



612 9 Detailed Documentation

with Vi and bi as eigenvectors and eigenvalues of the Hessian Hq. This step leads to the nearest stationary

point on the PES. This stationary point can be a minimum or a saddle point, according to the curvature of

the PES at the actual point.

With a simple shift of the Hessian eigenvalues bi in this equation one can guide the step to a stationary point

with the required characteristics (Hessian with exactly one negative eigenvalue). The transition state search

is separated into two different optimization problems. The energy is maximized along one Hessian eigenmode

and minimized along the remaining 3N − 7(6) eigenmodes. We introduce two different shift parameters

λp and λn, where λp is the shift parameter for the eigenmode being maximized and λn shifts the Hessian

eigenvalues of the modes being minimized. This method allows us to maximize along any mode, not only

the one with smallest eigenvalue. Starting from two different RFO-matrices for the different optimization

problems (see description above) we get for λp and λn:

λp =
1

2
bk +

1

2

√
b2k + 4F 2

k and
∑
i6=k

F 2
i

λn − bi
= λn (9.244)

whereas Fi = V +
i g is the component of g along the Hessian eigenmode Vi and λn has to get solved iteratively.

The solution for λn has to be negative and lower than b2 (or lower than b1, if not the lowest mode is being

followed). If the Hessian has more than one negative eigenvalue, these properties might not be fulfilled, and

the Hessian would have to be modified. In our implementation the Hessian diagonal elements are either

shifted or reversed in such a case.

Once the shift parameters are known the P-RFO step h is calculated as follows:

∆qk = − F̄kVk
bk − λp

and ∆qi = − F̄iVi
bi − λn

with i = 1 . . . n, i 6= k (9.245)

∆q =
n∑
j=1

∆qj (9.246)

ScanTS option

For TS modes of rather local nature (involving only one bond or an angle; no concerted movements over

multiple atoms) we implemented the ScanTS feature. Here the user can carry out a relaxed surface scan and

a TS optimization in one calculation. After the relaxed surface scan the algorithm chooses the optimized

structure of the scan with highest energy as initial guess structure and the two neighbouring structures for the

calculation of the second derivative of the scanned coordinate (e.g., if scan step number 4 gives the structure

with highest energy, then structure basename.004.xyz is the initial guess for the TS optimization; the

structures basename.003.xyz and basename.005.xyz are used for the calculation of the second derivative).

Before the first step of the subsequent TS optimization the energies and gradients for all three structures are

calculated. The gradients are then transformed to internal coordinates. The diagonal Hessian value of the

scanned coordinate is then calculated via finite difference of the internal gradients of the two given structures

(003 and 005 in our example).
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For the construction of the initial Hessian a model force field Hessian is built up (this Hessian has got only

diagonal entries and zeros as off-diagonal elements). The exactly calculated diagonal Hessian value replaces

the model force field Hessian entry for the respective internal coordinate.

If the user already performed a regular relaxed surface scan without the subsequent TS optimization, then

he can nevertheless use these structures for the same procedure. A relaxed surface scan always gives you

the xyz-files and gbw-files of the optimized structures of each scan step. A separate TS optimization can

be carried out where the structure with highest energy is the starting structure. Additionally the two files

with the two adjacent structures (as explained above) have to be provided (via the Hess Internal keyword,

see below). Furthermore, the internal coordinate, for which the diagonal Hessian value has to be calculated,

has to be given (the previously scanned coordinate). This exact Hessian calculation is only possible for one

internal coordinate:

%geom

Hess_Internal

{B 1 0 C} # previously scanned coordinate

XYZ1 "scanName.003.xyz" # the xyz-files of the structures

XYZ2 "ScanName.005.xyz" # next to the highest energy point

GBW1 "ScanName.003.gbw" # the gbw-files of the structures

GBW2 "ScanName.005.xyz" # next to the highest energy

# the gbw-files are optional

end

end

Additionally the manipulation of the diagonal Hessian values of the internal Hessian is possible for further

internal coordinates, but without an extra calculation. Here the user can just define a value (in Eh/Bohr2).

Hess_Internal

{A 3 2 1 D 2.0} # define a diagonal Hessian value of

# 2 Eh/Bohr2 for the angle between

# atoms 3 2 1

{B 1 0 D -0.5} # define a diagonal Hessian value of

# -0.5 Eh/Bohr2 for the bond between

# atoms 1 and 0

end

The definition of such Hessian (diagonal) elements is possible for multiple internal coordinates. These just

replace the values of the force field model Hessian.

Hybrid Hessian

We implemented the calculation of a “Hybrid Hessian” as an alternative to the full Hessian calculation for

TS optimization. Here only those parts of the Hessian, that are important for the TS optimization, are

calculated exactly. For this calculation we define two kinds of atoms: atoms whose couplings with the other

atoms are treated exactly (E) and atoms whose couplings are treated approximately (A).
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In a first step an Almloef model Hessian is built up in redundant internal coordinates and transformed to

Cartesian coordinates. This Hessian gives the second derivative elements for atom pairs A/A. In a second

step the second derivative elements between pairs E/E and E/A are calculated numerically as in a numerical

frequency calculation:

∆E

∆iB∆jC
=

∆E

∆jC∆iB
=
gi,Bj,C − geq.j,C

displ.
(9.247)

with:
i, j x-, y- or z-direction

B,C pairs of E/E, E/A, A/E

displ. magnitude of displacement

geq.j,C force on atom C in direction j in current geometry

gi,Bj,C force on atom C in direction j after displacement of atom B in direction i

Partial Hessian Vibrational Analysis

We implemented the Partial Hessian Vibrational Analysis (PHVA), as published by Li, Jensen in [168], for

the analysis of the nature of stationary points of structures obtained with QM/MM optimizations.

# PHVA after a QM/MM optimization in the (dispersion-/PC-) field

# caused by the MM-atoms

! NumFreq

%LJCoefficients "temp.LJ" # file with the Lennard Jones

# coefficients for dispersion interaction

# obtained from last QM/MM run

%pointcharges "temp.pc" # file with the point charges for

# electrostatic interaction

# obtained from last QM/MM run

#

%freq

PARTIAL_Hess {0 1 2} # atoms which are "frozen" and which make

# the boundary to the MM-system

end

end

NOTE

• This procedure should be used for QM/MM optimized structures only to verify the nature of the

stationary point and have an estimate of the ZPE.

Here we shortly describe the procedure: In PHVA we divide the system into two parts B (of size n atoms)

and C (size N − n). Let the atom set B belong to the region where the chemical change is localized. The

Partial Hessian matrix is built up as follows:
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(
KBB 0

0 Kε
CC

)
(9.248)

With:

KBB : x, y, z direction (9.249)

Kε
CC =


ε 0 0

0
. . . 0

0 0 ε

 , ε = 10−8 au, (9.250)

this corresponds to using near-infinite masses for the atoms in C.

With this procedure we get the following eigenvalue structure:

• Six zero eigenvalues with modes corresponding to translational and rotational motion of the entire

molecule.

• 3(N −n)− 6 small (less than 1 cm−1) eigenvalues with modes corresponding mainly to internal motion

within region C.

• Three eigenvalues (typically less than 10 cm−1) with modes corresponding mainly to motion of region

C relative to region B.

• (3n− 3) eigenvalues with modes corresponding mainly to relative motion of B and C as well as internal

motion within region B.

9.21.3 Minimum Energy Crossing Points

The MECP optimization allows the user to optimize to structures where two different potential energy

surfaces (PES1 and PES2) cross each other. In this optimization two conditions apply: the energy E1 of

PES1 is minimized while at the same time the energy difference (E1 − E2)
2

of both surfaces is minimized.

For the implementation we follow in principle the suggestions of Harvey et al. in [167].

For the minimization two different gradients are constructed:

The first gradient chosen for the minimization is

f =
∂

∂q
(E1 − E2)

2
= 2 (E1 − E2) · x1 (9.251)

where x1 is the gradient difference vector

x1 =

[(
∂E1

∂q

)
−
(
∂E2

∂q

)]
(9.252)
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which is orthogonal to the crossing hyperline near the MECP.

The gradient

g =

(
∂E1

∂q

)
− x1

|x1|

[(
∂E1

∂q

)
· x1

|x1|

]
(9.253)

is orthogonal to x1.

Both gradients are combined to yield the effective surface crossing gradient

gSC = g + f (9.254)

The crossing hyperline is defined as the 3N − 7 dimensional subspace of PES1, which is orthogonal to x1. In

the MECP optimization we want to find the point of lowest energy within this subspace.

Our calculation of normal modes and force constants for movements along the crossing hyperline differ

from the one proposed by Harvey et al. A standard frequency analysis can not be performed, but a similar

procedure is applied:

Let us regard the second-order Taylor expansion for the energy of both surfaces near the MECP for a

displacement along the crossing hyperline (orthogonal to x1):

EA = EMECP +
1

2
∆qTHeff,A∆q (9.255)

with:

EA Energy E1 on PES1 or E2 on PES2

Heff,A effective Hessian for PES1 or PES2

∆q displacement along the crossing hyperline

Diagonalization of this effective Hessian gives us the normal modes of the crossing hyperline and thus allows

us to decide whether the MECP optimization converged to a minimum in the 3N − 7 dimensional subspace

of the crossing hyperline.

The procedure for the calculation of the effective Hessian is now as follows: For each of both surfaces the

second derivative matrix is calculated. Then the 6 rotations and translations and additionally the direction of

the gradient difference vector x1 (this ensures that movement orthogonal to the crossing hyperline, for which

we do NOT satisfy the conditions of a stationary point, is excluded) are projected out from the Hessian

matrix.

For MECP optimizations the following options exist:
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%mecp

SurfCrossOpt true # switches on the MECP optimization

# alternatively use: ! SurfCrossOpt

SurfCrossNumFreq true # switches on the MECP effective Hessian

# calculation

# alternatively use: ! SurfCrossNumFreq

# separate MO input for the second spin state (PES2)

moinp "Myfile.gbw"# MO input for PES2

# information on the electronic structure of PES 2

Mult 3 # multiplicity of PES2

brokenSym 1,1 # broken symmetry for PES2

# CASSCF options for PES2 (also see the CASSCF chapter)

casscf_nel 6 # number of active space electrons

casscf_norb 6 # number of active orbitals

casscf_mult 1,3 # multiplicities singlet and triplet

casscf_nroots 4,2 # four singlets, two triplets

casscf_bweight 2,1 # singlets and triplets weighted 2:1

casscf_weights[0] = 0.5,0.2,0.2,0.2 # singlet weights

casscf_weights[1] = 0.7,0.3 # triplet weights

end

9.21.4 Conical Intersection Optimization

The conical interesction optimization allows the user to optimize to structures where a ground and an excited

state structure are degenerate.

ORCA uses a an optimization algorithm in which the gradient difference is projected out of the mean energy

gradient.

For conical intersection optimizations the following options exist:

%conical

ConicalIntersectOpt true # switches on the CI optimization

# alternatively use: ! CI-Opt

# information on the electronic structure of PES 2

Mult 3 # multiplicity of PES2 (excited state)

# by default the multiplicity of the first (ground)

# state is used

brokenSym 1,1 # broken symmetry for PES2

# TDDFT options for PES2 (also see the TDDFT chapter)

TDDFT_NROOTS 2 # default 3

TDDFT_IROOT 1 # default 0

TDDFT_MAXDIM 5 # default 10

# CASSCF options for PES2 (also see the CASSCF chapter)
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casscf_nel 6 # number of active space electrons

casscf_norb 6 # number of active orbitals

casscf_mult 1,3 # multiplicities singlet and triplet

casscf_nroots 4,2 # four singlets, two triplets

casscf_bweight 2,1 # singlets and triplets weighted 2:1

casscf_weights[0] = 0.5,0.2,0.2,0.2 # singlet weights

casscf_weights[1] = 0.7,0.3 # triplet weights

end

NOTE:

• You can use the algorithm for identical as well as different multiplicities. In the latter case, the

SurfCrossOpt algorithm can also be chosen.

9.21.5 Numerical Gradients

If you want to use numerical instead of analytic gradients you have to use

! NumGrad

in your input file. Additionally the settings for the numerical differentiation can be changed:

%numgrad

CentralDiff true # You should use two-sided numerical differentiation, but it

# is possible to switch to one-sided numerical differentiation.

DX 0.005 # Increment in Bohr for the differentiation.

TransInvar true # Take advantage of translation invariance

end

U

9.21.6 ORCA as External Optimizer

If you want to use only the optimizer of ORCA you have to use

! ExtOpt

in your input file. All information that you give on the electronic structure is discarded. In each optimization

step ORCA writes a file called “extopt.extcomp.inp” with the following format:
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"N (nr. of atoms)" "calculation requested" "charge" "multiplicity"

atomic nr.(atom1) x-coord.(atom1) y-coord.(atom1) z-coord.(atom1)

...

atomic nr.(atomN) x-coord.(atomN) y-coord.(atomN) z-coord.(atomN)

example:

9 1 0 1

6 -7.183647732744 1.832728827744 -0.116462028781

9 -6.344271117689 -0.569555640677 -0.053332293594

9 -6.385938620292 3.010680341363 1.994410067976

9 -9.725973988287 1.760800299423 -0.041860336809

6 -6.281650723853 3.228508119832 -2.541654671259

1 -7.049215894384 2.192752895053 -4.164371259742

1 -7.120030511673 5.123374809616 -2.502306840221

8 -3.579612411580 3.262825146858 -2.485537715188

1 -3.134995715660 4.196025355887 -4.047828323839

NOTE: the coordinates are given in Bohr.

There are two types of calculation:

1. calculate energy and gradient

2. calculate energy, gradient and Hessian

If a Hessian is requested, it should be stored in the ORCA Hessian file format and be named “yourInputFilename.hess”.

ORCA then calls a script (that is not distributed with the ORCA binaries):

“orca External extopt.extcomp.inp extopt.extcomp.out”

Your script starts the energy, gradient (and Hessian) calculation and finally provides the results in a file

called “extopt.extcomp.out”, which has to be written in the following format:

Total Energy

gradient(x) on atom1 gradient(y) on atom1 gradient(z) on atom1

...

gradient(x) on atomN gradient(y) on atomN gradient(z) on atomN

example:

-1.135276876846e+02

-1.144030900000e-05 3.458417100000e-05 7.686904800000e-06

-4.450221700000e-05 -2.016015000000e-05 -2.617359400000e-05

4.460242300000e-05 -3.290908700000e-05 5.698279500000e-06

1.026743300000e-06 4.889225700000e-05 3.474765100000e-05

6.178236500000e-05 -1.506876000000e-04 -1.288283000000e-04
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1.601578300000e-05 1.670611600000e-05 2.747591400000e-05

-4.360515500000e-06 5.840020000000e-06 8.823311100000e-06

-1.135615900000e-04 1.384714300000e-04 6.197283200000e-05

5.043762200000e-05 -4.073673300000e-05 8.597172100000e-06

NOTE:

• the energy should be given in Eh, gradients should be given in Eh/Bohr, Hessian values should be

given in Eh/Bohr2

ORCA then performs the next optimization step, checks for convergence, and if the optimization has not yet

converged, it goes on to the next optimization step.

Gaussian as External Optimizer. To use the external optimizer from Gaussian in ORCA, the following

keywords were provided in the past:

%geom

UseGaussian true # Use the external Gaussian optimizer instead

# of the ORCA optimizer.

GaussianName "GAU" # String defining the name of the Gaussian

# optimizer

GauOptFlags # String indicating the optimization flags

Gaussian Constraints # List defining the constraints for

# the Gaussian optimizer.

end

Since the ORCA team got banned by Gaussian in January 2007 we can no longer support these option flags.

They have not been removed from the code and may or may not work. If there is trouble with it we can –

unfortunately – not offer any help since we do not have access to the Gaussian code any longer.

9.22 Frequency calculations - numerical and analytical

The ORCA program package contains the orca numfreq and the orca scfhess modules to perform numerical

or analytical frequencies calculations.

The parameters to control these frequency calculations can be specified in the %freq-block.

%freq

# Flags to switch frequencies calculation on/off

NumFreq false # numerical frequencies (available for all methods)

AnFreq false # analytical frequencies (available for SCF, MP2)

# (One of these options has to be set to true,
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# to request a freq calculation)

ScalFreq 1.0 # Scaling factor for frequencies (default = 1.0)

# NOTE: Scaling is applied to the frequencies after they are

# calculated. SCALED frequencies will be stored in the

# .hess file and printed in the output file.

# In the .hess file you have accesss to the frequency

# scaling factor (see below).

# Flags to control NumFreq calculation:

CentralDiff true # use central differences [f(x+h)-f(x-h)]/2h - or -

# use one-sided differences [f(x+h)-f(x)]/h

Restart false # restart a (numerical) frequency calculation

DX 0.005 # increment h

Increment 0.005 # increment h

Hybrid_Hess {...} end # calculate (numerical) Hybrid Hessian

Partial_Hess {...} end # calculate (numerical) Partial Hessian

# Flags to control AnFreq calculation:

DryRun false # estimate the expected amount of memory needed for

# a total incore and an ondisk calculation (max/min)

Hess2ElFlags

1,2,2,1 end # approximations to be used during Hessian-Calculation

# There are 4 Hess2ElFlags to control the approximation

# used for the following evaluations:

# [0] 2-electron integral derivatives

# [1] Response fock operator

# [2] CPSCF calculations

# [3] 2nd integral derivative contributions

# The Hess2ELFlags can be filled with:

# 0 - exact

# 1 - RI

# 2 - RIJCOSX

# Flags to control subsequent vibrational analysis:

QuasiRRho true # Evaluate Vibrational Entropy with

# Quasi-Rigid Rotor Harmonic Oscillator

CuttOffFreq 1.0 # Threshold for frequencies to be considered
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# in spectra and printout

Temp 298.15 # run the thermochemistry calculations at user defined

# temperatures (max 16 temperatures, separated by ’,’)

T 290, 292, 295 # same as Temp

end

At present, analytical Hessians can be calculated for SCF and MP2 only. However, there are some additional

restrictions. Analytical Hessians cannot be performed for

- Double-Hybrid functionals

- meta-GGAs

- RI-JK approximation

- relativistic corrections

The Hess2ElFlags that control the approximations used during the various steps of analytical Hessian

calculations are set automatically according to global input flags and accuracy requirements. E.g. 1,2,2,1 is

the default setting for RIJCOSX Hessian. The default settings have been tested very carefully.

NOTE: You should only change these flags, if you really know what you are doing.

Here is what you would do, if you ran a frequency calculation and have a .hess file on disk and want to try

different scaling factors for the frequencies

$frequency_scale_factor

0.90 <<<---- you change this to whatever you want

orca_vib myjob_scaled_freq.hess

The program will then read the Hessian, diagonalize it and apply your scaling factor. Whatever scaling factor

was used in the actual input that generated the Hessian is irrelevant since the Hessian is re-diagonalized. To

avoid confusion, we recommend that if the goal is to play with the scaling factor, then to leave the scaling

factor in the input at 1.0. Nothing bad happens if you don’t though.

9.22.1 Intrinsic Reaction Coordinate

The Intrinsic Reaction Coordinate (IRC) method finds a path connecting a transition state (TS) with its

downhill-nearest intermediates. The implementation in ORCA follows the method suggested by Morokuma

and coworkers. [170]

The IRC method follows the gradient of the nuclear coordinates. As the gradient is negligible at a TS, first

an initial displacement from the TS structure has to be carried out, based on the eigenmodes of the Hessian,

in order to get to a region with nonnegligible gradient. For the initial displacement the eigenvector of the

eigenmode with lowest frequency (hessMode=0) is normalized and then scaled by Scale Displ SD (which by

default is chosen such that an energy change of Init Displ DE can be expected). Two initial displacements,

forward and backward, are taken by adding the resulting displacement vector (multiplied with +1 and
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-1, respectively) to the initial structure. If the user requests the downhill direction (e.g. from a previous

unconverged IRC run), it is assumed that the gradient is nonzero and thus no initial displacement is carried

out.

After the initial displacement the iterations of the IRC method begin. Each iteration consists of two main

steps, which each consist again of multiple SP and gradient runs:

1. Initial steepest descent (SD) step:

a) The gradient (grad0) of the starting geometry (G0) is normalized, scaled by Scale Displ SD, and

the resulting displacement vector (SD1) is applied to G0.

b) Optional (if SD ParabolicFit is true): If SD1 increases the energy, a linear search is taken along

the direction of the displacement vector:

i. The displacement vector SD1 is scaled by 0.5 (SD2 = 0.5 x SD1) and again added to G0.

ii. A parabolic fit for finding the displacement vector (SD3) which leads to minimal energy is

carried out using the three SP energies (G0, geometry after SD1 and after SD2 step). SD3

has the same direction as SD1 and SD2, but can have a different length.

iii. The keyword Interpolate only controls whether the length of SD3 has to be in between 0

and and the length of SD1. If that is the case, the maximum length is determined by SD1,

the minimum length is zero.

c) At the resulting geometry G1 (G0+SD1 or G0+SD3) the gradient is calculated (grad1).

2. Optional (if Do SD Corr is true): Correction to the steepest descent step:

a) Based on grad0 and grad1 a vector is computed which represents a correction to the first SD

(SD1 or SD3) step. This correction brings the geometry closer to the IRC.

b) This vector is normalized, scaled by Scale Displ SD Corr times the length of SD1 or SD3, and

the resulting displacement vector (SDC1) is applied to G1.

c) Optional (if SD Corr ParabolicFit is true):

i. If the energy increases after applying step SDC1, SDC1 is scaled by 0.5 (SDC2 = 0.5 x SD1),

if the energy decreases, SDC1 is scaled by 2 (SDC2 = 2 x SD1). SDC2 is then added to G1.

ii. A parabolic fit for finding the displacement vector (SDC3) which leads to minimal energy is

carried out using the three SP energies (G1, geometry after SDC1 and after SDC2 step).

SDC3 has the same direction as SDC1 and SDC2, but can have a different length.

iii. The keyword Interpolate only controls whether the length of SDC3 has to be in between

0 and and the length of SDC1. If that is the case, the maximum length is determined by

SDC1, the minimum length is zero.

d) At the resulting geometry G2 (G1+SDC1 or G1+SDC3) the gradient is calculated (grad2).

3. The gradient at the new geometry is checked for convergence.

4. Optional (if Adapt Scale Displ is true):
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a) If the resulting overall step size is smaller than 0.5 times Scale Displ SD, Scale Displ SD is

multiplied by 0.5.

b) If the resulting overall step size is larger than 2 times Scale Displ SD, Scale Displ SD is multiplied

by 2.

c) Scale Displ SD may not become smaller than 1/16 times the initial Scale Displ SD and not larger

than 4 times the initial Scale Displ SD.

The following keywords are available:

! IRC

%irc

MaxIter 20

PrintLevel 1

Direction both # both - default

# forward

# backward

# down

# Initial displacement

InitHess read # by default ORCA uses the hessian from AnFreq or NumFreq, or

# computes a new one

# read - reads the Hessian that is defined via Hess_Filename

# calc_anfreq - computes the analytic Hessian

# calc_numfreq - computes the numeric Hessian

Hess_Filename "h2o.hess" # input Hessian for initial displacement, must be used

# together with InitHess = read

hessMode 0 # Hessian mode that is used for the initial displacement. Default 0

Init_Displ DE # DE (default) - energy difference

# length - step size

Scale_Init_Displ 0.1 # step size for initial displacement from TS. Default 0.1 a.u.

DE_Init_Displ 2.0 # energy difference that is expected for initial displacement

# based on provided Hessian (Default: 2 mEh)

# Steps

Follow_CoordType cartesian # default and only option

Scale_Displ_SD 0.15 # Scaling factor for scaling the 1st SD step

Adapt_Scale_Displ true # modify Scale_Displ_SD when the step size becomes

# smaller or larger

SD_ParabolicFit true # Do a parabolic fit for finding an optimal SD step

# length

Interpolate_only true # Only allow interpolation for parabolic fit, not

# extrapolation

Do_SD_Corr true # Apply a correction to the 1st SD step

Scale_Displ_SD_Corr 0.333 # Scaling factor for scaling the correction step to

# the SD step. It is multiplied by the length of the

# final 1st SD step
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SD_Corr_ParabolicFit true # Do a parabolic fit for finding an optimal correction

# step length

# Convergence thresholds - similar to LooseOpt

TolRMSG 5.e-4 # RMS gradient (a.u.)

TolMaxG 2.e-3 # Max. element of gradient (a.u.)

# Output options

Monitor_Internals # Up to three internal coordinates can be defined

{B 0 1} # for which the values are printed during the IRC run.

{B 1 5} # Possible are (B)onds, (A)ngles, (D)ihedrals and (I)mpropers

end

end

NOTE

• For direction=down (downhill) no initial displacement is necessary, and thus no Hessian is needed.

9.22.2 Nudged Elastic Band Method

The Nudged Elastic Band (NEB) [457–459] method is used to find a minimum energy path (MEP) connecting

two local energy minima on the potential energy surface (PES) and thereby an estimate of the activation

energy for the transition. The two minima are referred to as the reactant and product states in the following

discussion. The path can have one or more maxima, each one corresponding to a first order saddle point

on the energy surface. The NEB method offers an advantage over eigenvector following methods in that

it is guaranteed to find saddle points that connect the given reactant and product states. The minimum

energy path is often used to represent the reaction coordinate of the transition between the two states. The

implementation of the NEB method in ORCA is described in detail in the article by Ásgeirsson et. al. [171].

The user needs to specify the reactant and product state configurations. The reactant state is inserted

into the regular ORCA input file while the product state should be in a separate .xyz file. The reactant

and product state configurations should be optimized a priori by relaxing to energy minima on the PES,

see section 8.2.1. This can also be achieved via the ’preopt ends’ keyword. It is important to carefully

prepare the reactant and product states such that the position (or index) of the atoms is the same in the two

configuration files, i.e. there should be one-to-one mapping between the reactant and product configurations.

The discretized path between the two minima is represented by a set of configurations of the atoms that are

referred to as images of the system. The number of intermediate images between the end points is specified

by the user. The general rule of thumb is to include at least 5 intermediate images per energy maximum in

order to obtain a high enough resolution of the path and the saddle point. However, calculations can often

converge and give accurate results with fewer images but complex paths with multiple maxima or long tails

require more images. During an NEB calculation the intermediate images are iteratively shifted towards the

MEP using the component of the atomic force that is perpendicular to the current path as estimated from

the tangent to the path at each image. The end point images are kept fixed. In each step of the iterative

process, the energy and atomic forces of each intermediate image need to be computed. One of the main

advantages of the NEB method is that the calculations of the images are carried out in parallel, where the

electronic structure computations can be distributed over multiple processors (see discussion below for more

details on the parallelization). While the CPU time is proportional to the number of images, the number of
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iterations needed for convergence to the MEP can become smaller when more images are included in the

discrete representation of the path.

The tangent to the path at each image can be estimated in two ways, either by the original method [458] or

by the more numerically stable improved [459] estimate (default option). In the former, the tangent at an

image is taken to be parallel to a line segment connecting the two adjacent images. In the improved tangent

estimate, the line segment from the current image to the adjacent image with higher energy is used, except

for the highest energy image where an energy-weighted average of the two line segments to adjacent images is

used.

9.22.2.1 Spring forces

In order to control the distribution of the images along the path, fictitious spring forces are included [458].

The magnitude of the spring forces is controlled by spring constants that are typically taken to be within the

range of 0.01 Eh/Bohr2 to 1.0 Eh/Bohr2 (the default is 0.1 Eh/Bohr2). If the spring constants are choosen to

be the same for all pairs of adjacent images, the images will be equally distributed along the path. However,

it is also possible to choose energy-weighted spring constants so as to increase the density of images in the

higher energy regions [460]. This will typically improve the tangent estimate in the barrier region and hence

stabilize the calculations. The inclusion of energy-weighted springs can be important in reactions where the

energy barrier is narrow and/or the pathway is characterized by a long ’energy tail’, e.g., in rearrangements

or dissociation reactions. The choice of spring constants will affect the behaviour of a calculation, especially

the number of iterations needed to reach convergence. Three different formulations for spring forces are

available in ORCA 4.2. These are referred to as the original [458], distance [459] and ideal [461] spring forces.

The original spring forces are estimated by a spring acting on each degree of freedom in the adjacent images.

The density of images then tends to increase in the higher energy regions when used in tandem with the

improved tangent estimate. The distance based spring forces are based on the straight-line distance between

the adjacent images. For ideal springs each image is assigned an ideal position along the path based on a

linear interpolation of the current location of the images and the individual images interact with the ideal

locations via spring forces. The ideal springs are currently not implemented to work with energy weighted

spring constants. Both the ideal and distance type springs are well-suited to enforce an even distribution of

images along the path.

While only the component of the spring force parallel to the path is included in an NEB calculation (by

default) the user can choose to include a fraction of the spring force acting perpendicular to the path to

stabilize the calculations, where the perpendicular component of the spring force serves to straighten out the

path. This can be useful for complex pathways with multiple energy extrema. Alternatively, the user can

choose to use the modified DNEB method [462,463]. The inclusion of the perpendicular component of the

spring force is always accompanied by a switching function that is used to scale it according to (i) convergence

to the MEP (the ’tan’ function) [463] (ii) the angle between adjacent images (the ’cos’ function) [458] or

a combination of both. The inclusion of the perpendicular spring force can help to reduce the number of

iterations and eliminate kinks on the path. It may also prevent the images from converging on the true

MEP.
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9.22.2.2 Optimization and convergence of the NEB method

The effective force used in a standard NEB calculation is the sum of the atomic force component perpendicular

to the path and the spring force component parallel to the path. As mentioned above, a scaled perpendicular

component of the spring force can also be included. The effective force is used to bring the images to

the MEP using a given optimization technique. Three optimization methods for NEB calculations are

currently implemented in ORCA: velocity projection optimization (VPO) [458], fast inertial relxation engine

(FIRE) [464] and L-BFGS [465]. VPO and FIRE are more robust for regions that are far from the MEP,

while L-BFGS converges faster when the images are close to the MEP. FIRE and VPO both have a local

and global implementation. In the former, all images are treated individually when taking an optimization

step, while in the latter the whole band is treated as a single point. In the implementation of both methods,

a maximum is set on the magnitude of the allowed displacement in a single iteration. If the maximum

displacement of any coordinate exceeds this value, the whole displacement is scaled down accordingly. The

number of steps stored in the L-BFGS optimization for the construction of the approximate Hessian matrix

can be adjusted by the user. The configuration of each image after each iteration is written to a ’ trj.xyz’ file

(see file: basename MEP ALL trj.xyz). This file is useful for troubleshooting non-convergent calculations.

The convergence of the intermediate images is gauged from the maximum force component as well as the

root-mean-square of the force that acts perpendicular to the path. When the atomic force on the images

perpendicular to the path becomes zero, the images lie on the MEP. A typical value of the tolerance for

the maximum component of the atomic force perpendicular to the path is 1 · 10−3 Eh/Bohr. Typically the

tolerance for the root-mean-square value is chosen to be smaller by a factor of 1/2 or 1/3. Sometimes a

tighter tolerance for the maximum component of the force is needed, for example 5 · 10−4 Eh/Bohr or even

2 · 10−4 Eh/Bohr.

9.22.2.3 Climbing image NEB

In order make the highest energy image converge rigorously on the (highest) maximum along MEP, the

climbing image variant of the NEB method (CI-NEB) can be used. After the magnitude of the atomic

forces perpendicular to the path drop below a given user supplied threshold specified by they keyword

’tol turn on ci’, the highest energy image is converted to a climbing image. It is often most efficient to initiate

the climbing image early or even from the start of the NEB calculation. This applies when using the VPO

optimization method. For L-BFGS it is recommended to start CI-NEB when the path has partially converged

to the MEP, e.g., around 0.01-0.02 Eh/Bohr. The effective force acting on the climbing image is transformed

in such a way that it climbs uphill in energy along the tangent to the path and downhill in the perpendicular

direction. That is, the energy is maximized with respect to one degree of freedom corresponding to the

direction of the tangent while the energy is minimized with respect to all other degrees of freedom. The

effective force on the climbing image does not include any spring force and the density of images then becomes

different on either side of the climbing image. As long as the tangent estimate is accurate enough the climbing

image will converge rigorously to the point of highest energy along the path. If there are two or more maxima

in the energy along the MEP it is possible that the image near the highest maximum is not choosen as the

climbing image at an early stage of the NEB calculation. Then, later on the choice of the climbing image

can be switched automatically. Also, for barrierless reactions, the climbing image is not turned on. The

atom coordinates of the climbing image (in a CI-NEB calculation) or the highest energy image (in an NEB

calculation) are written to files ’ NEB-CI converged.xyz’ and ’ NEB-HEI converged.xyz’, respectively, when

a calculation has successfully completed.
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The convergence of a CI-NEB calculation can either be gauged by monitoring the forces on all images or only

on the climbing image. The root-mean-square and maximum magnitude of the maximum absolute atomic

force component are monitored. When gauging the convergence of all images in a CI-NEB calculation it is

typically acceptable to converge the regular images more loosely than the climbing image. By default, the

tolerance for the regular images is a factor of 10 larger than that of the climbing image. This scaling of the

tolerances is a parameter that can be set by the user. Typically for a tight convergence to the saddle point,

the tolerance threshold for the maximum magnitude of an atomic force component of the CI is set to 5 · 10−4

Eh/Bohr.

9.22.2.4 Useful output

After each iteration, the energy profile along the path is obtained by making a piecewise cubic polynomial

interpolation using both the energy and the atom forces acting along the path [459]. The interpolation can

reveal important information about the MEP in locations between the intermediate images. The interpolation

is written to the file ’interp’ (see file: basename.interp) in each step of the optimization. Moreover, as NEB

and CI-NEB calculations can be quite computationally demanding and in order to properly analyze what

may have gone wrong in such a calculation, the user can inspect the ’.log’ file, which includes information

about the type of calculation, energy, length of the path, spring forces, atomic forces etc. A couple of scripts

have been prepared to aid the user in the analysis of NEB calculations and are distributed on the orca input

library site [466].

9.22.2.5 Free end NEB

The free-end NEB variant allows the end points to be optimized simultaneously with the band. Three variants

of free-end NEB have been included in ORCA. The end point images can be constrained to move along the

same (or separate) energy isocontour [467,468], according to the atomic force acting perpendicular to the

path or the full atomic force.

9.22.2.6 zoomNEB

A new variant of the NEB method has been included, the zoomNEB (zNEB). The objective of a zNEB

calculation is to locate the saddle point accurately with better resolution than in regular CI-NEB calculations.

In the first step, a CI-NEB calculation is carried out and partially converged towards the MEP. Then a

zoom-region is selected, either by a constant manual offset from the CI or by an energy-argument. In the

latter, the zoom-region is selected in such a way as to include a pre-defined fraction of the barrier. The

objective of the selection of the zoom-region is to bracket the saddle point region. Once the zoom-region

has been selected, the path is parametrized, interpolated and a new set of images is distributed along the

zoom-region. The number of moveable images redistributed is the same as the number of moveable images in

the previous CI-NEB calculation. Finally, a second CI-NEB calculation is started. However, in the second

CI-NEB calculation, the end-point images are now optimized simultaneously with the intermediate images,

where the effective force is only defined as the atomic force acting perpendicular to the path. This will ensure

that the end points of the second CI-NEB calculation will converge to the MEP as well.
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9.22.2.7 NEB-TS

A combination of CI-NEB and EF (eigenvector-following) methods is offered by the NEB-TS implementation.

This is an efficient method for finding the highest energy saddle point on a path connecting a given reactant

and product state. Here the CI-NEB method is first used to get a reasonable initial guess for the saddle

point configuration from which an EF saddle point search is initiated. The optimization of the images along

the MEP is halted once the climbing image is converged well enough. The TS optimization is carried out in

internal coordinates using the eigenvector following method implemented in ORCA. The tangent estimate at

the highest energy (preferably climbing) image is used to set up the TS optimization as well as information

from the NEB calculations, a Hessian matrix does not need to be calculated.

9.22.2.8 Generation of the initial path

One of the most important aspects of any NEB or CI-NEB calculations is the generation of the initial path

connecting the reactant and product states. The recommended method is the image-dependent pair potential

(IDPP) method [469]. The alternative and simpler method is linear interpolation in Cartesian coordinates.

In either case, the user should always inspect the initial path (see file: basename initial path trj.xyz) to

make certain that it is indeed reasonable. The linear interpolation may result in overlap of atoms leading

to large, initial, atomic forces and divergence in the SCF cycles. The IDPP method interpolates pairwise

distances between neighboring atoms to generate an objective function. Then, a path is generated to match

those distances as closely as possible. Since there are many more pairwise distances than atom coordinates,

the initial path is found by minimizing the sum of squared deviations [470]. The IDPP generated path

avoids the overlap of atoms and can also generate a path that is generally closer to the MEP than the linear

interpolation [469]. The IDPP path is obtained from an NEB calculation using the IDPP objective function,

but this calculation requires little computational effort since it does not require any electronic structure

computations. Note that it is possible the initial path breaks covalent bonds and is therefore far from the

optimal MEP, so the user should always inspect the initial path before starting an NEB calculation. The user

can adjust the settings of the IDPP calculations using the ’idpp’ related keywords, but the default values

should suffice for most applications. Note that the units of the IDPP are in Ångströms instead of atomic

units.

The user may have a preconceived notion of a reasonable saddle point configuration or have an estimate of

the path from a calculation carried out at a lower level of theory. The initial path can be generated in such a

way as to include an intermediate configuration as one of the images using the ’NEB TS XYZFile’ keyword.

Since this image will be optimized along with the other intermediate images during the NEB calculation the

guess does not have to be accurate.

If inspection of the initial path reveals problems, e.g., unnecessary bond breaking, it is often a good idea

to insert a reasonable configuration into the initial interpolation to avoid such problems. Moreover, if an

NEB calculation is unable to converge to the MEP (or saddle point) with the given maximum number of

iterations, the user can restart the calculation from the ’allxyz’ file (see file: basename MEP.allxyz) which is

written to the disk after each iteration during the optimization. Note, when starting an NEB calculation

from an output from a previous CI-NEB calculation and vice-versa the band may require a few iterations to

adjust the distribution of images to achieve the desired distribution, depending on the selected spring type

and the choice of NEB method.
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If the system can be modeled reasonably well using the GFN-xTB method, another possible choice is the

generation of an initial path on XTB level (keywords ’XTB1’ or ’XTB2’ for GFN-xTB [363] or GFN2-

xTB [363]). In this case the initial path on IDPP level is refined using an NEB calculation on the chosen

XTB level. If this NEB run is successful, the entire MEP on XTB level is used as the initial path. If the

NEB run on XTB level is not successful, the initial path on IDPP level is used instead.

Another keyword that makes use of the XTB method is the ’XTBTS’ keyword (’XTB1TS’ or ’XTB2TS’). In

this case the initial path on IDPP level is refined using an NEB-CI calculation on XTB level. If the NEB-CI

run is successful, the resulting CI structure is chosen as TS guess structure, and the final initial path is

generated using an IDPP path from reactant to TS guess and from TS guess to product. If the NEB-CI run

on XTB level is not successful, the initial path on IDPP level is used instead.

9.22.2.9 Removal of translational and rotational degrees of freedom

For NEB and CI-NEB calculations of molecular systems it is important to project out the six (or five in

the case of linear molecules) degrees of freedom corresponding to the global rotation and translation of the

system. This can be done either at the start of a calculation or for each optimization step. For the latter, in

each step, the center-of-geometry of each image is translated to origin and a rotational matrix is constructed

using the quaternion approach [471]. The rotation matrix is applied to the latter configuration as to minimize

the root-mean-square deviation between the two configurations. Depending on whether a fixed center is used,

the images are either kept in that place or transferred back to their original position. This procedure is

repeated for any pair of adjacent images in each step of the optimization. The net effective NEB force is set

to zero. [472]

9.22.2.10 Reparametrization of the path

One way to stabilize and sometimes improve the efficiency of an NEB or CI-NEB calculation is to enable

redistribution of the images along the path every N iterations. The path is interpolated using either a linear

or cubic polynomial fitted to both the coordinates and the tangent to the path, and the images are then

distributed evenly along the interpolated path. Both N and the type of interpolation are specified by the user.

The cubic interpolation method should be better in calculations where the resolution of the path and hence the

estimate of the tangent is good, while the linear interpolation is generally more robust as it does not depend

on the tangent. From experience, this reparametrization often stabilizes and improves calculations employing

the L-BFGS optimization method, while it does not have as large an effect on calculations employing VPO.

9.22.2.11 Important warning messages

Some tests are carried out during the optimization in order to detect problems on the fly. The angle between

the two straight lines going through an image and its neighbors on each side is calculated. If the angle

becomes large e.g. exceeding 90◦ the estimate of the tangent has likely become inaccurate and a better

resolution of the path is required. If the angle is close to 180◦ the ordering of the images may have become

incorrect. Especially in the latter case, it may be a good choice of action to terminate the calculation and

include a larger number of intermediate images in the subsequent calculation. Some information from the

calculation, e.g, a guess for the saddle point, could be incorporated in the new calculation.
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Another issue is the identification of an intermediate minimum along the path. If an intermediate minimum is

observed in M subsequent iterations (M is supplied by the user) a warning is issued to the user that a possible

intermediate minimum may exist along the path. It is a good idea to check the status of the calculation, the

path and the convergence behaviour. If the calculation appears to be proceeding normally and heading for

convergence, the best course of action is to allow the calculation to finish. However, it is in general better to

carry out separate NEB calculations for segments of the MEP on either side of the intermediate minimum.

Especially, if the intermediate minimum is deep w.r.t to the reactant and product state energy minima.

In such cases, the image closest to the apparent intermediate minimum is selected and a structural minimization

carried out. The resulting configuration is then used as the initial state or final state in the subsequent

CI-NEB calculations.

9.22.2.12 Parallel execution

If the number of processes (NProcs) specified in the input is larger than 1, NEB will automatically start up

in multi-processes mode:

NProcs <= NImages NProcs processes will handle NProcs images independently with 1 process per image.

Choose NProcs = X*NImages (e.g. X = 1 or 0.5)

NProcs > NImages NProcs processes will handle NImage images, each image being treated by (NProcs/

NImages) processes. If you want to dedicate more than 1 process to each single image-calculation,

choose NProcs = X*NImages (e.g. X = 2, 3, 4, ...).

Note: If in the second case multiple compute-nodes are involved, the user will need to define the ORCA

specific environment variable RSH COMMAND, which tells the NEB driver how to connect to the individual

nodes (set it to either ’rsh’ or ’ssh’). However, this may not work with all queueing systems.

If the energy and force calculations are fast (e.g. with semiempirical methods), there is no gain in using

multiple processes per image. Starting up and finalizing MPI may consume more time than the gain from

parallel processing.

9.22.2.13 Summary of Keywords

The following keywords are available:

! NEB # NEB calculation

! NEB-CI # Climbing Image NEB calculation

! NEB-TS # NEB calculation plus subsequent TS optimization

! ZOOM-NEB # NEB calculation plus zoomed NEB calculation

! ZOOM-NEB-CI # Climbing Image NEB plus zoomed climbing image NEB calculation

! ZOOM-NEB-TS # NEB calculation plus zoomed NEB calculation plus subsequent

# TS optimization

! NEB-IDPP # IDPP (Initial Path) NEB calculation - for estimation of path

# length

%neb
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NEB_End_XYZFile "product.xyz" # product structure. Input is mandatory.

NImages 8 # default 8. Number of images without fixed endpoints,

# for free_end total number of images

PrintLevel 1 # default 1. Normal printout. Use 0 for no printout, higher

# numbers (<=4) for more detailed printout.

NEB_TS_XYZFile "TSGuess.xyz" # Provide guess for the TS structure. Images

# are interpolated between reactant and TS guess

# and between TS guess and product.

NEB_TS_Image 3 # default -1. Number of the image the TS guess is used for.

# If not defined (=-1), the image which gives lowest RMSD

# for all image distances is used.

# Restart option: After each iteration the NEB method stores all image

# structures in an .allxyz file. In case of an abort this file can be used

# for a restart. File should contain the structures for all images.

NEB_Restart_XYZFile "NEB1.allxyz" # use the trajectory from file if filename is

# provided

# Alternatively NEB can be started on user prepared wavefunctions for each image.

# The names of of these wavefunction files should consist of a user-chosen basename

# and the extension ’_imN.gbw’, where N is the image number.

# The basename should be provided in the input, ORCA will add extension ’_imN.gbw’

NEB_Restart_GBWName "NEB2" # use the wavefunctions from file NEB2_imN.gbw

# Check SCF convergence: If true, SCF convergence is checked for and

# calculation aborts if:

# -any of the images does not show SCF convergence in four subsequent cycles.

# -any of the images does not show SCF convergence in two subsequent cycles

# after the gradient is converged.

CheckSCFConv true # default true

# PDB file input format:

NEB_End_PDBFile "product.pdb" # Product structure in pdb format. If this is

# given, xyz does not need to be given.

NEB_TS_PDBFile "TSGuess.pdb" # TS guess structure in pdb format. If this is

# given, xyz does not need to be given.

Free_End false # Use free-end NEB. In this case the NImages

# corresponds to the total number of images.

PreOpt_Ends false # do optimization of reactant and product in

# internal coordinates before NEB starts

NSteps_FoundIntermediate 30 # Number of steps the intermediate has to be

# present

AbortIf_FoundIntermediate false # If an intermediate is found abort the run.

NPTS_Interpol 10 # Number of abscissa in cubic polynomial
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# interpolation

Interpolation IDPP # Method to generate the images based on the

# reactant, product (and potentially TS guess)

# linear

# IDPP

# XTB1TS - TS on GFN-xTB level

# XTB1 - entire path on GFN-xTB level

# XTB2TS - TS on GFN1-xTB level

# XTB2 - entire path on GFN2-xTB level

# The formulation used to estimate the tangent to the path

Tangent improved # improved (default)

# original

# The type of the spring interaction parallel to the path. Original springs apply

# spring interaction between each degree of freedom of adjacent images, while

# ’image’ springs apply a spring interaction between the images

# Spring type

SpringType image # image / distance (default)

# dof / original

# ideal

SpringConst 0.01 # The spring constant used to scale the spring

# forces parallel to the path. If energy-weighted

# springs are used. This parameter gives the

# lower bound value of the spring constant

SpringConst2 0.1 # If energy-weighted spring forces are used.

# This parameters give the value for the upper

# bound value of the spring constant.

Energy_Weighted true # Employ energy-weighted springs. When

# energy-weighted springs are used, the

# images tend to accumlate in higher energy

# regions of the path.

# The type of the spring interaction perpendicular to the path. The perpendicular

# spring is introduced via a scaling function: cos, tan, costan, which all use

# the spring component perpendicular to the path.

# DNEB is the doubly nudged elastic band method.

PerpSpring no # no (default)

# cos

# tan

# cosTan

# DNEB

LLT_Cos true # Enables the cos-type spring force

# acting perpendicular to the band.
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# Translational and rotational degrees of freedom

Quatern always # no,

# startonly

# always (default)

# Fix_center specifies whether the centroid of each image should be

# constrained to the origin of the coordinate system or to the center

# of each image individually.

Fix_center True

# Fix_center specifies whether the centroid of each image should be

# constrained to the origin of the coordinate system or to the center

# of each image individually.

Remove_extern_Force True # Removes the net effective NEB force before

# translation of the path

# Options for Free-End NEB

Free_End_Type Perp # Type of optimization of endpoints in free-end

# NEB.

# contour - constrain end points to a fixed

# contour with energy EC, see below

# perp - allow end points to move according to

# perp. spring force

# full - allow to move according to full force,

# i.e. relax to energy minimum

Free_End_EC # Energy contour value for image 0 - needed for

# free_end_type = contour

Free_End_EC_End # Energy contour value for image N - needed for

# free_end_type = contour

Free_End_Kappa # harmonic restraint term - needed for

# free_end_type = contour

# Monitor convergence for all images or only the CI.

# Convergence type

ConvType all # all (default)

# CIOnly

CI false # Do Climbing image NEB

NEB_TS false # Do CI NEB and subsequent TS opt.

# Convergence tolerance. In Eh / Bohr (except Tol_Scale ).

Tol_MaxFP_I 1.e-3 # Default. The convergence tolerance for the

# maximum component of the atomic force
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# perpendicular to the path.

Tol_RMSFP_I 5.e-4 # Default. The convergence tolerance for the rms

# atomic force perpendicular to the path. Only

# applies to regular images.

Tol_MaxF_CI 2.e-3 # The convergence tolerance for the maxmimum

# component of the atomic force acting on the CI.

# Only applies to (ZOOM-)NEB-CI/-TS calculations.

# Default is 5.e-4 (-CI) and 2.e-3 (-TS)

Tol_RMSF_CI 1.e-3 # The convergence tolerance for the rms atomic

# force acting on the CI. Only applies to (ZOOM-)NEB-CI.

# Default is 2.5e-4 (-CI) and 1.e-3 (-TS)

Tol_Turn_On_CI 2.e-2 # Thresholds for max. atomic force for switching on

# CI in (ZOOM-)NEB-CI and (ZOOM-)NEB-TS.

# Defaults: 0.02 for LBFGS, 0.2 for VPO and FIRE

Tol_Scale 10.0 # For convergence type ’all’ the user can scale

# the convergence tolerance of the regular images

# relative to the CI values using this

# multiplicative factor. Only applies to (ZOOM-)NEB-CI

# and (ZOOM-)NEB-TS calculations.

# Interpolation and redistribution of the path is performed every ’reparam’

# iterations. The type of interpolation is set by reparam_type.

Reparam_type linear # Cubic

# Linear (default)

Reparam 0 # No. of iterations after which the path should be

# reparametrized

# 0 (default) means: reparametrization is off

Reparam_Tol 0.0 # User-defined threshold at which the path should be

# reparametrized

# 0.0 (default) means: reparametrization is off

# The optimization method used to converge the band on the MEP / saddle point.

# The L-BFGS is more aggressive and efficient, but also more error-prone.

# VPO is conservative and robust.

Opt_Method LBFGS # LBFGS (default)

# VPO

# FIRE

# BFGS - TODO Villi correct?

# Options Optim. Method

Maxmove 0.1 # maximum component allowed per step. Default is 0.1 (LBFGS)

# and 0.2 (VPO / FIRE)

Stepsize 1.0 # multiplicative factor to scale the size of the step in each

# optimization cycle.

# Default is 1.0 (LBFGS) and 0.5 (VPO / FIRE)

MaxIter 500 # Maximum number of iterations. 500 for LBFGS, 1000 for VPO / FIRE.
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Local false # Use local optimization.

# Default is false for NEB, but true for (ZOOM-)NEB-CI/-TS.

# Options LBFGS

LBFGS_Mem 20 # the number of previous steps to be kept in memory and used

# to construct the approximate Hessian matrix.

LBFGS_DR 1.e-3 # Size of the finite difference step taken at the

# initialization of L-BFGS

LBFGS_Restart_On_Maxmove true # Re-initialize L-BFGS for the next step when

# the ’max-move’ limit is reached.

LBFGS_Reparam_On_Restart false # Re-parametrize when L-BFGS is re-initialized

LBFGS_Precondition true # If true, then after initialization, the curvature

# along direction of the force is estimated and

# used to determine the first step

# FIRE parameters

FIRE_INITIAL_DAMP 0.1 # Initial value for the damping factor

FIRE_DAMP_DECR" 0.99 # Decrease of the damping factor

FIRE_STEP_INCR" 1.1 # Factor to increase the stepsize

FIRE_STEP_DECR" 0.5 # Factor to decrease the stepsize

FIRE_MAX_STEP" 5.0 # Default is 10 x Stepsize

FIRE_RETENTION" 5 # Retention before starting acceleration

# Options Zoom

Tol_Turn_On_Zoom 0.1 # use ZOOM-NEB(-CI/TS)

Zoom_Offset 1 # if manual selection is chosen, how many

# images away from CI should be chosen

Zoom_Auto true # automatically select zoom region

Zoom_Alpha 0.5 # determines how much of the barrier

# zoom-auto should select

Zoom_Interpolation # linear (default)

# cubic

Zoom_PrintFullTrj # print full trajectory including fixed region during Zoom

# Set of parameters to adjust the IDPP pre-optimization when generating the initial

# path.

# Options IDPP

IDPP_NMax 7000 # maximum number of cycles allowed in IDPP

IDPP_Tol_MaxF 0.01 # tolerance on the maximum component of the atomic force

# perpendicular to the path.

IDPP_ksp 1. # spring constant used to scale the spring force parallel

# to the path.

IDPP_Alpha 0.01 # multiplicative factor to scale the size of the step in

# each opt. cycle

IDPP_MaxMove 0.05 # maximum component allowed per step
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IDPP_Debug false # will print out the convergence of IDPP and also the

# optimization trajectory and the log file for the IDPP run.

IDPP_Quatern true # Whether quaternions should be used in the IDPP optimization

# Extra Output options

Monitor_Internals # Up to three internal coordinates can be defined

{B 0 1} # for which the values are printed during the NEB run.

{B 1 5} # Possible are (B)onds, (A)ngles, (D)ihedrals and (I)mpropers

end

end

Output files:

• Configuration and trajectory files:

– basename initial path trj.xyz: The initial path generated at the start of the NEB run and after

minimization of RMSD between the reactant and product states.

– basename MEP trj.xyz: The final converged MEP trajectory.

– basename MEP ALL trj.xyz: The configurations of each image is appended to this file for each

step of the NEB optimization.

– basename TSOpt trj.xyz: The trajectory of TS optimization.

– basename MEP.allxyz: Restart file that includes the configuration of each image from the last

iteration of an NEB or NEB-CI iteration.

– basename NEB-CI converged.xyz: The configuration of the climbing image after a successful

NEB-CI calculation.

– basename NEB-HEI converged.xyz: The configuration of the highest energy image after a suc-

cessful NEB calculation.

– basename TSOpt.xyz: The configuration of the optimized saddle point using the TS optimization.

• Log files:

– basename.interp: The interpolated energy profile of the path for each iteration during the

NEB/NEB-CI optimization.

– basename.interp.final: The energy profile for the converged path of an NEB/NEB-CI optimization.

– basename.log: A general log file containing essential information regarding the run e.g., energy,

forces and step size.
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9.23 Excited States via RPA, CIS and TD-DFT

ORCA features a relatively efficient single-excitation CI (CIS), “random-phase approximation” and time-

dependent DFT module that can be used to calculate excitation energies, absorption intensities and CD

intensities. Especially TD-DFT became very popular for excited state calculations as it offers significantly

better results than HF-CIS at about the same cost. However, there are also many pitfalls of TD-DFT,

some of which are discussed in reviews [473] [474]. TD-DFT methods are available for closed-shell and

spin-unrestricted reference states. Analytic gradients are available. There also is a doubles correction

implemented that improves the results (but also the computational cost). It is often used together with

double-hybrid functionals as explained below. The TD-DFT module of ORCA is also extensively used for the

calculation of X-ray absorption spectra at the K-edge of a given element.

9.23.1 General Features

The module is invoked with the block:

%cis end

# or equivalently

%tddft end

There are a variety of options. The most important one is the number of excited states that you want to

have calculated:

%cis NRoots 10

MaxDim 10 # Davidson expansion space = MaxDim * NRoots

end

The variable NRoots gives the number of excited states to be calculated. The expansion space in the Davidson

procedure is limited by MaxDim · NRoots. With MaxDim values of 5-10 the calculations will show favorable

convergence but also increased disk space demands. In general the larger NRoots the more core memory is

needed while the disk space requirements are proportional to MaxDim.

The convergence tolerances are:

%cis

...

ETol 1e-6

RTol 1e-6

end
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The variable ETol gives the required convergence of the energies of the excited states (in Eh) and RTol is the

required convergence on the norm of the residual vectors. Under normal ciorcumstances the calculations need

about 5-10 iterations to converge to the default convergence tolerances.

Once converged, the program prints the wave function composition. To keep the printing concise, coefficients

smaller than 0.01 are omitted. The threshold can be adjusted with the keyword TPrint.

%cis

...

TPrint 0.0001 # cut-off for the wave function printing, default= 0.01

end

If closed-shell references are used the program can calculate the singlet and triplet excited states at the same

time by using:

%cis

...

triplets true

end

This is available for all combinations of methods, including analytic gradients, except for double-hybrids.

In order to control the orbitals that should be taken into account in the calculation two mechanisms are

available. The first mechanism is the default mechanism and consists of specifying and orbital energy window

within which all single excitations will be considered:

%cis

...

EWin -3,3 # (orbital energy window in Eh)

end

Thus, the default is to keep core orbitals frozen and to neglect very high lying virtual orbitals which is a

sensible approximation. However, you may want to consider to include all virtual orbitals by choosing for

example EWin -3,10000. The second mechanism is to explicitly give an orbital energy window for each

operator, i.e.

%cis

...

OrbWin[0] 2,-1,-1,14 # orbital window for spin-up MOs

OrbWin[1] 2,-1,-1,16 # orbital window for spin-down MOs

end

The “-1”’s in the above example mean that the HOMO and LUMO for the spin-.up and spin-down orbitals

will be automatically determined by the program.

In using the CIS/TD-DFT module five different types of calculations should be distinguished:
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• Semiempirical methods

• Hartree-Fock calculations

• DFT calculations without HF exchange (non-hybrid functionals)

• DFT calculations with HF exchange (hybrid functionals)

• DFT calculations with HF exchange and MP2 correlation (double-hybrid functionals)

9.23.2 Semiempirical Methods

The semiempirical INDO/S method is very suitable to calculate absorption spectra of medium sized to large

organic and inorganic molecules. It has been parameterized by the late M. C. Zerner for optical spectroscopy

and in my experience at least, it tends to work nicely for many systems. With the semiempirical approach

it is easy to calculate many states of large molecules. For example, consider the following calculation on a

bis-histidine ligated iron-porphyrin model (in the Fe(II) state) that includes 92 atoms and ≈ 16,500 CSFs in

the single excitation space. Yet the calculation requires only a few minutes on an ordinary computer for the

prediction of the first 40 excited states.

The calculated spectrum is in essentially reasonable agreement with experiment in showing a huge band

around 400 nm (the famous Soret band) and a smaller but still intense band between 500 and 550 nm (the

Q-band). There are no predicted absorptions below ≈ 10,000 cm−1.

The input for the job is shown below:

# Test CIS in conjunction with INDO/S

! RHF ZINDO/S TightSCF DIIS NoRICO NoMOPrint

%cis NRoots 40

end

* xyz 0 1

Fe -0.01736 0.71832 -0.30714

C 2.65779 4.03195 -0.13175

C 3.51572 3.02488 -0.24101

C 2.66971 1.82027 -0.30891

C 3.30062 0.51609 -0.42755

C 2.61022 -0.60434 -0.47131

C 3.32146 -1.89491 -0.57434

C 2.35504 -2.79836 -0.57179

C 1.11740 -1.99868 -0.46878

C -0.04908 -2.61205 -0.44672

C -1.30967 -1.89127 -0.38984

C -2.58423 -2.63345 -0.40868

C -3.50492 -1.68283 -0.37930

C -2.72946 -0.42418 -0.33711

C -3.35747 0.73319 -0.28970

C -2.66935 2.01561 -0.22869
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C -3.31167 3.19745 -0.16277

C -4.72835 3.62642 -0.14517

C -5.84825 2.89828 -0.20597

C -2.21443 4.15731 -0.09763

C -1.11572 3.39398 -0.14235

C 0.19578 4.02696 -0.10122

C 1.33370 3.36290 -0.15370

C 3.09165 5.44413 -0.02579

C 2.35656 6.55323 0.10940

N 1.43216 2.09428 -0.24815

N 1.34670 -0.74673 -0.42368

N -1.39885 2.15649 -0.21891

N -1.47620 -0.63353 -0.34705

C 5.03025 3.02708 -0.28544

C 4.81527 -2.12157 -0.66646

C -5.01065 -1.83771 -0.38886

C -2.28137 5.66820 -0.00321

C -2.73691 -4.14249 -0.43699

C -2.42579 -4.72805 -1.83259

C 2.45978 -4.31073 -0.64869

C 2.19678 -4.82182 -2.08201

C 1.60835 -6.22722 -2.10748

C -1.90102 -6.15737 -1.82447

O -1.96736 -6.92519 -2.75599

O 1.60982 -7.01844 -1.19330

O -1.15355 -6.41323 -0.74427

O 0.89871 -6.41433 -3.22828

H 4.17823 5.62170 -0.05623

H 2.86221 7.53117 0.17503

H 1.26303 6.57673 0.17212

H 0.21799 5.11603 -0.03468

H -1.78003 6.14426 -0.87498

H -3.32281 6.05139 0.01906

H -1.78374 6.03115 0.92347

H -4.89690 4.71221 -0.07358

H -6.82566 3.40843 -0.18007

H -5.88239 1.80643 -0.28628

H -4.44893 0.70720 -0.28575

H -5.32107 -2.89387 -0.54251

H -5.45075 -1.49552 0.57400

H -5.46788 -1.24144 -1.20929

H -2.05997 -4.55939 0.34045

H -3.76430 -4.43895 -0.12880

H -3.33638 -4.66246 -2.47119

H -1.65517 -4.10119 -2.33605

H -0.56422 -7.14866 -1.00437

H 0.26056 -7.12181 -3.00953

H 1.48118 -4.13253 -2.58671
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H 3.13949 -4.79028 -2.67491

H 3.46153 -4.65168 -0.30336

H 1.73023 -4.75206 0.06633

H 5.26172 -1.51540 -1.48550

H 5.31767 -1.84036 0.28550

H 5.06416 -3.18438 -0.87628

H -0.07991 -3.70928 -0.48866

H 4.39835 0.46775 -0.47078

H 5.39550 2.59422 -1.24309

H 5.47197 4.04179 -0.19892

H 5.44914 2.41988 0.54738

N 0.01831 0.60829 1.68951

C 0.02054 1.64472 2.54371

C 0.04593 -0.50152 2.45186

N 0.04934 1.20474 3.84418

C 0.06582 -0.16578 3.80848

H 0.00322 2.72212 2.31829

N -0.05051 0.81937 -2.30431

H 0.05251 -1.53704 2.08183

C 0.11803 1.92670 -3.04495

H 0.05712 1.81091 4.70485

H 0.08982 -0.83278 4.68627

C -0.24302 -0.18840 -3.17641

C -0.19749 0.28568 -4.49059

N 0.03407 1.63309 -4.38373

H 0.30109 2.95786 -2.70479

H -0.41432 -1.24242 -2.91290

H -0.31761 -0.27403 -5.43315

H 0.12975 2.31943 -5.17616

*
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Figure 9.19: Structure of the iron-porphyrin used for the prediction of its absorption spectrum (the
structure was obtained from a molecular mechanics calculation and the iron-imidazole
bondlength was set to 2.0 Å).

Figure 9.20: The ZINDO/S predicted absorption spectrum of the model iron porphyrin shown
above. The spectrum has been plotted using the orca mapspc tool.

Note that ORCA slightly departs from standard ZINDO/S in using dipole integrals in the intensity calculations

that include all one- and two-center terms which are calculated via a STO-3G expansion of the Slater basis

orbitals. The calculated intensities are not highly accurate anyways. In the present case they are overestimated

by a factor of ≈ 2.
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9.23.3 Hartree-Fock Wavefunctions

When applying the procedures outlined above to pure Hartree-Fock, one obtains the “random-phase approxi-

mation” (RPA) or the CI singles (CIS) model (when effectively using the Tamm-Dancoff Approximation,

TDA). In general, RPA and CIS calculations do not lead to good agreement with experimental excitation

energies and errors of 1-5 eV are common. Therefore HF/CIS is mostly a qualitative tool or can be used with

caution for larger molecules if more extensive and more well balanced CI calculations are not computationally

tractable.

9.23.4 Non-Hybrid and Hybrid DFT

For DFT functionals there is the choice between the full TD-DFT (eq. 9.256) treatment and the so-called

Tamm-Dancoff approximation (TDA).(
A B

B* A*

)(
X

Y

)
=

(
ω 0

0 −ω

)(
X

Y

)
(9.256)

The TDA is the same approximation that leads from RPA to CIS (i.e. neglect of the so-called “B” matrix, see

eq. 9.257). The results for vertical excitation energies are usually very similar between the two approaches.

AXTDA = ωTDAXTDA (9.257)

In general, the elements of matrix “A” and “B” for singlet-singlet excitations in the spin-restricted case are

given by eqs. 9.258 and 9.259.

Aia,jb = δijδab(εa − εi) + 2(ia|jb)− aX(ij|ab)
+ (1− aX)(ia|fXC|jb)

(9.258)

and

Bia,jb = 2(ia|bj)− aX(ib|aj) + (1− ax)(ia|fXC|bj). (9.259)

Here, i, j denote occupied and a, b virtual orbitals. aX is the amount of non-local Fock exchange in the

density functional. If aX is equal to one, eqs. 9.256 and 9.257 correspond to the RPA and CIS case, based on

a Hartree-Fock ground state determinant.

The TDA is turned on by:

%tddft TDA true # (default)

TammDancoff true # (equivalent)

end

There are situations where hybrid functionals give significantly better results than pure functionals since they

suffer less from the self-interaction error. The RIJCOSX procedure [108] [316] leads to very large speedups in

such calculations at virtually no loss in accuracy [475].
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9.23.5 Simplified TDA and TD-DFT

ORCA also supports calculations of excited states using the simplified Tamm-Dancoff approach (sTDA) by

S. Grimme [476]. The sTDA is particularly suited to calculate absorption spectra of very large systems.

sTDA as well as the simplified time-dependent density functional theory (sTD-DFT) [477] approach require

a (hybrid) DFT ground state calculation. For large systems, using range-separated hybrid functionals (e.g.

ωB97X) is recommended. [478]

The sTD-DFT approach in particular yields much better electronic circular dichroism (ECD) spectra and

should be used for this purpose.

9.23.5.1 Theoretical Background

A brief outline of the theory will be given in the following. For more details, please refer to the original

papers [476,477]. In the sTDA, the TDA eigenvalue problem from eq. 9.257 is solved using a truncated and

semi-empirically simplified A′ matrix. The trunctation negelects all excitations that are beyond the energy

range of interest, except a few strongly coupled ones. The matrix elements from eq. 9.258 are simplified by

neglecting the response of the density functional and by approximating the remaining two-electron integrals

as damped Coulomb interactions between transition/charge density monopoles. In the following, the indices

i, j denote occupied, a, b virtual and p, q either kind of orbitals.

A′ia,jb = δijδab(εa − εi) +

Natoms∑
A,B

(2qAiaγ
K
ABq

B
jb − qAijγJABqBab) (9.260)

qApq and qBpq are the transition/charge density monopoles located on atom A and B, respectively. These are

obtained from Löwdin population analysis (see Sec. 9.38.3). εp is the Kohn-Sham orbital energy of orbital p.

γKAB and γJAB are the Mataga-Nishimoto-Ohno-Klopman damped Coulomb operators for exchange-type (K)

and Coulomb-type (J) integrals, respectively.

γJAB =

(
1

(RAB)β + (aXη)−β

) 1
β

(9.261)

γKAB =

(
1

(RAB)α + η−α

) 1
α

(9.262)

Here, η is the arithmetic mean of the chemical hardness of atom A and B. α and β are the parameters of the

method and are given by:

α = α1 + axα2 (9.263)

β = β1 + axβ2 (9.264)

For any global hybrid functional, α1, α2, β1 and β2 are identical. α and β then depend on the amount of

Fock exchange (aX) only. This is different for range-separated hybrid functionals where α2 and β2 are set to

zero. α1 and β1 along with a value ax for the sTDA treatment are individually fitted for each range-separated

hybrid functional. [478] It can bee seen from eq. 9.260 that the method is asymptotically correct which is

crucial for excitations of charge transfer type.
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In sTD-DFT, eq. 9.256 is solved using the simplified matrices A′ (see above) and B′.

B′ia,jb =

Natoms∑
A,B

(2qAiaγ
K
ABq

B
bj − aXq

A
ibγ

K
ABq

B
aj) (9.265)

This approach yields better transition dipole moments and therefore spectra but the method is more costly

than sTDA (a factor of 2–5 for typical systems). The parameters used in sTDA and sTD-DFT are identical.

There are no additional parameters fitted for this method.

9.23.5.2 Calculation Set-up

sTDA and sTD-DFT can be combined with any (restricted or unrestricted) hybrid DFT singlepoint calculation.

Gradients and frequencies are not implemented! The methods can be invoked via the %tddft block. Table

9.14 gives a list of the possible keywords.

Table 9.14: Keyword list for sTDA and sTD-DFT.

Mode sTDA Invokes a sTDA calculation

Mode sTDDFT Invokes a sTD-DFT calculation

EThresh value Energy threshold up to which CSFs are included (in eV)

PTLimit value Energy threshold up to which CSFs beyond EThresh may be selected (in eV)

PThresh value Selection criterion to include CSF beyond EThresh (in Eh)

axstda value Fock exchange parameter used in sTDA/sTD-DFT calculation (for range-separated hybrids)

beta1 value Constant part of J integral parameter β

beta2 value aX scaled part of J integral parameter β

alpha1 value Constant part of K integral parameter α

alpha2 value aX scaled part of K integral parameter α

triplets true Calculate singlet-triplet excitations (default: singlet-singlet)

The following example shows how to run such a sTDA calculation using the BHLYP functional if one is

interested in all excitations up to 10 eV.

! bhlyp def2-SV(P) rijcosx gridx5 nososcf tightscf

! smallprint printgap nopop

%maxcore 5000

%tddft

Mode sTDA

Ethresh 10.0

maxcore 5000

end

* xyzfile 0 1 coord.xyz

Replacing Mode sTDA by Mode sTDDFT will invoke a sTD-DFT calculation instead. This is shown in the next

example in combination with the ωB97X functional and user specified parameters:
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! wb97x def2-SV(P) rijcosx gridx5 nososcf tightscf

! smallprint printgap nopop

%maxcore 5000

%tddft

Mode sTDDFT

Ethresh 10.0

axstda 0.56

beta1 8.00

beta2 0.00

alpha1 4.58

alpha2 0.00

maxcore 5000

end

* xyzfile 0 1 coord.xyz

For the range-separated hybrid functionals LC-BLYP, CAM-B3LYP, ωB97, ωB97X, ωB97X-D3 and ωB97X-

D3BJ, parameters are available and will be used by default if one of these functionals is used. The way of

specifying parameters as shown above is useful if there is a range-separated hybrid functional that has not

been parametrized for sTDA yet. For very large systems (e.g. > 500 atoms), it may be useful to define an

upper boundary PTLimit for the selection of configurations that are beyond EThresh (otherwise the whole

configuration space will be scanned). This can be done as shown below:

! cam-b3lyp grid5 nofinalgrid def2-SV(P) nori tightscf

! nososcf smallprint printgap nopop

%pal nprocs 4

end

%maxcore 5000

%tddft

Mode sTDDFT

Ethresh 10.0

PThresh 1e-4

PTLimit 30

maxcore 20000

end

%method

runtyp energy

end

* xyzfile 0 1 coord.xyz

In this case, all excitations up to 7 eV are considered from the very beginning. Configurations between 7

and 14 eV are included if their coupling to the configurations below 7 eV is strong enough (in total larger

than PThresh). All configurations beyond 14 eV are neglected. Since the sTDA/sTD-DFT calculations

run in serial mode, it is recommended to reset the maxcore within the %tddft block (as done in the above
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examples). In the latter sample input, the ground state procedure runs in parallel mode on 4 cores with a

maxcore of 5000 MB set for each node. The subsequent sTD-DFT calculation then runs on a single core,

but in order to use all the available memory, the maxcore is reset to a larger value (i.e., 20000 MB). If the

maxcore statement within the %tddft block was missing, only 5000 MB of memory would be available in

the sTD-DFT calculation. Note furthermore that for very large systems, using a functional with the correct

asymptotic behaviour is very important (due to the fixed amount of GGA exchange, CAM-B3LYP does not

provide this property).

The ORCA output will summarize the important properties of your calculation which allows you to check

your input:

---------------------------------------------------------------------------------

ORCA sTDA CALCULATION

please cite in your paper

orginal sTDA method: S. Grimme, J. Chem. Phys. 138, 244104 (2013)

range-separated sTDA: T. Risthaus, A. Hansen, S. Grimme, Phys. Chem. Chem. Phys.

16, 14408-14419 (2014)

sTD-DFT approach: C. Bannwarth, S. Grimme, Comp. Theor. Chem.

1040-1041, 45-53 (2014)

---------------------------------------------------------------------------------

spectral range up to (eV) ... 10.000000

occ. MO cut-off (eV) ... -24.052589

virt. MO cut-off (eV) ... 17.726088

perturbation threshold ... 1.000e-04

CSF selection range up to (eV) ... 30.000000

MOs in sTD-DFT ... 37

occ. MOs in sTD-DFT ... 14

virt. in sTD-DFT ... 23

calculate triplets ... no

Calculating the dipole lengths integrals ...

Transforming integrals ...

Calculating the dipole velocity integrals ...

Transforming integrals ...

Calculating magnetic dipole integrals ...

Transforming integrals ...

SCF atom population (using active MOs):

4.009 4.182 4.182 4.318 4.318 0.867 0.867 0.876 0.876 0.876

0.876 0.876 0.876

Number of electrons in sTDA: 28.000

ax(DF) : 0.3800

s_k : 2.0000

beta (J): 1.8600

alpha (K): 0.9000

The spectroscopic data is also printed out after the calculation has finished:
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14 roots found, lowest/highest eigenvalue : 6.627 9.945

excitation energies, transition moments and amplitudes

molecular weight: 68.119

state eV nm fL fV Rl RV

0 6.627 187.1 0.000000 0.000001 0.002400 0.033014 0.71 ( 12-> 14) ...

1 6.637 186.8 0.000188 0.000233 -6.595360 -6.544674 -0.71 ( 13-> 14) ...

2 8.162 151.9 0.000022 0.000113 -0.169704 -0.383021 -0.65 ( 12-> 16) ...

3 8.185 151.5 0.708166 0.559459 -33.378989 -33.157817 0.62 ( 13-> 16) ...

4 8.514 145.6 0.461396 0.349012 64.100474 55.364958 -0.63 ( 12-> 17) ...

5 8.531 145.3 0.000004 0.000282 0.539213 4.637973 -0.72 ( 13-> 17) ...

6 8.927 138.9 0.000080 0.001340 0.439265 1.794914 0.70 ( 13-> 18) ...

7 8.929 138.9 0.002612 0.003077 -5.590091 -7.144206 -0.69 ( 12-> 18) ...

8 9.156 135.4 0.432008 0.300685 -30.271745 -29.351033 -0.74 ( 12-> 17) ...

9 9.347 132.6 0.058500 0.054136 -37.502752 -36.077121 -0.53 ( 12-> 19) ...

10 9.534 130.0 0.338851 0.235400 59.709273 68.042758 0.66 ( 12-> 18) ...

11 9.624 128.8 0.007213 0.004968 25.554619 21.208832 -0.49 ( 13-> 18) ...

12 9.922 125.0 0.021172 0.019486 -22.874039 -23.258574 0.81 ( 13-> 20) ...

13 9.945 124.7 0.001403 0.001498 6.301469 6.510456 0.79 ( 12-> 20) ...

sTD-DFT done

Total run time: 0.326 sec

*** ORCA-CIS/TD-DFT FINISHED WITHOUT ERROR ***

fL, fV, RL and RV are the length and velocity expressions of the oscillator and rotatory strengths, respectively.

They may be convoluted by a spectrum processing program to yield the UV/Vis absorption and ECD

spectra.

9.23.6 Double-hybrid functionals and Doubles Correction

The program can compute a doubles correction to the CIS excitation energies. The theory is due to Head-

Gordon and co-workers. [479] The basic idea is to compute a perturbative estimate (inspired by EOM-CCSD

theory) to the CIS excited states that is compatible with the MP2 ground state energy. In many cases this is

a significant improvement over CIS itself and comes at a reasonable cost since the correction is computed a

posteriori. Of course, if the CIS prediction of the excited state is poor, the (D) correction – being perturbative

in nature – cannot compensate for qualitatively wrong excited state wavefunctions.

In addition – and perhaps more importantly – the (D) correction is compatible with the philosophy of the

double-hybrid functionals and should be used if excited states are to be computed with these functionals.

The results are usually much better than those from TD-DFT since due to the large fraction HF exchange,

the self-interaction error is much smaller than for other functionals and after the (D) correction the results

do not suffer from the overestimation of transition energies that usually comes with increased amounts of HF

exchange in TD-DFT calculations.

Since the calculations would require a fairly substantial integral transformation that would limit it to fairly

small molecules if no approximation are introduced we have decided to only implement a RI version of it.
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With this approximation systems with more than 1000 basis functions are readily within the reach of the

implementation.

Since one always has a triad of computational steps: MP2-CIS solution-(D) correction, we have implemented

several algorithms that may each become the method of choice under certain circumstances. The choice

depends on the size of the system, the number of roots, the available main memory and the available disk

space together with the I/O rate of the system. The formal cost of the (D) correction is O(N5) and its

prefactor is higher than that of RI-MP2. In the best case scenario, the rate limiting step would be the

calculation of the pair-contribution in the “U-term” which requires (for a closed-shell system) twice the effort

of a RI-MP2 calculation per state.

The use of the (D)-correction is simple. Simply write:

! RKS B3LYP/G SV(P) SV/C TightSCF

%cis dcorr n # n=1-4. The meaning of the four algorithms is

# explained below.

# algorithm 1 Is perhaps the best for small systems. May use a

# lot of disk space

# algorithm 2 Stores less integrals

# algorithm 3 Is good if the system is large and only a few

# states are calculated. Saves disk and main

# memory.

# algorithm 4 Uses only transformed RI integrals. May be the

# fastest for large systems and a larger number

# of states

end

Table 9.15: Integral handling in various implementations of the (D) correction (i,j=occupied MOs, a,b=virtual

MOs, Q=aux function; NumInt=numerical integration).

DCORR= 1 2 3 4

(ia|jb) integrals Stored Stored Not stored Not stored

(ij|ab) integrals Stored Not made Not made Not made

(ab|Q) integrals Stored Not made Not made Stored

(ij|Q) integrals Stored Stored Stored Stored

(ia|Q) integrals Stored Stored Stored Stored

Coulomb CIS From (ia|jb) From (ia|jb) From (ia|Q) From (ia|Q)

Exchange CIS From (ij|ab) RI-AO-direct RI-AO-direct From (ab|Q)

XC-CIS Num. Int. Num. Int. Num. Int. Num. Int.

V-term in (D) From (ia|jb) From (ia|jb) From (ia|Q) From (ia|Q)

U-term in (D) From (ab|Q) RI-AO-direct RI-AO-direct From (ab|Q)

NOTE:

• In all three involved code sections (MP2, CIS, (D)) the storage format FLOAT is respected. It cuts

down use of disk and main memory by a factor of two compared the default double precision version.
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The loss of accuracy should be negligible; however it is – as always in science – better to double check.

• The (ab|Q) list of integrals may be the largest for many systems and easily occupies several GB of disk

space (hence algorithms 2 and 3). However, that disk-space is often well invested unless you run into

I/O bottlenecks.

• The (ia|jb) and (ij|ab) lists of integrals is also quite large but is relatively efficiently handled. Nevertheless,

I/O may be a problem.

• Making the exchange contribution to the CIS residual vector in an RI-AO direct fashion becomes quite

expensive for a larger number of states. It may be a good choice if only one or two excited states are

to be calculated for a larger system.

• Calculations are possible with the full TD-DFT and the TDA-DFT versions.

• Usage of time-dependent double-hybrids should be cited as follows: For TD or TDA with any double

hybrid, [480] TD-B2GPLYP, [481] TDA-PBE0-DH or TDA-PBE0-2, [482] TD-PBE0-DH, TD-PBE0-2,

or TDA-B2GPPLYP. [483]

9.23.7 Natural Transition Orbitals

Results of TD-DFT or CIS calculations can be tedious to interprete as many individual MO pairs may

contribute to a given excited state. In order to facilitate the analysis while keeping the familiar picture of an

excited state originating from essentially an electron being promoted from a donor orbital to an acceptor

orbital, the device of ”natural transition orbitals” can be used.

The procedure is quite straightforward. For example, consider the following job on the pyridine molecule:

! PBE D3ZERO def2-SVPD def2/J tightscf

%tddft nroots 5

DoNTO true # flag to turn on generation of natural transition orbitals

NTOStates 1,2,3 # States to consider for NTO analysis;

#if empty all will be done

NTOThresh 1e-4 # threshold for printing occupation numbers

end

* xyz 0 1

N 0.000000 0.000000 1.401146

C 0.000000 1.146916 0.702130

C 0.000000 -1.146916 0.702130

C -0.000000 1.205574 -0.702848

C -0.000000 -1.205574 -0.702848

C 0.000000 -0.000000 -1.421344

H -0.000000 2.079900 1.297897

H -0.000000 -2.079900 1.297897

H -0.000000 2.179600 -1.219940

H -0.000000 -2.179600 -1.219940
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H 0.000000 0.000000 -2.525017

*

which results in:

------------------------------------------

NATURAL TRANSITION ORBITALS FOR STATE 1

------------------------------------------

Making the (pseudo)densities ... done

Solving eigenvalue problem for the occupied space ... done

Solving eigenvalue problem for the virtual space ... done

Natural Transition Orbitals were saved in TD-DFT-Example-6.s1.nto

Threshold for printing occupation numbers 0.000100

E= 0.158492 au 4.313 eV 34785.0 cm**-1

20a -> 21a : n= 0.99825296

19a -> 22a : n= 0.00067172

18a -> 23a : n= 0.00051394

17a -> 24a : n= 0.00030846

------------------------------------------

NATURAL TRANSITION ORBITALS FOR STATE 3

------------------------------------------

Making the (pseudo)densities ... done

Solving eigenvalue problem for the occupied space ... done

Solving eigenvalue problem for the virtual space ... done

Natural Transition Orbitals were saved in TD-DFT-Example-6.s3.nto

Threshold for printing occupation numbers 0.000100

E= 0.197103 au 5.363 eV 43259.2 cm**-1

20a -> 21a : n= 0.64493520

19a -> 22a : n= 0.34962356

18a -> 23a : n= 0.00166855

17a -> 24a : n= 0.00112178

16a -> 25a : n= 0.00073279

15a -> 26a : n= 0.00062556

14a -> 27a : n= 0.00045127

13a -> 28a : n= 0.00023135

12a -> 29a : n= 0.00019911

11a -> 30a : n= 0.00017459

10a -> 31a : n= 0.00011544

-----------------------------------------------------------------------------

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------

State Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)

-----------------------------------------------------------------------------

1 34785.0 287.5 0.004079502 0.03861 -0.19649 0.00000 -0.00000

2 35118.0 284.8 0.000000000 0.00000 0.00000 0.00000 0.00000

3 43259.2 231.2 0.024852699 0.18913 -0.00000 0.43490 -0.00000
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4 49592.3 201.6 0.000013122 0.00009 0.00000 0.00000 -0.00933

5 54405.8 183.8 0.027126662 0.16414 -0.00000 -0.40515 -0.00000

We see that there is a weakly allowed transition (S1) that is essentially totally composed of a single NTO pair

(20a→21a : n= 0.99825296), while the third excited state (S3) is strongly allowed and requires two NTO

pairs for its description (20a→21a : n= 0.64493520 and 19a→22a : n= 0.34962356).

These orbitals are shown below. It is evident that the S1 state donor orbital (NTO20) is a nitrogen lone

pair and the acceptor orbital is a π∗ orbital of the ring. For the S3 state the two NTO donor orbitals are

comprised of a nearly degenerate set of π orbitals (they would be degenerate in the parent benzene) and

the acceptor orbitals are a pair of nearly degenerate π∗ orbitals. It is evident from this example that by

looking at the NTOs one can obtain a nicely pictorial view of the transition process, even if many orbital

pairs contribute to a given excited state in the canonical basis.

Figure 9.21: Natural transition orbitals for the pyridine molecule in the S1 and S3 states.

Similar analysis can be performed in the case of ROCIS and DFT/ROCIS calculations as it will be described

in section 9.24.3.

9.23.8 Computational Aspects

9.23.8.1 RI Approximation (AO-Basis)

If the SCF calculation used the RI approximation it will also be used in the TD-DFT calculation. The RI

approximation saves a large amount of time while giving close to identical results (the errors will usually be

<0.1 eV) and is generally recommended. If the functional is a hybrid functional the RI-approximation will

only be applied to the Coulomb term while the exchange will be treated as before. In the SCF you can use
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this feature with the keyword (! RIJONX). It will then also be used in the TD-DFT calculation. Again, the

RIJCOSX approximation can be used in TD-DFT and CIS calculations and leads to very large speedups at

virtually no loss in accuracy.

9.23.8.2 RI Approximation (MO-Basis)

As an alternative to the direct AO-basis computation ORCA allows to use RI-integrals transformed to the

MO basis to generate the CI matrix. This algorithm is more disk-intensive. However, for medium sized

molecules we have observed speedups on the order of 15 or more with this method. It is particularly benefitial

together with hybrid functionals.

In order to use this method you have to specify mode riints in the %tddft block and you also have to assign

an auxiliary basis set (for example def2-TZVP/C). There is a second algorithm of this kind that is labelled

mode riints disk

Note that the auxiliary basis set has to be valid for correlation treatments in case that you have a hy-

brid functional. Thus the basis sets developed for RI-MP2 are suitable (def2-SVP/C, def2-TZVP/C and

def2-TZVPP/C). If you have a non-hybrid functional the normal RI-J auxiliary basis sets are fine.

An example that uses the B3LYP functional is given below:

! RKS B3LYP/G SV(P) def2-SVP/C TightSCF

%tddft

mode riints # or riints disk (often faster but requires more disk space)

nroots 8

end

* int 0 1

C 0 0 0 0.00 0.0 0.0

O 1 0 0 1.20 0.0 0.0

H 1 2 0 1.08 120.0 0.0

H 1 2 3 1.08 120.0 180.0

*

NOTE:

• Do not forget to assign a suitable auxiliary basis set! If Hartree-Fock exchange is present (HF or

hybrid-DFT) these are the auxiliary bases optimized for correlation while for non-hybrid functionals

the standard RI-J bases are suitable.

• The standard auxiliary basis sets may not be suitable if you have diffuse functions present and want to

study Rydberg states. You have to augment the axuliary basis with diffuse functions yourself in this

case.

• Be prepared that the transformed integrals take up significant amounts of disk space.
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9.23.8.3 Integral Handling

If the SCF calculation is carried out in an integral direct fashion this will also be done in the CIS/TD-DFT

calculation. Thus, no bottlenecks arising from large integral transformations or large disk space requirement

arise in the calculations. An exception is the MO based RI approximations described in the previous section.

9.23.8.4 Valence versus Rydberg States

For valence excited states the usual orbital basis sets are reasonable. Thus, with polarized double-zeta basis

sets sensible results are obtained. Especially DFT calculations have the nice feature of not being overly basis

set dependent.

If Rydberg states are desired you should make sure that diffuse functions are present in your basis set. These

can be added to any “normal” basis set. For example, the following example provides a rather high quality

basis for excited state calculations that is based on the Ahlrichs basis set:

%basis basis vtz # standard triple-zeta

pol Ahlrichs_2df # large (2d1f) polarization

diff _p # plus 1 s,p diffuse set

# augment the carbon basis set by even more

# diffuse functions

addgto 6

s 1

1 0.01 1.0

p 1

1 0.01 1.0

d 1

1 0.07 1.0

end

end

Smaller basis sets may also be sufficient.

TIP

• If you want to augment a given basis set it is sensible to run a preliminary SCF calculation and use

%output print[p basis] 2 end. This will provide you with a detailed listing of basis functions and

their exponents. You can then add additional s, p and perhaps d-functions with the AddGTO command

as in the example above. It is sensible to decrease the exponent of the diffuse functions by roughly a

factor of 3 from the smallest exponent in the original basis.
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9.23.8.5 Restrictions for Range-Separated Density Functionals

Several restrictions apply for range-separated (hybrid as well as double-hybrid) density functionals. They are

currently only implemented to work with the AO-based algorithm within the RIJONX, RIJCOSX, and NORI

integral schemes. Additionally, the asymptotic correction (section 9.23.8.6) has been disabled. However,

the nuclear gradient for the excited states is now available, including for the triplets. Please no that the

IROOTMULT flag must be set to TRIPLET under %CIS or %TDDFT in order to obtain that.

9.23.8.6 Asymptotatically Corrected Density Functionals

In studying Rydberg states one general shortcoming of the present day density functionals becomes particularly

prominent. This is the too fast decay of the DFT potential in the long range limit. This causes the DFT

orbital energies being too positive by several eV. Likewise the excitation energies to Rydberg states are

underestimated by several eV. This can be fixed by using density functionals with improved long range

behavior. One such functional is the LB94 functional. However, the LB94 has the disadvantage of being only

defined through the potential and that this potential is not accurate in the bonding region. Therefore it is

reasonable to only correct an existing functional (like the BP functional) in the long range with the LB94

functional. In ORCA the so-called “gradient regular asymptotic correction” (GRAC) is implemented and

can be applied with any “bulk” density functional in the bonding region. The energetics and occupied orbital

energies are only affected to a minor extent while the virtual orbital energies are significantly changed and

the excitation energies to Rydberg states are improved.

The following example shows how to use the asymptotic correction. The run almost exactly reproduces the

results of Grüning et al. [484] who also developed the method implemented in ORCA.

#

# Gradient-regulated asymptotic correction calculation

# on the excited states of the CO molecule.

#

# Reference: Grüning et al. (2001) JCP, vol. 114, p. 652

#

! RKS BP NoRI Grid5 NoFinalGrid TightSCF

%method xckernel lda

ldaopt c_vwn5

xckernellda c_vwn5

# *** turn on the asympt. correction

gracLB true

# *** the input ionization potential

# *** in eV !!!

ip 14.01

end

%basis basis "tzvpp++"

addgto 6

s 1

1 0.01 1.0

p 1
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1 0.01 1.0

d 1

1 0.07 1.0

end

addgto 8

s 1

1 0.02 1.0

p 1

1 0.02 1.0

d 1

1 0.1 1.0

end

end

%tddft nroots 10 # no of roots to determine

tda false # Tamm-Dancoff approx

etol -1 # energy tolerance

rtol 1e-5 # residual tolerance

triplets true # generate triplets ?

end

* xyz 0 1

C 0 0 0.00

O 0 0 1.130

*

From the example two additional inputs are necessary compared to a standard DFT calculation. The first is

“gracLB true” in the method block to turn on the asymptotic correction. The second is “ip 14.01” also in

the method block. The second input is the ionization potential of the molecule in eV and is required for the

correction to be meaningful. If there is no experimental value available you have to calculate the IP first by a

∆SCF calculation before you can run the TD-DFT!

CAUTION:

• The corrected density functional potentials are not functional derivatives of well defined energy

functionals. Therefore you should not rely on the total energies delivered by these functionals because

these are not variational energies!

9.23.8.7 Potential Energy Surface Scans

ORCA allows the combination the scan feature with CIS or TD-DFT. This can be used to map out the

excited state potential energy surfaces as a function of one- two- or three parameters. The output of the

“trajectory” run automatically contains the excited state energies in addition to the ground state energy. For

example consider the following simple job.
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! def2-TZVPD

%method scanguess pmodel # this assignment forces a PModel guess at each step

# which is often better if diffuse functions are present

end

%cis NRoots 7

end

%paras rCO = 0.85,1.45,21;

end

* xyz 0 1

O 0 0 0

C 0 0 {rCO}

*

The output file from this job contains the total energies (i.e. the ground state energy plus the excitation

energy) for each excited state as a function of C-O bondlength as shown below. Howerver, the assignment of

the individual states will change with geometry due to curve crossings. Thus, the state-to-state correlation

must be worked out “by hand”. These calculations are nevertheless very helpful in obtaining at least a rough

idea about excited state energy surfaces.

Figure 9.22: Result of a potential energy surface scan for the excited states of the CO molecule
using the orca cis module.
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9.23.8.8 Potential Energy Surface Scans along Normal Coordinates

The ground and excited state potential energy surfaces can also be mapped as a function of normal coordinates.

The normal mode trajectory run is invoked by the keyword !MTR. In addition several parameters have to be

specified in the block %mtr. The following example illustrates the use:

First you run a frequency job:

#

! BP86 def2-SV(P) def2/J TightSCF AnFreq

* xyz 0 1

C 0.000001 -0.000000 -0.671602

C 0.000000 0.000000 0.671602

H -0.000000 -0.940772 -1.252732

H -0.000000 -0.940772 1.252732

H -0.000000 0.940772 -1.252732

H -0.000000 0.940772 1.252732

*

and then:

! BP86 def2-SV(P) def2/J TightSCF MTR

%tddft

NRoots 3

triplets false

end

%mtr

HessName "ethene.hess"

modetype normal

MList 9,13

RSteps 4,5

LSteps 4,5

ddnc 1.0, 0.5

end

* xyz 0 1

C 0.000001 -0.000000 -0.671602

C 0.000000 0.000000 0.671602

H -0.000000 -0.940772 -1.252732

H -0.000000 -0.940772 1.252732

H -0.000000 0.940772 -1.252732

H -0.000000 0.940772 1.252732

*
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The HessName parameter specifies the name of the file which contains nuclear Hessian matrix calculated

in the frequency run. The Hessian matrix is used to construct normal mode trajectories. The keyword

MList provides the list of the normal modes to be scanned. The parameters RSteps and LSteps specify the

number of steps in positive and negative direction along each mode in the list. In general, for a given set of

parameters

mlist m1,m2,...mn

rsteps rm1,rm2,...rmn

lsteps lm1,lm2,...lmn

the total number of the displaced geometries for which single point calculations will be performed is equal to∏
mi

(rmi + lmi + 1). Thus, in the present case this number is equal to (4 + 4 + 1) (5 + 5 + 1) = 99.

The ddnc parameter specifies increments δqα for respective normal modes in the list in terms of dimensionless

normal coordinates (DNC’s). The trajectories are constructed so that corresponding normal coordinates are

varied in the range from −lαδqα to rαδqα. The measure of normal mode displacements in terms DNC’s is

appropriate choice since in spectroscopical applications the potential energy function U is usually expressed

in terms of the DNC’s. In particular, in the harmonic approximation U(qα) has a very simple form around

equilibrium geometry:

U = U0 +
3N−6∑
α

}ωα
2
q2
α (9.266)

where ωαis the vibrational frequency of the α-th mode.

Dimensionless normal coordinate qα can be related to the vector of atomic Cartesian displacements δX as

follows:

qα =
(ωα

}

) 1
2

3N∑
k=1

LkαδXk

√
Mk (9.267)

where {Lkα} is the orthogonal matrix obtained upon numerical diagonalization of the mass-weighted Hessian

matrix, and M is the vector of atomic masses. Accordingly, the atomic Cartesian displacements corresponding

to a given dimensionless normal coordinate qα are given by:

δXk =

(
}
ωα

) 1
2

Lkαqα (Mk)
− 1

2 (9.268)

Alternatively, it is possible to specify in the input the Cartesian increment for each normal mode. In such a

case, instead of the ddnc parameter one should use the dxyz keyword followed by the values of Cartesian

displacements, for example:
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%mtr

HessName "ethene.hess"

modetype normal

MList 9,13

RSteps 4,5

LSteps 4,5

dxyz 0.01, 0.02 # increments in the Cartesian basis

# are given in angstrom units

end

For a given Cartesian increment dX,α along the α–th normal mode the atomic displacements are calculated

as follows:

δXk =
dX,α
‖Tα‖

Lkα (Mk)
− 1

2 (9.269)

The vector Tα in the Cartesian basis has components Tiα = Lkα (Mk)
− 1

2 and length (norm) ‖Tk‖.

The increment length can also be selected on the basis of an estimate for the expected change in the total

energy ∆E due to the displacement according to eq.9.127. The value of ∆E can be specified via the EnStep

parameter:

%mtr

HessName "ethene.hess"

modetype normal

MList 9,13

RSteps 4,5

LSteps 4,5

EnStep 0.001, 0.001 # the values are given in Eh

end

All quantum chemical methods have to tolerate a certain amount of numerical noise that results from finite

convergence tolerances or other cutoffs that are introduced into the theoretical procedures. Hence, it is

reasonable to choose ∆E such that it is above the characteristic numerical noise level for the given method of

calculation.

At the beginning of the program run the following trajectory files which can be visualized in gOpenMol will

be created:

• BaseName.m9.xyz and BaseName.m13.xyz contain trajectories along normal modes 9 and 13, respec-

tively.

• BaseName.m13s1.m9.xyz - BaseName.m13s5.m9.xyz contain trajectories along normal mode 9 for

different fixed displacements along mode 13, so that the file BaseName.m13sn.m9.xyz corresponds to

the n-th step in the positive direction along mode 13.
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• BaseName.m13s-1.m9.xyz - BaseName.m13s-5.m9.xyz contain trajectories along normal mode 9 for

different fixed displacements along mode 13, so that the file BaseName.m13s-n.m9.xyz corresponds to

the n-th step in the negative direction along mode 13.

• BaseName.m9s1.m13.xyz - BaseName.m9s4.m13.xyz contain trajectories along normal mode 13 for

different fixed displacements along mode 9, so that the file BaseName.m9sn.m13.xyz corresponds to

the n-th step in the positive direction along mode 9.

• BaseName.m9s-1.m13.xyz - BaseName.m9s-4.m13.xyz contain trajectories along normal mode 13

for different fixed displacements along mode 9, so that the file BaseName.m9s-n.m13.xyz corresponds

to the n-th step in the negative direction along mode 9.

The results of energy single point calculations along the trajectories will be collected in files BaseName.mtr.escf.S.dat

(for the SCF total energies) and files BaseName.mtr.ecis.S.dat (for the CIS/TDDFT total energies), where

“S” in the suffix of *.S.dat filenames provides specification of the corresponding trajectory in the same

way as it was done for the case of trajectory files *.xyz (e.g. S=’’m9s-1.m13’’). Likewise, the cal-

culated total energies along the trajectories will be collected in files BaseName.mtr.emp2.S.dat in the

case of MP2 calculations, BaseName.mtr.emdci.S.dat (MDCI), BaseName.mtr.ecasscf.S.dat (CASSCF),

BaseName.mtr.emrci.S.dat (MRCI).

Note, that in principle normal coordinate trajectories can be performed for an arbitrary number normal modes.

This implies that in general trajectories will contain geometries which involve simultataneous displacement

along several (>2) modes. However, trajectory files *.xyz and corresponding *.dat files will be generated

only for the structures which are simultaneously displaced along not more than 2 normal coordinates.

9.23.8.9 Normal Mode Scan Calculations Between Different Structures

This type of job allows to map PES between two different structures as a function of normal coordinates.

The H2O molecule represent a trivial case which has formally 2 equivalent equilibrium structures which differ

by angle H1—O—H2 ( 103.5◦ and 256.5◦, respectively, as follows from the BP86/SV(P) calculations). In

such a case the input for the nomal mode trajectory run would require the calculation of geometry difference

between both structures in terms of the dimensionless normal coordinates. This can be done in orca vib run

as follows :

> orca_vib water.hess ddnc geom.xyz

The second parameter ddnc in the command line invokes the calculation of geometry difference in terms of

the DNC’s. Both structures are specified in the file geom.xyz which has a strict format:

2 3

0

0.000000 0.000000 0.000000

0.000000 0.607566 0.770693

0.000000 0.607566 -0.770693

1
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Figure 9.23: Result of a potential energy surface scan along C-C stretching normal coordinate
(mode 13 in the present example) for the excited states of the ethene molecule using
the orca cis module.

0.000000 0.000000 0.000000

0.000000 -0.607566 0.770693

0.000000 -0.607566 -0.770693

The first line of the input specifies the number of the structures and total number of atoms (2 and 3,

respectively). Specification of each structure in sequence starts with a new line containing the number of

the structure. The number 0 in the second line is used to denote the reference structure. Note that atomic

coordinates should be given in units of Å and in the same order as in the ORCA input for the frequency run

from which the file water.hess was calculated.

At the end of the orca vib run the file geom.ddnc is generated. It contains the geometry difference in terms

of the dimensionless normal coordinates between the structures with nonzero numbers and the reference one

in geom.xyz :

1

1 9

0 0.000000
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1 0.000000

2 0.000000

3 0.000000

4 0.000000

5 0.000000

6 9.091932

7 -9.723073

8 0.000000

The output file indicates that the structural difference occurs along 2 normal coordinates: 6 (bending mode)

and 7 (totally symmetric O—H stretching mode). On the basis of the calculated displacement pattern the

following input for the normal mode trajectory run between two structures can be designed:

! RKS BP86 SV(P) def2/J RI TightScf MTR

%mtr

HessName "water.hess"

modetype normal

mlist 6,7

rsteps 10,0

lsteps 0, 10

ddnc 0.9091932, 0.9723073

end

* xyz 0 1

O 0.000000 0.000000 0.000000

H 0.000000 0.607566 0.770693

H 0.000000 0.607566 -0.770693

*

Here the parameters RSteps, LSteps and ddnc are chosen in such a way that in the scan along modes 6 and 7

the corresponding dimensionless normal coordinates will be varied in the range 0 − 9.091932 and -9.723073 −
0, respectively, in accordance with the projection pattern indicated in the file geom.ddnc. Note that normal

modes are only defined up to an arbitrary choice of sign. Consequently, the absolute sign of the dimensionless

displacements is ambiguous and in principle can vary in different orca vib runs. It is important that the

normal mode scan between different structures exemplified above is performed using the same sign of normal

modes as in the calculation of normal mode displacements. This condition is fulfilled if the same normal

modes are used in orca vib run and trajectory calculation. Thus, since in orca vib calculation normal

modes are stored in .hess file it is necessary to use the same Hessian file in the trajectory calculation.

9.23.8.10 Printing Extra Gradients Sequentially

If you want to print extra gradients for external applications or any other reason, you can use the keywords

SGRADLIST and TGRADLIST, for singlets and triplets. Of course, if you use TGRADLIST, TRIPLETS
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must be also set to TRUE. This will print the gradients sequentially after the CIS/TDDFT run. If you put 0

on the singlet list, the ground state gradient will also be added, always at the end.

9.23.9 Keyword List

%cis or %tddft

NRoots 3 #The number of desired roots

IRoot 1 #The root to be optimized

IRootMult Singlet #or Triplet to optimize it

MaxDim 5 #Davidson expansion space = MaxDim * NRoots

MaxIter 35 #Maximum CI Iterations

NGuessMat 512 #The dimension of the guess matrix

MaxCore 1024 #The maximum memory to be used on this calculation

ETol 1e-6 #Energy convergence tolerance

RTol 1e-6 #Residual Convergence tolerance

TDA false #Switch off for full TDDFT

DoNTO #Generate Natural Transition Orbitals

NTOStates 1,2,3 #States to consider for NTO analysis. If empty, all will be done.

NTOThresh 1e-4 #Threshold for printing occupation numbers

DoSoc TRUE #Include spin-orbit coupling?

SocGrad FALSE #Set true to compute the SOC gradient for a given IROOT

DOTRANS TRUE #Transient spectra - starting from IROOT

ALL #Compute all possible transitions

9.24 Excited States via ROCIS and DFT/ROCIS

The ORCA program package includes the orca rocis module to perform configuration interaction with

single excitations (CIS) calculations using a restricted open-shell Hartee-Fock (ROHF) reference function.

It produces excitation energies, absorption energies and CD intensities. It was designed with the aim to

reproduce and - even more importantly - reliably predict transition metal L-edges as observed in X-ray

absorption spectroscopy (XAS).

9.24.1 General Use

In the present implementation the orca rocis module is only able to perform CIS calculations on top of a

high-spin ROHF reference function. All spins of the unpaired electrons have to be coupled ferrmoagnetically

to give a total spin of S = 1
2N , where N is the number of unpaired electrons. Other ROHF functions such as

Zerner’s configuration averaged or spin averaged ROHF cannot be used as reference. The input for a high

spin ROHF calculation is done in the %scf block.
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%scf HFTyp ROHF #Flag for ROHF

ROHF_Case HighSpin #selects the high-spin case

ROHF_NEl[1] = 4 #the number of unpaired electrons

end

In our experience ROHF calculations suffer a lot from convergence problems. UHF calculations generally

exhibit better convergence properties. In most cases the quasi-restricted orbitals (qro’s) of a UHF calculation

resemble the ROHF orbitals. Thus the program features the ability to start a ROCIS calculation on top of

a UHF calculation. It will automatically create the qro’s and build the reference determinant with them.

If one wants to avoid the (small) errors that are introduced by this procedure, one may take the qro’s of a

UHF calculation as starting orbitals for a subsequent ROHF calculation. Furthermore it is possible to invoke

the orca rocis module for closed-shell molecules. The program will then perform a CI calculation with the

provided RHF reference function. In this case it will yield the same result as the orca cis program.

A number of basic variables in the %rocis block control the settings of the Davidson procedure that is used

to solve the CI problem:

%rocis NRoots 6 # number of desired roots

MaxDim 5 # Davidson expansion space = MaxDim * NRoots

ETol 1e-6 # energy convergence tolerance

RTol 1e-6 # residual vector convergence tolerance

MaxIter 35 # maxmimum number of iterations

NGuessMat 512 # dimension of the guess matrix: 512x512

end

The dimension of the iterative subspace is given by MaxDim cdot NRoots. The lowest possible choice for

MaxDim is a value of 2. In general, by choosing MaxDim ≈ 5-10 times NRoots you will achieve a more

favorable convergence by the cost of an increased disk space requirement. Increasing the NGuessMat variable

will improve the convergence of the iterative CI procedure. The amount of output produced during the

calculation is controlled via the PrintLevel variable

%rocis NRoots 3

PrintLevel 3

end

Note, that this does not influence which spectra are calculated or printed. The absorption spectrum calculated

on the basis of the pure dipole approximation for your calculation is always printed. In addition, it is possible

to allow for electric quadrupole and magnetic dipole contributions to the absorption spectrum as well as to

calculate the CD spectrum:

%rocis NRoots 6

DoQuad true #invokes calculation of electric

#quadrupole and magnetic dipole
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#magnetic quadrupole and electric octupole contributions

DoCD true #invokes the calculation of the CD

#spectrum

end

The printed spectra look like this:

-----------------------------------------------------------------------------

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------

State Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)

-----------------------------------------------------------------------------

1 2635.0 3795.1 0.000000001 0.00000 0.00001 -0.00001 0.00029

2 4365.5 2290.7 0.000011416 0.00086 0.01200 -0.00864 0.02534

3 4368.2 2289.3 0.000011174 0.00084 -0.02006 0.01442 0.01523

4 5977.9 1672.8 0.000093897 0.00517 -0.04164 -0.05863 0.00000

5 65245.3 153.3 0.027669631 0.13961 -0.20555 -0.31203 -0.00023

-----------------------------------------------------------------------------

ABSORPTION SPECTRUM VIA TRANSITION VELOCITY DIPOLE MOMENTS

-----------------------------------------------------------------------------

State Energy Wavelength fosc P2 PX PY PZ

(cm-1) (nm) (au**2) (au) (au) (au)

-----------------------------------------------------------------------------

1 2635.0 3795.1 0.000000085 0.00000 -0.00000 0.00000 -0.00004

2 4365.5 2290.7 0.001777771 0.00005 -0.00315 0.00223 -0.00618

3 4368.2 2289.3 0.001850956 0.00006 0.00526 -0.00372 -0.00371

4 5977.9 1672.8 0.003237195 0.00013 0.00667 0.00937 0.00000

5 65245.3 153.3 0.057301314 0.02555 0.08779 0.13358 0.00010

-------------------------------------------------------------------

CD SPECTRUM

-------------------------------------------------------------------

State Energy Wavelength R MX MY MZ

(cm-1) (nm) (1e40*sgs) (au) (au) (au)

-------------------------------------------------------------------

1 2635.0 3795.1 0.00007 -0.00511 -0.01539 0.00021

2 4365.5 2290.7 10.02484 0.57434 -0.40490 0.42899

3 4368.2 2289.3 -10.03730 0.34432 -0.24269 -0.71470

4 5977.9 1672.8 0.01537 -0.00033 -0.00032 -0.00286

5 65245.3 153.3 -0.00865 0.00004 0.00003 -0.00005

-----------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM

-----------------------------------------------------------------------------------------------------

State Energy Wavelength D2 m2 Q2 D2+m2+Q2 D2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-----------------------------------------------------------------------------------------------------

1 2635.0 3795.1 0.00000 0.00011 0.00000 0.00000000080469 0.86010 0.13938 0.00052

2 4365.5 2290.7 0.00001 0.47866 0.00000 0.00001189497194 0.95976 0.04024 0.00000

3 4368.2 2289.3 0.00001 0.48629 0.00000 0.00001166062671 0.95830 0.04170 0.00000

4 5977.9 1672.8 0.00009 0.00001 0.00001 0.00009389664707 1.00000 0.00000 0.00000

5 65245.3 153.3 0.02767 0.00000 0.06183 0.02766969236508 1.00000 0.00000 0.00000
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-----------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (origin adjusted)

-----------------------------------------------------------------------------------------------------

State Energy Wavelength D2 m2 Q2 D2+m2+Q2 D2/TOT M2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-----------------------------------------------------------------------------------------------------

1 2635.0 3795.1 0.00000 0.00000 0.00000 0.00000000069409 0.99716 0.00016 0.00268

2 4365.5 2290.7 0.00001 0.38277 0.00039 0.00001179947536 0.96753 0.03244 0.00003

3 4368.2 2289.3 0.00001 0.36798 0.00045 0.00001154275975 0.96808 0.03188 0.00004

4 5977.9 1672.8 0.00009 0.00000 0.00001 0.00009389663928 1.00000 0.00000 0.00000

5 65245.3 153.3 0.02767 0.00003 0.06176 0.02766969232228 1.00000 0.00000 0.00000

Furthermore like in TD-DFT (section 8.4.2) or CASSCF one may obtain exact origin independent intensities by

evaluating the generalized exact oscillation strengths. As discussed in the this has the following properties

• The exact oscillation strengths behave like the multipole expansion in the velocity representation.

• They are by definition origin independent they do not suffer from artificial negative values like the

multipole moments beyond 1st order.

• They are used with the multipole moments up to 2nd order to regenerate the electric dipole, electric

quadrupole and magnetic dipole contributions in either length or the velocity representation.

They are requested as:

DoQuad true

DoLength true #Evaluate the exact oscillation strengths and multipole moments

#up to 2nd order in length representation

DoVelocity true #Evaluate the exact oscillation strengths and multipole moments

#up to 2nd order in velocity representation

For the Fe K-edge XAS spectrum of [FeCl4]2−. This will result in addition to the following tables for the

velocity representation:

...

-------------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin Independent, Velocity)

-------------------------------------------------------------------------------------------------------------

State Energy Wavelength P2 m2 Q2 P2+m2+Q2+PM+PO P2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-------------------------------------------------------------------------------------------------------------

1 57131638.5 0.2 0.00000 0.00000 3.75184 0.00000375184371 0.00000 0.00000 1.00000

2 57131638.5 0.2 0.00000 0.00000 3.75184 0.00000375184267 0.00000 0.00000 1.00000

3 57145543.6 0.2 0.00007 0.00000 3.46619 0.00007086820341 0.95853 0.00000 0.04891

4 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007078008474 0.95972 0.00000 0.04897

5 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007084079919 0.95889 0.00000 0.04893

11 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99463 0.00618 0.00216

12 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000001 0.00000 0.00000 0.00000

13 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99414 0.00692 0.00217
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15 57354687.7 0.2 0.00000 0.00000 0.00000 0.00000000000888 0.00898 0.00000 0.00002

-------------------------------------------------------------------------------------------------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Exact Formulation, Velocity)

-------------------------------------------------------------------------------------------------------------

State Energy Wavelength P2 m2 Q2 Exact Osc. Strength P2/TOT m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

-------------------------------------------------------------------------------------------------------------

1 57131638.5 0.2 0.00000 0.00000 3.02719 0.00000302719471 0.00000 0.00000 1.00000

2 57131638.5 0.2 0.00000 0.00000 2.66225 0.00000266224706 0.00000 0.00000 1.00000

3 57145543.6 0.2 0.00007 0.00000 3.46619 0.00007092969904 0.95853 0.00000 0.04891

4 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007074406444 0.95972 0.00000 0.04897

5 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007075200792 0.95889 0.00000 0.04893

11 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99463 0.00618 0.00216

12 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000001 0.98256 0.01631 0.00209

13 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99414 0.00692 0.00217

15 57354687.7 0.2 0.00000 0.00000 0.00000 0.00000000001200 0.00898 0.00000 0.00002

....

These spectra are plotted by calling:

orca_mapspc MyOutput.out ABS/ABSV/CD/ABSQ/ABSOI/ABSVOI -eV -x0(start) -x1(stop)

-w(width) -n(points)

In particular ABSOI and ABSVOI will plot the exact transition moments spectra at the Length and Velocity

representations (For the multiple expansion contributions).

If calculations on large molecules are conducted, the integral transformation will be the most time-consuming

part. Therefore it is strongly recommended to use the resolution of the identity (RI) approximation in those

cases. It effectively reduces the computational costs of the transformation step by only introducing minor

errors to the calculation. It has to be kept in mind that in order to keep the introduced errors small, one has

to provide a reasonable auxiliary basis sets along with your normal basis set input.

Starting from ORCA 4.0 the basis set definition on ORCA has changed. This also affects the definition of the

auxiliary basis set when the DoRI keyword is set. ROCIS will then onlu allow in the mainline /C auxiliary

basis sets to be set (i.e. def2-TZVP/C). As thiese basis are usually optimized on the presence of effective core

potentials (ECPs) they are generally not recomended for core-electron calculations. The /J auxiliary basis

set need to be used and they are specified in the following way.

%basis

AuxC "def2/J"

end

! def2-TZVP def2-TZVP/C TightSCF SlowConv

%SCF HFTyp ROHF
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ROHF_Case HighSpin

ROHF_Nel[1] = 1

End

%ROCIS NROOTS 5

DoRI true # invokes the RI approximation

DoQuad true

end

* xyz 0 2

N 0 0 0

O 0 0 1.15

*

The orca rocis module provides two ways of choosing the orbital excitation space: by orbital energy or

orbital number. In the former case an energy window has to be specified and the program will then take all

orbitals, whose orbital energies lie within this window, into account. Note, that one actually has to define

two orbital windows: One for the donor and the second for the acceptor orbital. The input of the windows

is done as an array: The first two numbers define the donor space while the last two numbers define the

acceptor space.

%rocis NRoots 3

EWin = -5,5,-5,5

end

The default is to keep core orbitals and very high lying virtual orbitals out of their respective orbital excitation

spaces. Since these orbitals span a space that is usually not reachable with regular UV/Vis spectroscopy, this

is a reasonable approximation. One has to keep in mind that an orbital energy window makes only sense if

the orbitals used in the calculation have a well-defined orbital energy. As a consequence one cannot use an

orbital energy window for a calculation with localized orbitals. The second way to specify the excitation

space is by orbital numbering.

%rocis NRoots 3

OrbWin = 1,13,9,22

end

In restricted calculations only one set of spatial orbitals is created. Hence it is not necessary to provide

orbital windows for α and β electrons separately. Of course, only doubly or singly occupied orbitals can

act as donor orbitals and only singly and nonoccupied orbitals can act as acceptor orbitals. The program

recognizes nonoccupied orbitals in the donor space and doubly occupied orbitals in the acceptor space and

removes both.

The many-electron expansion space of a ROCIS calculation in ORCA is divided into five classes. Using

second quantized replacement operators Eqp = â↑qαâpα + â↑qβ âpβ they take the form [485].
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|Φsi 〉 = Esi |0〉
|Φas〉 = Eas |0〉
|Φai 〉 = 1√

2
Eai |0〉

|Φasti 〉 = Eat E
s
i |0〉

|Φasti 〉 = 1√
6

(Eai − 2EasE
s
i ) |0〉

(9.270)

The orbital label i denotes a doubly occupied orbital, s and t refer to singly occupied orbitals and orbital

label a corresponds to a virtual orbital. The form of the excitation classes ensures that all excited states are

eigenfunctions of the Ŝ2-operator and have the same total spin S as the electronic ground state. Each of the

five excitation classes can be switched on or off manually.

%rocis NRoots 3

Do_is true #Include DOMO->SOMO excitations

Do_sa true #Include SOMO->Virtual excitations

Do_ia true #Include DOMO->Virtual excitations

Do_ista true #Include DOMO->SOMO coupled to

#SOMO->Virtual excitations with #s not equal t

Do_isa true #Include DOMO->SOMO coupled to

#SOMO->Virtual excitations with #s = t

#---------------------------------

#by default all switches for the

#excitation classes are set to

#‘‘true’’

#---------------------------------

end

Formally, the |Φasti 〉 and |Φatti 〉 excitation classes can be regarded as double excitations. When the program

finishes the ROCIS calculation it gives the excitation energy together with the composition for each root.

According to the number of labels of the respective functions |Φ〉, contributions from excited configuration

state functions belonging to the different excitation classes are given by two, three or four numbers.

STATE 5 Exc. Energy: 297.279mEh 8.089eV 65245.3cm**-1

47->50 : 0.2196

47->51 : 0.0138

37->50 : 0.1165

41->50 : 0.0960

38->46 ; 47->50 : 0.0103

37->46 ->50 : 0.0150

37->47 ->50 : 0.0938

37->48 ->50 : 0.0179

37->49 ->50 : 0.0179

41->46 ->50 : 0.0174

41->47 ->50 : 0.0585

41->48 ->50 : 0.0213

41->49 ->50 : 0.0211
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Furthermore the orca rocis module is able to calculate the effect of spin-orbit coupling (SOC) on the

calculated ground and excited states. It introduces SOC in the framework of quasi-degenerate perturbation

theory (QDPT). The SOC Hamiltonian is diagonalized in the basis of the calculated ROCIS states
∣∣ΨSM

I

〉
,

where I is the root label and S and M are the spin and magnetic spin quantum numbers, respectively [211],

[485].

%rocis NRoots 3

OrbWin = 1, 3 ,9 ,22

SOC true #invokes the calculation of #SOC effects

SOCTEMP 10 #temperature for SOC #corrected spectra in Kelvin

end

After the SOC calculation the program will produce additional spectra for the SOC corrected results. The

spectra contain transitions from the 2S + 1 lowest lying states into all excited states, where S is the spin

quantum number of the electronic ground state. These 2S + 1 lowest states may be split up in the order of

1-100 cm−1. Due to the small magnitude of the splitting, all of the 2S+1 states can be significantly populated

even at low temperatures. Experimentally, the intensity of a given transition is dependent on the population

of the corresponding initial state. With the SOCTemp keyword the population of the theoretically calculated

states can be manipulated by the varying the fictive temperature of the system. It has to be mentioned that

the electric quadrupole transitions between spin-orbit coupled states are not well defined and are likely to

give unreasonable results. Hence it is recommended to use the DoQuad keyword only for calculations that do

not include SOC.

-------------------------------------------------------------------------------

SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-------------------------------------------------------------------------------

States Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)

-------------------------------------------------------------------------------

0 1 5.6 0.0 0.000000000 0.00000 0.00003 0.00002 0.00000

0 2 6.2 0.0 0.000000000 0.00000 0.00000 0.00000 0.00005

0 3 23.7 422287.3 0.000000000 0.00000 0.00000 0.00000 0.00000

0 4 23.7 421562.8 0.000000000 0.00000 0.00018 0.00025 0.00000

0 5 2621.7 3814.3 0.000000000 0.00000 0.00000 0.00001 0.00005

0 6 2622.0 3813.9 0.000000000 0.00000 0.00003 0.00012 0.00000

0 7 2634.7 3795.5 0.000000095 0.00002 0.00388 0.00273 0.00049

0 8 2634.9 3795.2 0.000000103 0.00002 0.00039 0.00027 0.00495

0 9 2639.5 3788.6 0.000000001 0.00000 0.00001 0.00001 0.00036

0 10 4223.6 2367.6 0.000000103 0.00002 0.00043 0.00029 0.00390

0 11 4223.9 2367.5 0.000000120 0.00002 0.00348 0.00236 0.00046

0 12 4296.3 2327.6 0.000000696 0.00010 0.00562 0.00842 0.00000

0 13 4357.6 2294.8 0.000000002 0.00000 0.00001 0.00001 0.00049

0 14 4418.1 2263.4 0.000005778 0.00083 0.00653 0.00468 0.02762

0 15 4422.1 2261.4 0.000005517 0.00079 0.02184 0.01559 0.00832

0 16 4488.2 2228.0 0.000000001 0.00000 0.00004 0.00006 0.00038

0 17 4524.2 2210.3 0.000000001 0.00000 0.00030 0.00018 0.00000

0 18 4597.2 2175.2 0.000000027 0.00000 0.00023 0.00016 0.00191

0 19 4597.4 2175.2 0.000000051 0.00001 0.00213 0.00153 0.00023

0 20 6043.6 1654.6 0.000047989 0.00502 0.04104 0.05779 0.00000

0 21 6049.5 1653.0 0.000000014 0.00000 0.00109 0.00057 0.00001
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0 22 6051.3 1652.5 0.000000021 0.00000 0.00001 0.00004 0.00150

0 23 6069.7 1647.5 0.000000000 0.00000 0.00005 0.00007 0.00000

0 24 6069.9 1647.5 0.000000028 0.00000 0.00098 0.00138 0.00000

0 25 65281.7 153.2 0.014223474 0.13787 0.20423 0.31010 0.00023

0 26 65281.7 153.2 0.000000035 0.00000 0.00032 0.00048 0.00011

0 27 65281.7 153.2 0.000009000 0.00009 0.00522 0.00774 0.00001

0 28 65281.7 153.2 0.000007207 0.00007 0.00460 0.00698 0.00000

0 29 65281.7 153.2 0.000047448 0.00046 0.01179 0.01791 0.00001

1 2 0.6 0.0 0.000000000 0.00000 0.00001 0.00001 0.00000

1 3 18.1 553477.5 0.000000000 0.00000 0.00000 0.00000 0.00009

1 4 18.1 552233.6 0.000000000 0.00000 0.00006 0.00004 0.00000

1 5 2616.1 3822.5 0.000000063 0.00001 0.00006 0.00003 0.00261

1 6 2616.4 3822.1 0.000000060 0.00001 0.00211 0.00144 0.00006

1 7 2629.1 3803.6 0.000000143 0.00002 0.00225 0.00321 0.00003

1 8 2629.3 3803.3 0.000000002 0.00000 0.00015 0.00025 0.00040

1 9 2633.9 3796.7 0.000000271 0.00003 0.00011 0.00008 0.00538

1 10 4218.0 2370.8 0.000000005 0.00000 0.00031 0.00046 0.00019

If the PrintLevel value is set to 3 or higher, the program will print out the composition of the SOC corrected

states in the basis of states
∣∣ΨSM

I

〉
.

Eigenvectors of SOC calculation:

the threshold for printing is: 0.010000

weight : Root Spin Ms

State 0: 0.00 cm**-1 0.00000 eV

0.378045 : 0 2 2

0.235825 : 0 2 0

0.378045 : 0 2 -2

State 1: 5.61 cm**-1 0.00070 eV

0.496236 : 0 2 2

0.496236 : 0 2 -2

State 2: 6.20 cm**-1 0.00077 eV

0.496291 : 0 2 1

0.496291 : 0 2 -1

Further details of the SOC calculation such as the procedure of SOC integral calculation can be controlled

via the %rel block (section 9.18.

9.24.2 Transition Metal L-Edges with ROCIS or DFT/ROCIS

The orca rocis program was designed to calculate transition metal L-edge spectra of large molecules as they

are observed in X-ray absorption spectroscopy (XAS). An L-edge results when an electron is promoted from

the 2p shell of a transition metal ion into the valence d shell by an X-ray photon. Strong spin-orbit coupling

in the 2p shell and p-d coupling phenomena complicate the interpretation and even more so the prediction of

these spectra. It has to be kept in mind that the present program applies a variety of approximations which
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might lead to observable deviations from experimentally determined spectra. However, we believe that the

results obtained from the program are in general qualitatively correct and in most cases accurate close to the

experimental uncertainty. In cases where quantitative accuracy is not met, the provided results might still

give some insight into the mechanisms of intensity distribution in the spectra.

The special input structure for orbital windows described in 9.24.1 allows the user to restrict the donor

orbital space to the transition metal 2p shell. The acceptor orbital space is the same as in regular UV/Vis

spectroscopy. It should include all singly occupied molecular orbitals and as many virtual orbitals as one can

afford in the calculation. The number of roots should be chosen large enough so that at least all 2p-3d single

excitations are calculated. In many cases even more roots are required since doubly excited or charge transfer

states may become important. Moreover the strong SOC apparent in the 2p shell of transition metal ions

necessitates the additional calculation of excited states with a total spin of S′ = S + 1 and S′ = S − 1 where

S is the total spin of the electronic ground state. Accordingly four additional excitation classes introduce

excited configuration state functions with a lower and higher spin multiplicity. They feature the second

quantized spin raising and lowering operators Ŝ+
pq = â↑qαâpβ , Ŝ−pq = â↑qβ âpα.

∣∣∣Φ(t−)
i

〉
=
√

2S′+1
2S′+2S

−
ti |0〉 −

SOMO∑
u6=t

1√
2S′+1

1√
2S′+2

S−uuE
t
i |0〉∣∣∣Φ(t−)

i

〉
=
√

2S′+1
2S′+2S

−
ti |0〉 −

SOMO∑
u6=t

1√
2S′+1

1√
2S′+2

S−uuE
t
i |0〉∣∣∣Φ(a−)

i

〉
=
√

2S′+1
2S′+3S

−
ai |0〉 −

SOMO∑
t

√
(S′+1)2−S′2

(S′+1)(2S′+3)
1√

2(2S′+2)
S−ttE

a
i |0〉

+
SOMO∑
t,u6=t

√
2

(2S′+2)(2S′+3)

√
1

(2S′+2)2(2S′+1)S
−
ttS
−
uuS

+
ai |0〉


S′ = S − 1

∣∣∣Φa+i 〉 = S+
ai |0〉

}
S′ = S + 1

(9.271)

Inclusion of configuration state functions with higher or lower multiplicity is invoked with the keywords

DoLowerMult and DoHigherMult, respectively.

%rocis NRoots 20

SOC true

DoRI true

PrintLevel 3

DoLowerMult true #Invokes a CI calculation #with S’=S-1

DoHigherMult true #Invokes a CI calculation #with S’=S+1

OrbWin = 6,8,0,2000

end

The program will conduct a separate Davidson procedure for each multiplicity. Subsequently it gives the

excitation energies and compositions of the calculated excited states for all included multiplicities. After all

CI calculations are finished, the program gives a list of all calculated roots with their excitation energies and

their multiplicities. It is this number that will be referred to as label I in the decomposition of spin-orbit

coupled states in the basis
∣∣ΨSM

I

〉
. It is very important to note, that when states with different multiplicities

are calculated this number might deviate from the number that appears in the respective CI part of the

output. If one gets confused about the numbering of the states, the state energies might act as a guideline

through the output of the program.
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Without SOC the spin exclusion rule applies which means that only excited states with a total spin equal to

the ground state spin (S′ = S) give rise to non-vanishing intensities. Hence, only these transitions are listed

in the spectra before SOC.

--------------------------------------------------------------------------------

ROOT Mult Excitation energy[Eh] [cm-1] [eV]

--------------------------------------------------------------------------------

0 5 0.00000000 0.00 0.000

1 5 26.24822856 5760820.28 714.251

2 5 26.24833619 5760843.90 714.254

3 5 26.27159871 5765949.43 714.887

4 5 26.27982129 5767754.08 715.110

5 5 26.30321870 5772889.22 715.747

6 5 26.30458669 5773189.46 715.784

7 5 26.33143414 5779081.79 716.515

8 5 26.33600432 5780084.83 716.639

9 5 26.33865219 5780665.97 716.711

10 5 26.34522494 5782108.52 716.890

11 5 26.34577552 5782229.36 716.905

12 5 26.35183534 5783559.34 717.070

13 3 26.42121780 5798787.03 718.958

14 3 26.42122881 5798789.45 718.958

...

42 7 27.22926558 5976133.02 740.946

43 7 27.23201078 5976735.52 741.021

44 7 27.23280499 5976909.83 741.042

45 7 27.23594814 5977599.67 741.128

46 7 27.23865050 5978192.77 741.201

47 7 27.26590445 5984174.32 741.943

48 7 27.26597947 5984190.78 741.945

49 7 27.26604364 5984204.87 741.947

50 3 27.29447169 5990444.10 742.720

51 3 27.30121861 5991924.88 742.904

52 3 27.30655497 5993096.08 743.049

53 3 27.30685328 5993161.55 743.057

54 3 27.31274496 5994454.62 743.218

55 7 27.52164817 6040303.58 748.902

56 7 27.52433114 6040892.42 748.975

57 7 27.52448641 6040926.50 748.979

58 7 27.53903479 6044119.50 749.375

59 7 27.53935644 6044190.10 749.384

------------------------

ROCIS-EXCITATION SPECTRA

------------------------

NOTE: At this point no SOC is included!!!

Hence only transitions to states with the same spin multiplicity

as the ground state are observed!!!

Center of mass = ( -0.0011, -0.0021, 0.0000)

Calculating the Dipole integrals ... done

Transforming integrals ... done

Calculating the Linear Momentum integrals ... done
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Transforming integrals ... done

-----------------------------------------------------------------------------

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------

State Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)

-----------------------------------------------------------------------------

1 5760820.3 1.7 0.000985130 0.00006 0.00612 -0.00434 0.00011

2 5760843.9 1.7 0.000777158 0.00004 -0.00008 0.00006 0.00666

3 5765949.4 1.7 0.000000036 0.00000 0.00000 0.00001 -0.00004

4 5767754.1 1.7 0.000007564 0.00000 0.00033 0.00057 -0.00000

5 5772889.2 1.7 0.025379335 0.00145 -0.00031 0.00021 -0.03804

6 5773189.5 1.7 0.026898175 0.00153 0.03203 -0.02254 -0.00039

7 5779081.8 1.7 0.000000323 0.00000 -0.00006 -0.00009 -0.00008

8 5780084.8 1.7 0.001711738 0.00010 -0.00572 -0.00805 0.00001

9 5780666.0 1.7 0.113054940 0.00644 -0.04616 -0.06564 -0.00001

10 5782108.5 1.7 0.151287595 0.00861 0.00073 -0.00052 0.09281

11 5782229.4 1.7 0.147199895 0.00838 0.07488 -0.05266 -0.00088

12 5783559.3 1.7 0.000000026 0.00000 0.00001 -0.00001 0.00004

28 5960986.7 1.7 0.004292708 0.00024 -0.00881 -0.01263 -0.00000

29 5963084.1 1.7 0.001638281 0.00009 -0.00774 0.00553 0.00006

30 5963136.7 1.7 0.001369356 0.00008 -0.00005 0.00003 -0.00869

31 5963484.9 1.7 0.000935993 0.00005 0.00415 0.00587 -0.00000

32 5968477.0 1.7 0.000661255 0.00004 0.00493 -0.00349 -0.00007

33 5968705.6 1.7 0.000607238 0.00003 0.00006 -0.00004 0.00579

35 5970943.7 1.7 0.000000001 0.00000 0.00000 0.00000 -0.00001

After calculation of SOC in the basis of all calculated ROCIS roots, the program prints out the composition

of the spin-orbit coupled states (if PrintLevel >2) and the corresponding absorption spectrum.

Eigenvectors of SOC calculation:

the threshold for printing is: 0.010000

weight : Root Spin Ms

State 0: 0.00 cm**-1 0.00000 eV

0.129027 : 0 2 2

0.741116 : 0 2 0

0.129027 : 0 2 -2

-------------------------------------------------------------------------------

SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-------------------------------------------------------------------------------

States Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)

-------------------------------------------------------------------------------

0 1 0.0 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000

0 2 0.8 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000

0 3 0.8 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000

0 4 1.0 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000

0 5 5729330.4 1.7 0.000080556 0.00002 0.00013 0.00009 0.00464

0 6 5729330.4 1.7 0.000096984 0.00003 0.00415 0.00295 0.00013

0 7 5731365.3 1.7 0.000000001 0.00000 0.00001 0.00000 0.00000

0 8 5731365.4 1.7 0.000000000 0.00000 0.00000 0.00000 0.00001

0 9 5733452.5 1.7 0.000058329 0.00002 0.00323 0.00227 0.00004
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0 10 5733477.2 1.7 0.000066389 0.00002 0.00003 0.00002 0.00421

0 11 5734964.4 1.7 0.000000034 0.00000 0.00005 0.00007 0.00004

0 12 5737151.2 1.7 0.000047769 0.00001 0.00208 0.00291 0.00000

With the aid of the orca mapspc program it is possible to extract a .plt file from the printed spectra, which

then can be used to generate a plot of the intensity vs the excitation energy. The orca mapspc program

applies Gaussian type lineshape functions to the calculated transitions with a user-defined FWHM. One has

to provide some information for the program such as the name of the output file, the type of spectrum you

wish to plot, the energy range and the like. It is invoked in the command line and the parameters are given

as arguments:

orca_mapspc FeIICl4.out socabs -eV -w1 -n3000 -x0710 -x1740

The first argument has to be the output file of your calculation followed by the type of spectrum that should

be plotted. In the case of transition metal L-edges it is an absorption spectrum after the SOC correction. The

arguments “-eV” (use electron Volt as energy unit), “-w1” (FWHM = 1eV), “-n3000” (use 3000 grid points),

“-x0710” and “-x1740” (energy range: 710 to 740 eV) have to be adapted to the specific calculation. As a

result, one obtains a .plt and a .stk file. The .plt file contains five columns. In the first column one finds

the energy and in the second the total intensity. Columns three to five contain the x-,y- and z-components of

the transition moment. Note, that the distribution of the transition moment among its spatial components

depends on the orientation of your molecular axis system. The .stk file contains a list of all transitions with

their respective transition energy and intensity. A more detailed description of the orca mapspc program

and its usage can be found in chapter 9.40.1.

Figure 9.24: Comparison of the experimentally observed (black) and calculated ROCIS (red) Fe
L-edge of [FeCl4]2−. The red bars highlight the contribution of individual states to
the total spectrum. The calculation was performed using the TZVP basis set.

For many transition metal compounds the description of the electronic ground and excited states by Hartree-

Fock theory and CIS is of rather poor quality. Especially covalency and relative spin state energetics are not

reproduced correctly. This in turn might lead to wrong intensity distributions in the calculated L-edge spectra.

In the majority of these cases the quality of the description and hence the predicted L-edge spectra can be
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significantly improved with the DFT/ROCIS method [485]. It features the usage of a restricted open-shell

Kohn-Sham matrix as reference and also uses the DFT orbitals for setting up the excited configuration state

functions in the CI expansion. The two electron integrals that include the DFT orbitals are scaled according

to their nature and their position in the CI matrix by the parameters c1, c2 and c3. They all lie in the interval

[0;1]. Parameters c1 and c2 scale coulomb- and exchange- like terms in the diagonal part of the CI matrix,

whereas c3 reduces the size of all off-diagonal elements of the CI matrix. For example:

H
DFT/ROCIS
ia,ia = F

C(KS)
aa − FC(KS)

ii − c1 (ii|aa) + 2c2 (ia|ia)

H
DFT/ROCIS
ia,jb = c3

{
δijF

C(KS)
ab − δabFC(KS)

ji − (ij|ab) + 2 (ia|jb)
} (9.272)

The three default parameters c1 = 0.18, c2 = 0.20 and c3 = 0.40 have been optimized for a test set of

molecules and their excited states on a B3LYP/def2-TZVP(-f) level of theory but can be freely chosen [485].

It is most likely that for a different combination of test molecules, functional and basis set, a different set of

parameters gives better results. Since the parameters are chosen with regard of a good ”balance” between

orbital energies, Coulomb and exchange integrals, a new set of parameters should at least crudely resemble

their relative proportions.

! B3LYP def2-TZVP(-f) TightSCF Grid4 NoFinalGrid

%Basis

AuxC "def2/J"

end

%ROCIS NRoots 20

DoRI true

SOC true

DoHigherMult true

PrintLevel 3

OrbWin = 5,7,50,60

DoDFTCIS true #switches on the DFT/ROCIS method

DFTCIS_c = 0.18, 0.20, 0.40 #Array input of the three parameters

end

9.24.3 Natural Transition Orbitals/ Natural Difference Orbitals

Likewise to CIS and TD-DFT (section 9.23.7) The nature of the calculated excited states in ROCIS and

DFT/ROCIS can be analyzed by using the Natural Transition Orbitals (NTO) or Natural Difference Orbitals

(NDO) machineries. [486] Note that:

• The NTO analysis is based on the transition density between ground and excited states. Hence is valid

for singly excited states and for states of the same multiplicity.

• The NDO analysis on the otherhand is somewhat more flexible in this respect as it is based on the

difference density between ground and excited states.



9.24 Excited States via ROCIS and DFT/ROCIS 679

Figure 9.25: Comparison of the experimentally observed (black) and calculated (red) Ti L-edge of
[Cp2TiCl2]. The red bars highlight the contribution of the individual states to the
total spectrum. The pure ROCIS method (left) predicts a wrong L3-L2 intensity ratio
and strongly overestimates the splitting of the satellite features to the main bands.
Better results are obtained with the DFT/ROCIS method (right).

• Presently, only one analysis (NTO or NDO) can be performed at a time while when both flags are on

the NTO analysis switches off.

An example is given below for [FeCl4]2−:

!B3LYP def2-TZVP Conv TightSCF LargePrint PAL4

%Basis

AuxC "def2/J"

end

%ROCIS NRoots 40

PrintLevel 3

MaxCore 4000

MaxDim 360

SOC true

DoRI true

DoNTO true

DoNDO true

NDOThresh/NTOThresh 1e-4

NDOStates/NTOStates= 1,2,3,4,5,6,7,8,9,10,13,14,15

DoLowerMult true

DoHigherMult true

DoDFTCIS true

DFTCIS_c = 0.18, 0.20, 0.40

OrbWin = 6,8,0,2000

end

* xyz -2 5
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Fe -17.84299991694815 -0.53096694321123 6.09104775508499

Cl -19.84288422845700 0.31089495619796 7.04101319789001

Cl -17.84298666758073 0.11868125024595 3.81067954087770

Cl -17.84301352218429 -2.87052442818457 6.45826391412877

Cl -15.84311566482982 0.31091516495189 7.04099559201853

*

Then the respective NTO and NDO analysis for state 15 is given below:

------------------------------------------

NATURAL TRANSITION ORBITALS FOR STATE 14

------------------------------------------

done

Solving eigenvalue problem for the Occupied space ... done

Solving eigenvalue problem for the Acceptor space ... done

Natural Transition Orbitals were saved in nto.14.nto

Threshold for printing occupation numbers 1.0e-04

E= 25.447756 au 692.469 eV 5585137.0 cm**-1

49[0] -> 46[1] : n= 0.39056909

48[0] -> 47[1] : n= 0.08619374

47[0] -> 48[1] : n= 0.00441125

-------------------------------------------------

NATURAL DIFFERENCE ORBITALS FOR STATE 14

-----------------------------------------------

done

Solving eigenvalue problem for the Occupied space ... done

Solving eigenvalue problem for the Acceptor space ... done

Natural Difference Orbitals were saved in ndo.14.ndo

Threshold for printing occupation numbers 1.0e-04

E= 25.447756 au 692.469 eV 5585137.0 cm**-1

49[0] -> 46[1] : n= 0.81173217

48[0] -> 47[1] : n= 0.17903699

47[0] -> 48[1] : n= 0.01165859

46[0] -> 49[1] : n= 0.00922738

45[0] -> 50[1] : n= 0.00112567

For closed shell cases the orbitals are save in similar way to TDDFT and CIS (section 9.23.7). In the case of

open shell cases for convenience donor orbitals are saved with orbital operator 0 while acceptor orbitals with

orbital operator 1. This needs to be specified in the orca plot program and should not be confused with the

spin-up and spin-down orbitals in the UHF and UKS cases.

In practice one can use this machinery to analyze for example the relativistically corrected states located at

705.5 eV (when shifted with respect to experiment). It can be seen that these states contain for example

significant contributions from state 14. NTO or NDO analysis then shows that this state is dominated by the

spin conserving DOMO-SOMO 2pz − 3dyz single electron excitation.
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State	
  

NDO49[0]	
   NDO46[1]	
  

Figure 9.26: DFT/ROCIS calculated L3 XAS spectrum of [Fe(Cl)4]2− together with NDO analysis
for state 14. Constant broadening 0.5 eV and isovalue for the orbital plots 0.03 a.u. is
used throughout

9.24.4 Resonant Inelastic Scattering Spectroscopy

9.24.4.1 General

Starting from ORCA version 4.0 ROCIS module can be used to calculate RIXS spectra

The present implementation is directly based on the Kramers Heisenerg Dirac (KDH) expression formula for

near resonant and resonant conditions

|αρλ(Eex, Esc)|2Total =
∑
F

∣∣∣∣∣∑
V

〈F |mρ |V 〉 〈V |mλ |I〉
EV I − Eex − i 1

2ΓV

∣∣∣∣∣
2{

ΓF

(EFV − Eex + Esc)
2

+ 1
4ΓF

2

}
(9.273)

|αρλ(Eex, Esc, V )|2resonant =
∑
F

|〈F |mρ |V 〉|2|〈V |mλ |I〉|2f(EV I , EFV , Eex, Esc,ΓV ,ΓF ) (9.274)

|αρλ(EV I , Esc)|2Direct =
∑
V

|αρλ(EV I , Esc, V )|2resonant (9.275)

The resonance scattering cross section for total and direct cases, averaged over all orientations of the molecule

and integrated over all directions and polarizations of scattered radiation is given in equations:
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σTotal
RXES

(Eex, Esc) =
8πE3

scEex
9c4

∑
ρ,λ=x,y,z

|αρλ(Eex, Esc)|2Total (9.276)

σDirect
RXES

(Eex, Esc) =
8πE3

scEex
9c4

∑
ρ,λ=x,y,z

|αρλ(Eex, Esc)|2Direct (9.277)

Interference effects can be then derived in a straightforward way from equation:

σinterferenceRXES (Eex, Esc) = σTotalRXES(Eex, Esc)− σDirectRXES(Eex, Esc) (9.278)

In order to access RIXS spectroscopy in the ROCIS module one needs in addition to specify a 2nd donor

space. This is specified by defining an OrbWin array with 6 elements: The first four elements define the

ranges of the two donor spaces while the last two elements the respective acceptor space range.

OrbWin 0,0,2,4,45,60

An important difference with respect to the conventional ROCIS or DFT/ROCIS calculations is the fact that

two donor spaces of very different energy ranges are involved (e.g. K-edge, L-edge) which requires to restrict

somewhat the acceptor space and saturate it with as many states as possible.

The main calling commands in order to perform a RIXS calculation within both ROCIS and CASSCF blocks

are the following:

• RIXS true. Similar to absorption spectroscopy, this requests the RIXS calculation to be performed

based on the calculated non-relativistic ground state multiplicity States

• RIXSSOC true. By turning-on this flag the RIXS is calculated by taking in account the relativistically

corrected Ms States.

• Elastic true. This flag indicates whether the resonant condition in which the initial and Final states

coincide should be taken into account. Note that the intensity of this spectral feature might be

overestimated as presently the non resonant terms are not treated

The respective ROCIS input reads then as follows:

!B3LYP def2-TZVP SlowConv Grid5 NoFinalGrid

%Basis

AuxC "def2/J"

end

%ROCIS

NRoots 200

PrintLevel 3

MaxCore 4000
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DoRI true

DoHigherMult true

SOC true

RIXS true #Request RIXS calculation (NoSOC)

RIXSSOC true #Request RIXS calculation (with SOC)

Elastic true #Request RIXS calculation (Elastic)

DoDFTCIS true

DFTCIS_c =0.18,0.20,0.40

OrbWin = 2,4,25,33,0,100

end

* xyzfile 2 2 test.xyz

When running the calculation one can monitor if the requested NRoots were sufficient enough to select the

states dominated by both the donor orbital spaces

--------------------------------------------------------------------------------

ROOT Mult Excitation energy[Eh] [cm-1] [eV]

--------------------------------------------------------------------------------

0 2 0.00000000 0.00 0.000

1 2 0.06611737 14511.08 1.799

2 2 0.07728471 16962.03 2.103

3 2 0.07732428 16970.72 2.104

...

84 2 33.75471831 7408304.35 918.513

85 2 33.77073325 7411819.22 918.948

86 2 33.77076955 7411827.19 918.949

87 4 34.06882971 7477243.83 927.060

88 2 34.07021441 7477547.74 927.098

...

If that is not the case the respective RIXS calculations will not be performed and a Warning Message will be

generated:

Making the RIXS files ...

WARNING!: Flag for RIXS property calculation was identified but

there is zero number of Intermediate and/or Final states:

No Cross-Section properties will be evaluated ...Skipping this part

TIP: Increase the number of NRoots and/or decrease or increase

the acceptor orbital space

...Done

A successful run on the other hand will generate the following messages for RIXS and RIXSSOC calculations.

----------------------------------------------------------------------------------

ROCIS RIXS SPECTRUM

----------------------------------------------------------------------------------



684 9 Detailed Documentation

Making the RIXS data files for Inelastic and Elastic Scattering

Ground State: 1

Intermediate States: 21

Final States: 59

The RIXS cross section will be generated from:

60 Ground-Final State Pairs and 21 Intermediate States/Pair

Calculating Intensities...

10% done

20% done

30% done

40% done

50% done

60% done

70% done

80% done

90% done

100% done

Storing the files...All Done

----------------------------------------------------------------------------------

----------------------------------------------------------------------------------

ROCIS RIXSSOC SPECTRUM

----------------------------------------------------------------------------------

Making the RIXS-SOC data files for Inelastic and Elastic Scattering

Ms States: 2

Intermediate States: 78

Final States: 214

The RIXS cross section will be generated from:

432 Ground-Final State Pairs and 78 Intermediate States/Pair

Calculating Intensities...

10% done

20% done

30% done

40% done

50% done

60% done

70% done

80% done

90% done

100% done

Storing the files...All Done

----------------------------------------------------------------------------------

In both cases the number of involved Initial, Final and Intermediate states is specified explicitly.

For example in the case of RIXSSOC 2 Ms Ground states, 78 Intermediate states and 214 Final states are

involved. Then the RIXS cross section for elastic and inelastic scattering will be generated by 432 (2*(2+214))

Ground-Final State-Pairs and 78 Intermediate States per Ground-Final state pair.
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9.24.4.2 Processing the spectra with orca mapspc

By calling orca mapspc with the following keywords:

orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4

-l -n125 -m125 -dx20 -eaxis1

The program will process the test.el inel.rocis.rixssoc file with the following parameters:

Energy range along x : 871-876 eV

Energy range along y: -1-34 eV

-l indicates Lorentzian broadening

Width along x (gamma): 0.4 eV

Width along y (gamma): 0.4 eV

Points along x: 125

Points along y:125

Shift to be applied along Incident energy/Emission axis: 20 eV

The y axis will be Energy Transfer axis. If -eaxis2 is the y axis will be then Emission Energy axis

All this information is printed during the data processing:

Mode is RIXS

Using Lorentzian shape

Cannot read the paras.inp file ...

taking the line width parameter from the command line

Cannot read the udex.inp file ...

taking the excitation energy ranges from the command line

Cannot read the udem.inp file ...

taking the emission energy ranges from the command line

Cannot read the gfsp.inp file ...

No Ground-Final State Pairs will be evaluated

---------------------------------------------------------------------------------

PLOTTING RIXS SPECTRA

---------------------------------------------------------------------------------

Input File : test.el_inel.rocis.rixssoc

Incident Energy Excitation axis : 871.000 ... 876.000 eV 125 points

Energy transfer axis : -1.000 ... 4.000 eV 125 points

Incident Energy Shift : 20.000 eV

Lorenzian Linewidth along Incident Axis : 0.400 eV

Lorenzian Linewidth along Energy Transfer/Emission Axis : 0.400 eV

y axis : 1 -> Energy transfer

Number of user defined cuts at constant Excitation Energy axis: 0

Number of user defined cuts at constant Emission/Energy Transfer Energy axis : 0

Making checks...Done
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Proccessing data...

10% done

20% done

...

100% done

RIXS-plotting done

Incident Energy range: 845.800 ... 869.249

Emission/Energy-transfer range: 0.000 ... 4.853

Now storing the 2D file...

Done

Making the Integrated spectra along Energy Transfer/Emission axis... Done

Making the Integrated spectra along Incident axis... Done

All Done

---------------------------------------------------------------------------------

Successful run will generate the following files: The RIXS planes of the Total, Direct and Interference RIXS

intensity as indicated in the above equations:

test.el_inel.rocis.rixssoc.total_rixs.dat

test.el_inel.rocis.rixssoc.direct_rixs.dat

test.el_inel.rocis.rixssoc.interference_rixs.dat

In addition one obtains the integrated spectra at constant Incident energies (CIE):

test.el_inel.rocis.rixssoc.dw.dat

as well as at constant Emission/Energy Transfer energies (CEE/CET):

test.el_inel.rocis.rixssoc.wex.dat

9.24.4.3 Generating Cuts

Cuts along x and y axis can be generated with two ways:

1) At first, this action can be performed by adding the following keywords: uex and udw accounting for

generating cuts at constant Incident Energies (CIE) and at constant Emission (CEE)/or at constant Energy

Transfer (CET) respectively, together with the desired number of cuts.

2) Alternatively, the energies of the desired cuts can be specified as lists in the files udex.inp (user defined

excitations) udem.inp (user defined emissions)

For example if in udex.inp one specifies:
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Figure 9.27: DFT/ROCIS calculated RIXS planes for [Cu(NH3)4]2−. Left: Total RIXS Intensity,
Middle: Direct RIXS intensity and Right: Interference RIXS intensity. Lorentzian
lineshape broadening with constant widths along Incident and Energy Transfer axis
(0.5 and 0.2 eV respectively) were used throughout.

872.5

874.2

and for the cuts along Energy Transfer axis one just specify -udw3

orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4

-l -n125 -m125 -dx20 -eaxis1 -udw3

Then at the end one gets:

Making the specified cuts (2) at constant Excitation Energy axis...

Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_vs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_fs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_vs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_fs.dat ...Done

Done

Making the specified cuts (3) at constant Emission/Energy Transfer axis...

Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_vs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_fs.dat ...Done
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Writing file: test.el_inel.rocis.rixssoc_1.50.xas_vs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_1.50.xas_fs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_4.00.xas_vs.dat ...Done

Writing file: test.el_inel.rocis.rixssoc_4.00.xas_fs.dat ...Done

Done

All Done

---------------------------------------------------------------------------------

The files * rxes fs.dat are RXES spectra containing all individual contributions from all Final states together

with the Direct, the Total and the Interference contributions at the given constant Incident Energy.

Similarly, the * rxes vs.dat are RXES spectra containing individual contributions of the Intermediate states,

together with the Direct the Total and the Interference contributions at the given constant Incident Energy

Likewise, the respective * xas fs.dat and * xas vs.dat are XAS type spectra with individual contributions

at a given constant Emission or Energy transfer Energy

These files are Energy vs Intensity files and read like:

1) for *fs.dat

X S- 1( 0- 0) S- 2( 0- 1) DIRECT TOT INTERFERENCE

2) for *vs.dat

X S- 1( 45) S- 2( 47) DIRECT TOT INTERFERENCE

In the first case S -1(0-0) represents the individual contribution of a given Ground-Final state pair. The

numbering follows the numbering of the output file e.g.:

Eigenvalues: cm-1 eV Boltzmann populations at T = 300.000 K

0: 0.0000 0.0000 3.44e-01

1: 8.3818 0.0010 3.31e-01

Hence, in this case S -1 represents the elastic scattering intensity.

In the second case S -1(45) represents the individual contribution of a given Intermediate state.

44: 66918.6071 8.2968 1.43e-140

45: 6996678.8061 867.4775 0.00e+00

46: 6996693.0276 867.4793 0.00e+00

In this case S -1 represents the intensity contribution of the first Intermediate state.

Starting from ORCA 4.2 in every RIXS requested calculation the Off resonant XES spectrum is automatically

generated in every RIXS requested calculation.
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----------------------------------------------------------------------------------

ROCIS RIXS SPECTRUM

----------------------------------------------------------------------------------

Making the RIXS data files for Inelastic and Elastic Scattering

Ground State: 1

Intermediate States: 28

Final States: 588

The RIXS cross section will be generated from:

589 Ground-Final State Pairs and 28 Intermediate States/Pair

The Off-Resonance XES spectrum will be printed

Calculating Intensities...

10% done

20% done

30% done

40% done

50% done

60% done

70% done

80% done

90% done

100% done

Printing the XES spectrum and Storing the files...

-------------------------------------------------------------------------------------

X-RAY EMISSION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-------------------------------------------------------------------------------------

Transition Energy INT TX TY TZ

(eV) (fosc) (au) (au) (au)

-------------------------------------------------------------------------------------

1 589 -> 0 6403.377 0.000000000721 0.00000 0.00000 0.00000

2 590 -> 0 6403.380 0.000000000083 -0.00000 0.00000 0.00000

3 591 -> 0 6403.685 0.000873238810 0.00236 0.00000 0.00000

4 592 -> 0 6404.766 0.000000000154 0.00000 0.00000 0.00000

5 593 -> 0 6408.288 0.000000006850 -0.00001 0.00000 0.00000

6 594 -> 0 6408.295 0.000034710300 -0.00047 0.00000 0.00000

...

16490 614 -> 588 6387.989 0.000000000000 0.00000 0.00000 0.00000

16491 615 -> 588 6388.222 0.000000000000 0.00000 0.00000 0.00000

16492 616 -> 588 6388.881 0.000000000000 0.00000 0.00000 0.00000

All Done

----------------------------------------------------------------------------------

Hence also the myfile-rixs.out file can also be processed with the orca mapspc to generate the respective XES

spectra:
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orca_mapspc myfile_rixs.out XES/XESSOC -x06000 -x16500 -w2.0 -eV -n10000

9.24.5 Core PNO-ROCIS, PNO-ROCIS/DFT

It has been shown recently [487] that it is possible to combine the powerful machinery of the PNOs with

the ROCIS and ROCIS/DFT methods to formulate the core PNO-ROCIS and PNO-ROCIS/DFT methods.

The usage of PNOs here is somewhat unconventional since they are not used to treat electron correlation

effects in a state specific manner. Rather, the PNOs are used to identify the relevant part of the virtual space

that can be reached by excitation out of local core orbitals. This subspace of the virtual space is local, thus

leading to a linear scaling, state universal method.

The PNO-ROCIS calculations can be requested with the following keywords:

...

DoPNO true #Flag to call the PNO truncation

TCutPNO 1e-11#Threshold to cutout the PNO populations

XASElems 0 #Number of the involved element to the calculated core XAS calculation

OrbWin = 0,0,0,2000

...

As has been shown in reference [487] a universal TCutPNO 1e-11 threshhold can be defined for all edges

provided that the PNOs are constructed by taking into account all the availiable core orbitals in the systems.

For example in the case of a 1st row transition metal this will be the 9 1s, 2s, 2p, 3s and 3p MOs. These

orbitals will be identified automatically by the program provided that the element or the elements for which

the XAS calculation will be performed are specified within the XASElems keyword. In the following example

these correspond to Core MOs 36-44. Note that the CoreMOs list should not be confused with the OrbWin

which is used to specify the excitation space that will be actually used in the actual calculation.

===============================================

Core PNO/ROCIS truncation

================================================

------------------------------------------------

Calculating Integrals...

------------------------------------------------

...

------------------------------------------------

Calculating Guess Amplitudes and Densities...

------------------------------------------------

----------------------------------------------------------------

The densities will be generated from the Detected Core MOs:

----------------------------------------------------------------

MO= 36, E= -261.246087 Eh

MO= 37, E= -31.777896 Eh
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MO= 38, E= -27.263122 Eh

MO= 39, E= -27.263122 Eh

MO= 40, E= -27.263122 Eh

MO= 41, E= -3.914132 Eh

MO= 42, E= -2.457405 Eh

MO= 43, E= -2.457405 Eh

MO= 44, E= -2.457405 Eh

Alternativelly one can also use the CoreMOs keyword to individual select the respective CoreMOs

...

DoPNO true #Flag to call the PNO truncation

TCutPNO 1e-11#Threshold to cutout the PNO populations

CoreMOs 0,1,6,7,8,29,30,31,32 #The core MOs for the selected element

#to perform the XAS calculation

OrbWin = 0,0,0,2000

...

A complete list of CoreMOs of the different atoms can be found in reference [487] The program will then

proceed and generate the Core PNOs and use the TCutPNO threshold to reduce the Virtual MO space. In

the following example only virtual orbitals are selected out of the total 1445 virtual MOs

TCutPNO: 1.000e-11

Virtual orbitals before selection: 368 ... 1812 (1445 MO’s)

Virtual orbitals after selection: 368 ... 447 ( 80 MO’s)

PNO transformation completed in: 177.09 sec

From this point and on the programm will proceed the usual way. This will result in extraordinary computation

speeding ups without loss in accuracy.

9.24.6 ROCIS Magnetic Properties

Several magnetic properies are availiable in the ROCIS method Including g-tensors (G-Matrix), zero field

splittings (ZFS), hyperfine couplings (HFCs) and electric field gradients (EFGs).

The g-tensors as well as the zfs are calculated on the basis of the Effective Hamiltonian as well in the sum

over states (SOS) framework. HFCs are calculated in the SOS framework while EFGs are calculated as

expectation values. Please consult also the respective discussion in the MRCI chapter (section 9.30)

...

DoHeff true #Requests calculation of G-tenosrs and ZFS

#in the effective Hamiltonian framework

DoEPR true #Requests calculation of G-tenosrs, ZFS and HFCs

#in the Sum over states (SOS) framework
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AtensorNuc 0 #Nuclei to account for the HFCs calculation

NAtensors 1 #How many Nuclei are included in the HFCs calculation

ATensor 0 # Nucleus to calculate HFCs and EFGs

NDoubGtensor 1 #Kramers doublets to account for the g tensor calculations

...

This will enter the calculation in the ROCIS Spin Hamiltonian section

--------------------------------------------------------

ROCIS SPIN HAMILTONIAN PROPERTIES

--------------------------------------------------------

9.24.7 Keyword List

%rocis

#-----------------------------------------------------------

# GENERAL KEYWORDS

#-----------------------------------------------------------

NRoots 3 #The number of desired roots

MaxDim 5 #Davidson expansion space = MaxDim * NRoots

MaxIter 35 #Maximum CI Iterations

NGuessMat 512 #The dimension of the guess matrix

ETol 1e-6 #Energy convergence tolerance

RTol 1e-6 #Residual Convergence tolerance

MaxCore 2000 #Maximum memory used during the calculation in MB

EWin= -5,5,-5,5 #Energy Window that defines orbital excitation space

OrbWin=6,8,0,2000 #Orbital Window that defines orbital excitation space

#(overrides EWin)

DoRI false #Switch for the RI approximation

DoLoc false #Switch for localization of Donor orbital space

LocMet PipekMezey #chooses the localization method:

#PipekMezey or FosterBoys.

#Abbreviations "PM" and "FB"

#are equivalent to full names.

SOC false #Switch for inclusion of SOC

SOCTemp 10 #The fictive temperature for the

#SOC corrected spectra

DoDFTCIS false #Switch for the DFT/ROCIS method

DFTCIS_C = 0.18, 0.20, 0.40 #Array Input of the

#three DFT/ROCIS parameters

#-----------------------------------------------------------

# FLAGS FOR EXCITATION SPACES

#-----------------------------------------------------------

Do_is true #Include DOMO->SOMO excitations

Do_sa true #Include SOMO->Virtual excitation

Do_ia true #Include DOMO->Virtual excitations

Do_ista true #Include DOMO->SOMO excitations

#coupled to SOMO->Virtual

#excitations with s not equal t

Do_isa true #Include DOMO->SOMO excitations
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#coupled to SOMO->Virtual

#excitations with s = t

DoLowerMult false #Switch for excitation with S’=S-1

Do_LM_is true #Include DOMO->SOMO excitations

#with S’=S-1

Do_LM_sa true #Include SOMO->Virtual excitations

#with S’=S-1

Do_LM_ia true #Include DOMO->Virtual excitations

#with S’=S-1

Do_LM_ss true #Include SOMO->SOMO excitations

#with S’=S-1

DoHigherMult false #Switch for DOMO->Virtual

#excitations with S’=S+1

#-----------------------------------------------------------

OUTPUT KEYWORDS

#-----------------------------------------------------------

PrintLevel 3 #Controls the amount of output

#produced during the calculation

DoCD false #Invokes the calculation of CD spectra

DoQuad false #Invokes the calculation of

#electric quadrupole, magnetic dipole

#magnetic quadrupole and electric octupole

#contributions to the calculated spectra

RIXS false #Perform a RIXS calculation

RIXSSOC false #Perform a RIXS calculation on the basis

#of relativistically corrected states

Elastic false #Include the elastic line in the generation

#of the RIXS or RIXSSOC spectra

PlotDiffDens = 1,2 #Array input for plotting

#difference densities of CI roots

#1 and 2 to the ground state.

PlotSOCDiffDens=1,2 #Array input for plotting

#difference densities of SOC

#states 1 and 2 to the ground state

DoNTO false #Request Natural Transition Orbital Analysis

DoNDO false #Request Natural Difference Orbital Analysis

#(if true it switches off the NTO analysis)

NDOThresh 1e-4 #Threshold for printing occupation numbers

NTOThresh 1e-4 #Threshold for printing occupation numbers

NDOStates = 1,2 #Array input for states to be taken into account

NTOStates = 1,2 #Array input for states to be taken into account

Weight_Thresh 0.01 #Threshold for contributions to CI

#and SOC states to be printed

DoPNO false #Performs the calculation in the PNO-ROCIS framework

9.25 Excited States via MC-RPA

MC-RPA excitation energies and transition moments are computed from the poles and residues of the linear

response function of CASSCF a wave function. [181, 182, 184] By following similar lines, it is in principle
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possible to compute any kind of static and dynamic molecular property that is based on analytic derivatives

of the CASSCF energy, which may be available in future releases of ORCA.

9.25.1 General Description

The starting point of response theory for variational wave functions like CASSCF is the time-dependent (TD)

Schrödinger equation in its phase-isolated form [488](
Ĥ − i ∂

∂t
−Q

)
|0̃〉 = 0 (9.279)

with the TD quasi energy

Q(t) = 〈0̃|
(
Ĥ − i ∂

∂t

)
|0̃〉. (9.280)

The Hamiltonian Ĥ = Ĥ0 + V̂ t consists of the unperturbed time-independent Hamiltonian Ĥ0 and a TD

perturbation

V̂ t =
∑
k

e−i ωk t
∑
x

εx(ωk) X̂ (9.281)

which is described as a sum of periodic perturbations, i.e. a Fourier series. TD molecular properties are

obtained by applying the TD variational principal

δ{Q(t)}T = 0 (9.282)

up to a certain order in the time-averaged quasi energy

{Q(t)}T =
1

T

∫ T/2

−T/2
Q(t) dt (9.283)

while {Q(t)}T is expanded by the perturbation strengths εX at vanishing frequencies ωk = 0. Applying the

TD variational principle for the second-order quasi energy leads to

0 = δ{Q(t)}(2)
T =⇒ ∂QXY (−ωY , ωY )

∂λX(−ωY )
=
(
E(2) − ωY S(2)

)
λY −VY = 0. (9.284)

The first-order response equations (9.284) become singular if the perturbation frequency ωY approaches any

eigenvalue

E(2) λ = S(2) λω, (9.285)

of second-derivative matrices E(2) and S(2). The eigenvalues ω correspond to the electronic excitation energies.

The second-derivative matrices E(2) and S(2) have a paired structure as both kind of operators that express

orbital excitation and de-excitations are involved:[(
A B

B∗ A∗

)
− ω

(
Σ ∆

−∆∗ −Σ∗

)](
X

Y∗

)
=

(
0

0

)
(9.286)
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The eigenvalue equations above are valid for all variational wave functions methods, e.g. DFT, HF, CASSCF

etc. The only difference is the operator manifold and the unperturbed Hamiltonian Ĥ0 that is used. For the

CASSCF linear response and eigen value equations, the super matrices A, B, Σ, and ∆ have the following

structure:

A =

(
〈0| [qi, [Ĥ0, q

†
j ]] |0〉 〈0| [[qi, Ĥ0], R†j ] |0〉

〈0| [Ri, [Ĥ0, q
†
j ]] |0〉 〈0| [Ri, [Ĥ0, R

†
j ]] |0〉

)
Σ =

(
〈0| [qi, q†j ] |0〉 〈0| [qi, R†j ] |0〉
〈0| [Ri, q†j ] |0〉 〈0| [Ri, R†j ] |0〉

)

B =

(
〈0| [qi, [Ĥ0, qj ]] |0〉 〈0| [[qi, Ĥ0], Rj ] |0〉
〈0| [Ri, [Ĥ0, qj ]] |0〉 〈0| [Ri, [Ĥ0, Rj ]] |0〉

)
∆ =

(
〈0| [qi, qj ] |0〉 〈0| [qi, Rj ] |0〉
〈0| [Ri, qj ] |0〉 〈0| [Ri, Rj ] |0〉

) (9.287)

The TD CASSCF wave function is expressed in terms of orbital excitation q†i and de-excitation operators

qi,

q†i = Epq = a†pαaqα + a†pβaqβ , qi = Eqp, with p > q (9.288)

as well as so called state transfer operators

R†i = |i〉 〈0| , Ri = |0〉 〈i| , with i 6= 0 (9.289)

that account for relaxation of orbitals and CI coefficients when perturbed by an electromagnetic field,

respectively.

The eigenvalue (and response) equations are solved iteratively by a customized version of the Davidson

algorithm that simultaneously determines the N lowest lying roots. The most time-consuming step is the

transformation of the trial vectors that contain an orbital and CI coefficient part with the electronic Hessian

matrix E(2). The working equations are very similar to those of the CASSCF electronic gradient that is

computed when minimizing the CASSCF ground state energy.

As a show case example the UV/Vis spectrum of a Nickel dimethylglyoximato complex (Ni(dmg)2) was

simulated with both SA-CASSCF and MC-RPA. A CAS (12/9) with the 3d electrons on Ni and 4 π orbitals

and electrons from the ligands was selected; the def2-SVP basis set was used. For SA-CASSCF we have

averaged over 21 states while for MC-RPA the 20 lowest roots were determined. Though both UV/Vis spectra

have two intense peaks, their excitation energies and oscillator strengths differ quite substantially. This can

be attributed to the lack of state-specific orbital relaxation that is only available in MC-RPA. In subsection

9.25.3 the most important natural transition orbitals [183,184] and active natural orbitals of MC-RPA and

SA-CASSCF are shown, respectively.

9.25.2 Detecting CASSCF Instabilities

Selecting the right orbitals for the active space is not always an easy task. A wrong selection may lead to

convergence to excited states or saddle points when minimizing the CASSCF energy. Such an instability

in the wave function can be detected by computing the lowest excitation energy, i.e. the lowest root of the

electronic Hessian with MC-RPA.

Instabilities may occur even for the simplest cases if the starting orbitals for CASSCF energy calculation were

inappropriate. Let us look at a benzene CAS(6/6) calculation where we started from the model potential

initial guess for the MOs.
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Figure 9.28: Calculated UV/Vis spectra of Ni(dmg)2.

! TZVP Def2-TZVP/C VeryTightSCF

%pal

nprocs = 20

end

%casscf

nel 6

norb 6

mult 1

nroots 1

TrafoStep RI

gtol 1e-8

etol 1e-12

end

%mcrpa

nroots 1

TolR 1e-4

MaxRed 80

end

*xyz 0 1

H 0.000000 2.484212 0.000000

H 0.000000 -2.484212 0.000000

H 2.151390 1.242106 0.000000

H -2.151390 -1.242106 0.000000

H -2.151390 1.242106 0.000000

H 2.151390 -1.242106 0.000000

C 0.000000 1.396792 0.000000

C 0.000000 -1.396792 0.000000
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C 1.209657 0.698396 0.000000

C -1.209657 -0.698396 0.000000

C -1.209657 0.698396 0.000000

C 1.209657 -0.698396 0.000000

*

The energy converges smoothly

E(CAS)= -230.560657053 Eh DE= 0.000000000

E(CAS)= -230.767928524 Eh DE= -0.207271471

E(CAS)= -230.810472828 Eh DE= -0.042544304

E(CAS)= -230.811818980 Eh DE= -0.001346152

E(CAS)= -230.812866285 Eh DE= -0.001047305

E(CAS)= -230.812930081 Eh DE= -0.000063796

E(CAS)= -230.812944302 Eh DE= -0.000014221

E(CAS)= -230.812944635 Eh DE= -0.000000333

E(CAS)= -230.812943979 Eh DE= 0.000000656

E(CAS)= -230.812944834 Eh DE= -0.000000856

E(CAS)= -230.812944944 Eh DE= -0.000000110

E(CAS)= -230.812944943 Eh DE= 0.000000001

E(CAS)= -230.812944952 Eh DE= -0.000000009

E(CAS)= -230.812944953 Eh DE= -0.000000000

as the gradient norm does

||g|| = 2.538097040 Max(G)= -0.486818498 Rot=144,0

||g|| = 0.850498225 Max(G)= 0.219916319 Rot=23,11

||g|| = 0.192712320 Max(G)= -0.055714161 Rot=23,11

||g|| = 0.144524323 Max(G)= 0.035741221 Rot=23,11

||g|| = 0.034101354 Max(G)= -0.011346113 Rot=23,17

||g|| = 0.016336825 Max(G)= 0.005232633 Rot=122,17

||g|| = 0.003090776 Max(G)= 0.000935457 Rot=122,17

||g|| = 0.002539517 Max(G)= -0.000597246 Rot=21,16

||g|| = 0.004134603 Max(G)= -0.000980627 Rot=21,16

||g|| = 0.001410672 Max(G)= 0.000353494 Rot=21,16

||g|| = 0.000506790 Max(G)= -0.000172518 Rot=23,17

||g|| = 0.000408528 Max(G)= -0.000191970 Rot=122,17

||g|| = 0.000087961 Max(G)= -0.000042271 Rot=23,17

||g|| = 0.000107447 Max(G)= -0.000041858 Rot=23,17

||g|| = 0.000139470 Max(G)= -0.000058693 Rot=23,11

||g|| = 0.000094867 Max(G)= 0.000020639 Rot=23,11

||g|| = 0.000033056 Max(G)= -0.000011307 Rot=23,11

||g|| = 0.000009908 Max(G)= -0.000005192 Rot=23,11

||g|| = 0.000013678 Max(G)= -0.000007007 Rot=23,11

||g|| = 0.000011838 Max(G)= 0.000004991 Rot=23,17

||g|| = 0.000006431 Max(G)= -0.000002076 Rot=122,17

||g|| = 0.000008817 Max(G)= -0.000002828 Rot=122,17

||g|| = 0.000012070 Max(G)= 0.000004189 Rot=23,17

||g|| = 0.000001891 Max(G)= 0.000001284 Rot=23,17

||g|| = 0.000003505 Max(G)= 0.000001187 Rot=23,17

||g|| = 0.000002121 Max(G)= -0.000000447 Rot=122,17
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||g|| = 0.000002233 Max(G)= -0.000000508 Rot=122,17

||g|| = 0.000000933 Max(G)= 0.000000494 Rot=23,17

||g|| = 0.000000711 Max(G)= 0.000000369 Rot=23,17

||g|| = 0.000000430 Max(G)= 0.000000230 Rot=23,17

||g|| = 0.000000200 Max(G)= 0.000000047 Rot=23,11

||g|| = 0.000000103 Max(G)= 0.000000030 Rot=23,11

||g|| = 0.000000025 Max(G)= 0.000000005 Rot=20,16

Though we have reached convergence for a CASSCF ground state energy calculation, the MC-RPA calculation

however detects an instability

Davidson Eigenvalue solver (Iteration 10)

State Eigenvalue RMSD error Converged

0 0.2405996888 1.4767724243e-01 F

WARNING

1 null space vectors in reduced space Hessians!

This indicates an instability in your reference wave function!

Davidson Eigenvalue solver (Iteration 11)

State Eigenvalue RMSD error Converged

0 0.0000000000 0.0000000000e+00 T

by finding positive-indefiniteness by a Cholesky decomposition of the reduced space Hessians.

Instabilities in the CASSCF wavefunction can usually be avoided by carefully monitoring the active space

orbitals in the

----------------------------

LOEWDIN REDUCED ACTIVE MOs

----------------------------

section of the CASSCF output.

18 19 20 21 22 23

-0.62274 -0.32864 -0.32863 0.15983 0.16011 0.77971

1.99910 1.93810 1.93808 0.06203 0.06195 0.00075

-------- -------- -------- -------- -------- --------

2 H s 11.6 0.0 0.0 0.0 0.0 12.8

3 H s 11.6 0.0 0.0 0.0 0.0 12.8

4 H s 11.6 0.0 0.0 0.0 0.0 12.8

5 H s 11.6 0.0 0.0 0.0 0.0 12.8

6 C pz 0.0 0.0 32.2 0.0 30.9 0.0

7 C pz 0.0 0.0 32.2 0.0 30.9 0.0

8 C pz 0.0 24.1 8.0 23.2 7.7 0.0

8 C px 6.7 0.0 0.0 0.0 0.0 3.0

9 C pz 0.0 24.1 8.0 23.2 7.7 0.0

9 C px 6.7 0.0 0.0 0.0 0.0 3.0
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10 C pz 0.0 24.1 8.0 23.2 7.7 0.0

10 C px 6.7 0.0 0.0 0.0 0.0 3.0

11 C pz 0.0 24.1 8.0 23.2 7.7 0.0

11 C px 6.7 0.0 0.0 0.0 0.0 3.0

In this particular example, MOs 18 and 23 are not part of the π system and have to be rotated with orbitals

16 and 31, respectively. After rotating all π orbitals into the active space, the CASSCF converges to a lower

energy.

--------------

CASSCF RESULTS

--------------

Final CASSCF energy : -230.844448647 Eh -6281.5968 eV

The electronic CASSCF Hessian is now positive definite and the lowest MC-RPA excitation energy becomes

STATE 1: E= 0.171023 au 4.654 eV 37535.3 cm**-1

9.25.3 Natural Transition Orbitals

Natural transition orbitals [183,184] (NTO) are obtained from a singular value decomposition of the MC-RPA

ground-to-excited state (f) transition density matrices ρ0→f
pq . As for TD-DFT and ROCIS one obtains two

sets of orbitals for each state that describe the donation (occupied and active) and acceptance (active and

virtual) of an electron in the electronic transition. The orbital structure of ρ0→f
pq for CASSCF wave functions

is illustrated in Fig. 9.29.

V

V

A

I

AI

ρai ρat

ρtuρti

Figure 9.29: Structure of MC-RPA transition density matrix ρ0→f
pq

The compute NTOS only the following flag in the input has to switched ON:
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nroots 20

DoNTO true

#NTOStates 1,4,9

#NTOThresh 5e-5

end

This will compute all NTOs with a singular value larger then the NTOThresh threshold for ALL roots.

------------------------------------------

NATURAL TRANSITION ORBITALS FOR STATE 12

------------------------------------------

Natural Transition Orbitals were saved in ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-donor

Threshold for printing occupation numbers 1.0000e-03

Natural Transition Orbitals were saved in ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-acceptor

Threshold for printing occupation numbers 1.0000e-03

STATE 13: E= 0.214726 au 5.843 eV 47126.9 cm**-1

77 -> 69 : n= 0.16680786

76 -> 70 : n= 0.06575768

75 -> 71 : n= 0.02841330

74 -> 72 : n= 0.01485889

73 -> 73 : n= 0.01138840

72 -> 74 : n= 0.01099324

71 -> 75 : n= 0.00899487

70 -> 76 : n= 0.00764206

69 -> 77 : n= 0.00546103

68 -> 78 : n= 0.00517046

67 -> 79 : n= 0.00511544

66 -> 80 : n= 0.00485839

65 -> 81 : n= 0.00405297

64 -> 82 : n= 0.00379270

63 -> 83 : n= 0.00325052

62 -> 84 : n= 0.00315477

61 -> 85 : n= 0.00297172

60 -> 86 : n= 0.00291081

59 -> 87 : n= 0.00268810

58 -> 88 : n= 0.00243609

57 -> 89 : n= 0.00240536

56 -> 90 : n= 0.00238574

55 -> 91 : n= 0.00183946

54 -> 92 : n= 0.00181492

53 -> 93 : n= 0.00165943

52 -> 94 : n= 0.00154428

51 -> 95 : n= 0.00146299

50 -> 96 : n= 0.00137434

49 -> 97 : n= 0.00136656

48 -> 98 : n= 0.00128274

47 -> 99 : n= 0.00121332

46 -> 100 : n= 0.00117752

45 -> 101 : n= 0.00107962

44 -> 102 : n= 0.00105733

43 -> 103 : n= 0.00104762
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For the above example, the most important (controlled by NTOThresh) donating and accepting NTOs of state
13 are written to the the gbw-type files

ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-donor

ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-acceptor

and can be plotted with the orca plot program (see Sec. 9.40.7)

orca_plot ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-donor -i

Please be aware of the different indices for states in the in and output!

To compute less or more NTOs the threshold NTOThresh can be adapted accordingly. Furthermore, only a

subset of states can be specified by providing a integer list along with NTOState, e.g. only those transitions

with significant intensities.

Let us come back to the UV/Vis spectra of Ni(dmg)2. For the two most intense peaks the natural orbitals

and NTOs of MC-RPA and SA-CASSCF, respectively, are shown in Fig. 9.30. While the most intense peak

in each spectrum (b and A) correspond to the same π → π∗ excitation, transition a and B are complete

different, i.e. d→ π∗ and π → π∗.

SA−CASSCF

a

b

(a) SA natural orbitals

B

MCRPA

A

(b) NTOs

Figure 9.30: Calculated UV/Vis spectra of Ni(dmg)2.

9.25.4 Computational Aspects

The code is intended to be used for medium-sized and larger open-shell molecules. It has the same scaling as

ORCA’s first-order CASSCF energy implementation though a larger pre-factor as the computational cost

grow “in principle” linearly with the number of roots.

The implementation is AO-driven meaning that the computational bottleneck is the Fock matrix construction

for the several state-specific pseudo AO densities. Note that there are up to 6 pseudo AO densities for each
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state. The computational costs can be reduced significantly if the RIJCOSX approximation is employed, which

is highly recommended.

The second most expensive part of the MC-RPA computation are the two-electron integrals with 3 active

indices gptuv. As we aim for running calculations on larger systems, there is only an implementation of the

integral transformation that uses the resolution-of-the-identity (RI) approximation.

The restrictions on the auxiliary basis sets are the same as for the CASSCF code (Sec. 9.13.1). That is

• If the Fock matrices are constructed in Direct or Conventional mode, the /C bases are used for the

RI approximation of the gptuv integrals.

• If the RIJCOSX approximation for the Fock matrices is employed, the /JK bases are used for both the

Fock matrices and the gptuv integrals.

Note that MC-RPA implementation can be run in parallel with MPI which allows for computing UV/Vis

and ECD spectra large open-shell molecules in a limited amount of time.

Before starting running MC-RPA, it is recommended to converge the state specific CASSCF energy calculation

until you hit the point of stagnating convergence. Note that property calculations in general assume vanishing

electronic gradients otherwise numerical issues in the eigenvalue / response equations may occur.

9.25.5 Keyword List

%mcrpa

NRoots 0 # The number of desired roots

TolR 1e-5 # Convergence threshold for residual norm

TolLDP 1e-5 # linear dependency threshold for generalized eigenvalue problem

TolPrint 1e-2 # Threshold for printing elements of excitation vector

MaxRed 200 # maximum size of reduces space for ALL VECTORS IN TOTAL

MaxIter 100 # maximum number of (Davidson) iterations

TDA false # Switch off full TD-CASSCF (Tamm-Dancoff approximation)

DoNTO false # Generate Natural Transition Orbitals

NTOStates 1,2,3 # States to consider for NTO analysis. If empty, all will be done.

NTOThresh 1e-3 # Threshold for printing occupation numbers

9.26 Ionized Excited states with IPROCI

The IPROCI routine is part of the orca autoci module of the ORCA program package. It is called after

a successful closed shell or open shell SCF calculation. A brief description of the main features has been

provided in 8.7. Here we will discuss the general program flow, input parameters and various capabilities of

the IPROCI routine.
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9.26.1 General Description

The IPROCI wave function is obtained by the action of a linear ionization operator R which acts on the SCF

function as reference. The ionization potentials ωk are the solutions of the eigenproblem

〈0| R̂†l [Ĥ, R̂k] |0〉 = 〈0| R̂†l (Ĥ − E0)R̂k |0〉 = ωkδlk, 〈0| R̂†l R̂k |0〉 = δlk, (9.290)

where, |0〉 is the N electron SCF reference function. Such an eigenproblem can be solved using the Davidson

algorithm (see the EOM section 9.27.1). There are three different kinds of ionization operators using a high

spin open shell reference, all leading to different solutions of the ionization problem. These ionization types

are as follows

I. a beta electron is removed from the DOMO space,

II. an alpha electron is removed from the DOMO space,

III. an alpha electron is removed from the SOMO space.

For closed shell cases, Type I and II are equivalent and there are no SOMO electrons. One of the three

ionization types can be chosen in the input section using the RootType keyword taking the values 0 (beta

DOMO,default), 1 (alpha DOMO) and 3 (alpha SOMO). Note that the value 2 can also be used with

the RootType keyword and it identifies a Type II ionization with a doublet reference, which needs special

treatment. For further details about the ionization operators we refer the user to the literature [186].

For application in larger systems, there are several options to reduce computational cost. Since IPROCI

includes only integrals with upto two external labels, the AO to MO canonical integral transformation step

can be accelerated using RI transformation by setting trafotype 3 in the %autoci block. If this option is

used, an appropriate auxiliary basis must also be specified. A further option is to use the PNO technique to

reduce the size of the virtual space without loosing much accuracy (∼ 0.1 eV) and improving the efficiency

by some factor (∼ 4 to 5). The PNO computation is controlled by two PNO parameters: Ewin is the energy

window used to select the core orbitals to be included in the construction of averaged PNOs (e.g., including

all 1s orbitals); TCutPNO is the threshold for neglecting virtual orbitals based on the occupation of averaged

natural orbitals obtained from an MP2 estimate. For details and proper choice of ”Ewin” and ”TCutPNO”,

refer to our recent work [186]. For very large calculations, the RIJCOSX can also be used to compute the

most expensive terms in the sigma equations (use DoRIJCOSX in the %autoci block).

Because iterative core IP calculations suffer from convergence issues, the core-valence separation technique can

be useful to prevent such behaviour. These features can be activated using the DoCVS and CVSORB keywords.

The maximum size of the Davidson expansion space (MaxDim) should also be set to a low value for the same

reason. On the other hand, if valence IP or SOMO IP roots are desired, MaxDim should be increased (∼ 15 to

20) and the DoRootwise keyword can be set to false.

The following list contains flags that are common in AUTOCI and those that are specific to IPROCI:

# Common autoci flags (default displayed)

CITYPE 0 (or CISD) # it has to be set IPROCI or 8 for IPROCI calculation

TRAFOTYPE 0 (or noRI) # 3 is sufficient for IPROCI

MAXITER 50 # Maximum iteration
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NROOTS 1 # Number of Roots

PRINTLEVEL 4 # Print Level

KEEPINTS 0 # Whether to keep MO Integrals after calculation

USEOLDINTS 0 # Whether to use MO Integrals from old calculation from disk

LEVELSHIFT 2.0e-01 # Level shift for amplitude update

# IPROCI specific flags

STOL 1.0e-06 # Convergence tolerance for the residual

ETOL 1.0e-06 # Convergence tolerance for the energies

Roottype 0 # Type of Root to solve

XPSORB 0,0 # Range of XPS orbitals intended to solve

MAXDIM 4 # Maximum size of the Davidson expansion space

DOCVS false # Whether to use CVS approaximation

CVSORB 0,0 # The orbitals intended to use CVS for

LTHRESH 0.1 # Degeneracy threshold for similar type of core orbitals in eV.

DOROOTWISE true # Solve one root at a time

DORIJCOSX false # Use RIJCOSX for expensive terms

DOPNO false # Use PNO

Ewin i0,a1 (First internal to last virtual) # Selection of energy window for PNO

TCUTPNO 1.0e-16 # TCutPNO threshold

PNOSCALE 1.0e3 # Scaling of TCUTPNO to remove numerical instability

end

9.26.2 X-ray Photoelectron spectra (XPS) from IPROCI

It is possible to use IPROCI to obtain core level XPS spectra for K-edges. The IPROCI K-edge XPS spectra

consist of main ionization peaks from all the constituent core-1s IPs. Satellites cannot be obtained with

IPROCI, and the main peak intensities are all the same, although vibrational resolution may introduce a

vibrational progression of varying intensity to each main peak. The chemical environment affects both the IP

values and the structure of vibrational bands. The limitations of IPROCI can be summarized as follows

• At the moment, the method lacks spin-orbit coupling thus it is limited to K-edges.

• IPROCI cannot capture satellite states.

• While the core IP values may be off by as much as 1-2 eV compared to experimental results, a constant

shift for all iso-nuclear ionization peaks is often enough to predict the spectrum correctly.

• Intensities of individual ionization events are difficult to predict in an unrelaxed single reference

framework using the Sudden Approximation, but if the spectrum is a sum of many individual events of

similar intensity, the result is often good enough.

• For open-shell systems, the relative intensities of Type I and Type II ionizations from the same orbital

are equal to the ratio of multiplicities of the final states. This has to be taken care of manually when

computing the total spectrum.

In the following, two example spectra are given with/without vibrational contributions.
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9.26.2.1 XPS spectrum of Phenyl Alanine using IPROCI

Figure 9.31: Carbon K-edge XPS spectrum of in Phenyl Alanine with IPROCI.

The C1s XPS spectrum of Phenyl Alanine has contributions from C atoms in different chemical environments.

Assuming a unit height for all of these ionization peaks, a Gaussian function can be assigned to all of them

yielding a total theoretical spectrum in good agreement with experiment. For this purpose, the Gauss curves

for peaks should have an identical width with the possible exception of outliers in terms of IP values. A total

shift in the IP values is also necessary to match the experimental spectrum. The spectrum for this molecule

can be obtained by taking the IP values for all C atoms and adding up the corresponding Gaussians using

GNUPLOT.

9.26.2.2 Vibrationally resolved XPS spectrum of Ethanol

IPROCI can be combined with the Excited State Dynamics (ESD) module to produce vibrationally resolved

XPS spectra. For example in a ethanol, two inequivalent C1s solution are obtained from the IPROCI

calculation and the ESD module (see 8.21) is called for each. A sample input will look like the following:

!def2-SVP def2-SVP/C nofrozencore TightSCF esd(abs)

%maxcore 10000

%numgrad DX 0.05

transinvar false

end
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Figure 9.32: Vibrationally resolved Carbon K-edge XPS spectrum of Ethanol with IPROCI.
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%autoci

maxiter 100

citype IPROCI

trafotype 3

nroots[0]=1

XPSORB= 1

RootType 0

end

%esd gshessian "opt_eth.hess"

# eshessian esd_eth.ES.hess

hessflag ahas

tdip 1,0,0

linew 600

lines gauss

dele 2363433.76

SpecRange 2000000,2600000

unit ev

printlevel 3

end

* xyzfile 0 1 opt_eth.xyz

For an explanation of the various ESD features, see 8.21 section. In the above example, IPROCI is used for the

computation of a one step numerical gradient and a numerical Hessian using the augmented Hessian (ahas)

flag. It is advisable to check some output parameter as “MAX gradient” or “RMSD” value (< 0.05) and

“sum of K*K” (< 1.0) for a reliable performance of the ESD with the IPROCI method. After obtaining the

desired “electronic + vibrational” solutions, one can invoke the SA and take superposition of the individual

C1s spectra to compare with the experimental XPS spectrum. Note that in this case IPROCI cannot capture

the intensity difference between the two C1s main peaks, while ESD predicts vibrational peaks of smaller

intensity for each main peaks, while also appear in the experimental spectrum.

9.27 Excited States via EOM-CCSD

The EOM-CCSD routine is part of the orca mdci module of the ORCA program package. It is called after

a successful coupled-cluster calculation, if the appropriate flags and the number of roots have been set.

In the following chapter the general program flow and all input parameters of the EOM routine will be

described in detail (for typical use, see 8.8). For an RHF or UHF reference, the EE-, IP- and EA-EOM-CCSD

approaches are available for the computation of excitation energies, ionization potentials and electron affinities,

respectively.
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9.27.1 General Description

The EOM wave function is parametrized in the following manner

R|ΨCC〉, (9.291)

i.e. via the action of a linear excitation operator R on the coupled-cluster ground state wave function ΨCC .

Here, R is a particle conserving operator, in the case of the excitation energy problem. However, this is

not true for the ionization or electron attachment problems, where R is a net annihilation or net creation

operator, respectively. The ground state coupled-cluster T-amplitudes are obtained from a CCSD calculation,

and our task is to obtain R. Note that since the CC Hamiltonian is nonsymmetric, a left hand solution

(L) would also be needed to evaluate properties. For the calculation of excitation, ionization or electron

attachment energies, however, it is enough to obtain the right hand solutions (R). In principle, this is done

by building the Hamiltonian and diagonalizing it in order to obtain energy expectation values.

In practice, the size of the CCSD Hamiltonian matrix is prohibitively large and thus, various methods have

been devised to obtain its lowest few eigenvalues and eigenstates. One of the most popular of these approaches

is the Davidson method, which can be summarized as follows:

• Construct an initial guess of orthogonal trial vectors, C.

• Evaluate the sigma vectors σ = HC.

• Build model Hamiltonian H = CTσ.

• Diagonalize H: E = UTHU .

• Compute Ritz vectors X = CU .

• Compute residuals R = XE − σU , check convergence: if yes, pass X, E as solutions.

• Preconditioning: T = MR (many possible choices for the preconditioner M).

• Check if adding new trial vectors would exceed the maximum number of trial vectors:

– if no, add T to C, and orthonormalize the united set

– if yes, then set X as C (orthonormalize if H is nonsymmetric); then add T and orthonormalize

The advantage of the above method is that, instead of the full Hamiltonian, only the sigma vectors have to

be explicitly evaluated and stored.

It is also possible to use a lower scaling version of the EOM-CCSD methods, which relies on the perturbative

truncation of the coupled-cluster similarity transformed Hamiltonian. Presently, only the second order

truncated version (CCSD(2) approximation) is available for closed-shell molecules (RHF). However, it is

better to use the PNO based implementation, as it has the cost of EOM-CCSD(2), but its accuracy is

comparable to canonical EOM-CCSD.

Below are all the parameters that influence the RHF EOM routine. In the following sections, these parameters

will be explained following the solver algorithm described above.
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%mdci

#EOM parameters - defaults displayed

DoEOM false # whether to perform EOM

UseEOMOptS true # use optimized sigma routines for singles

UseEOMOptD true # use optimized sigma routines for doubles

NDav 20 # maximum size of reduced space (i.e. 20*NRoots)

CCSD2 false # Use the lower scaling CCSD(2) approximation

CheckEachRoot true # check convergence for each root separately

RootHoming true # apply root homing

DoLanczos false # use the Lanczos procedure rather than Davidson

UseCISUpdate true # use diagonal CIS for updating

NInitS 0 # number of roots in the initial guess, if 0, use preset value

DRESS3ES true # construct the external dressing to singles

# or calculate on the fly

DRESS3ED false # construct the external dressing to doubles

#or calculate on the fly

DOCOSXEOM false # use COSX approximation for external exchange term in EOM

DOAOX3E false # use COSX approximation for 4 external terms contribution

# to 3 external intermediate

DoRootwise false # solves for each root separately,

# more stable for large number of roots

DoTDM false # option for calculation of default transition moment

Doleft false # calculation of exact left vector

NRootsPerBatch 1 # no of roots calculated together

FOLLOWCIS false # follows the initial singles guess

DoCore true # initiates ionization or excitation from core orbital

CoreHole 0 # core orbital from which ionization or excitation is needed

CVSEP false # separates core orbital from valence,

DTol 1e-5 # default for EOM residual threshold

#keywords which affect EOM parameters, but do not belong to the routine itself

NRoots 9 # number of roots

OTol 1e-14 # orthogonalization threshold

KCOpt KC_MO # method for external exchange formation

KC_AOX # when asked for exact TDM calculation

KC_AOBLAS # most efficient

PrintLevel 3 # the amount of information to be printed

MaxCore 500 # total amount of memory

end

In the case of the UHF EOM-CCSD implementation, the parameters that influence a given calculation are

provided below.

%mdci

#UHF EOM parameters - defaults displayed
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DoEOM false # whether to perform EOM

DoAlpha false # removal/attachment of an alpha electron (IP/EA calculations)

DoBeta false # removal/attachment of a beta electron (IP/EA calculations)

NDav 20 # maximum size of reduced space (i.e. 20*NRoots)

UseQROs false

CheckEachRoot true # check convergence for each root separately

RootHoming true # apply root homing

NInitS 0 # number of roots in the initial guess, if 0, use preset value

DOCOSXEOM false # use COSX approximation for external exchange term in EOM

DOAOX3E false # use COSX approximation for 4 external terms contribution

# to 3 external intermediate

DoRootwise false # solves for each root separately,

# more stable for large number of roots

FOLLOWCIS true # follows the initial singles guess

DTol 1e-5 # default for EOM residual threshold

#keywords which affect EOM parameters, but do not belong to the routine itself

NRoots 9 # number of roots

OTol 1e-14 # orthogonalization threshold

KCOpt KC_AOX # AO exchange for the four external contributions

# (the only option available at present)

PrintLevel 3 # the amount of information to be printed

MaxCore 500 # total amount of memory

end

9.27.2 Memory Management

The most important data coming from the coupled-cluster routine are the ground state energy and wave

function, and the molecular integrals. The integrals are then used to create “dressed” integral containers,

which allows for an efficient factorization of the EOM equations, since these dressed quantities do not change

during the calculation. Most of these are written on disk, with the possible exception of the integral container

which has three external labels. This, and the solver files may remain in core if enough memory is available.

The program sequentially tries to allocate memory for the files in the order of their importance, and what

cannot be kept in core, goes on disk. The order of allocation is as follows: 1. residual vectors, 2. Ritz vectors,

3. three external integrals, 4. sigma vectors and 5. state (trial) vectors, as seen in the example below:

--------------------------------

AUTOMATIC CHOICE OF INCORE LEVEL

--------------------------------

Memory available ... 6512.00 MB

Memory needed for Residual-vectors ... 71.27 MB

Memory needed for Ritz-vectors ... 71.27 MB

Memory needed for 3-ext integrals ... 92.05 MB

Memory needed for Sigma-vectors ... 1425.31 MB

Memory needed for State-vectors ... 1425.31 MB

-> Final InCoreLevel ... 5
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Half of the memory specified with the keyword MaxCore is distributed among the five candidates. In the above

case, everything fits in memory. Note that these are only the largest contributors to memory consumption,

and there should ideally be a safety margin when allocating memory.

In order to estimate the amount of necessary memory, it should be kept in mind that, in the closed shell case,

the memory requirements of the residual and Ritz vectors are proportional to NRNPN
2
V , the three external

integrals to NRNON
3
V and the sigma and trial vectors to NDNRNPN

2
V , where NO and NV are the number

of occupied and virtual orbitals, NP = NO(NO+1)
2 is the number of occupied pairs, NR is the number of roots,

and ND is the maximum size of the reduced space. The keyword NRoots sets NR, while NDav determines

ND. Luckily, the contributions that, in our experience, are the most important to keep in memory, are also

the ones that require the smallest amount of it. It is advisable to use KCOpt AOBLAS, as it has the lowest

memory requirements.

Note that in the UHF EE-EOM-CCSD implementation, the memory requirements of the residual and Ritz

vectors are proportional to NR(NPαN
2
Vα

+ NPβN
2
Vβ

+ NOαNOβNVαNVβ ), the three external integrals to

NR(NOαN
2
Vα

+NOβN
2
Vβ

+NOαNVαN
2
Vβ

+NOβNVβN
2
Vα

) and the sigma and trial vectors memory requirements

are proportional to NDNR(NPαN
2
Vα

+ NPβN
2
Vβ

+ NOαNOβNVαNVβ ), where NOα , NOβ , NVα and NVβ are

respectively, the number of occupied alpha, occupied beta, virtual alpha and virtual beta orbitals and

NPα =
NOα (NOα−1)

2 and NPβ =
NOβ (NOβ−1)

2 are the number of alpha and beta occupied pairs, respectively.

9.27.3 Initial Guess

The present initial guess in the RHF EOM implementation consists of constructing a CIS Hamiltonian of a

certain dimension, and diagonalizing it. The roots are preselected based on the energetic ordering of the

diagonal elements of the Hamiltonian. In the UHF case, the guess is constructed from the solutions of a

UHF CIS calculation. The number of roots in the initial guess is determined as 20 times the number of

roots desired in EOM (NRoots) if NDav is 20 or smaller, otherwise it is set to NDav times the number of

EOM roots. If the parameter NInitS is larger than zero, then the number of initial guess roots will be set to

this parameter times NRoots. The maximum possible number of roots is the full CIS dimension, (NONV

(RHF) or NOαNVα +NOβNVβ (UHF)) . One should keep in mind, while increasing the number of initial guess

vectors, that this corresponds to diagonalizing a matrix of increasing dimension. If, for example NRoots is

10, then by default 200 roots are considered in the initial guess (unless it exceeds the size of the CIS space),

or if NInits is set to 100, then there will be 1000 roots in the guess. In some cases, the roots calculated

using EOM may not be the lowest ones, but a few of these may be replaced by some higher roots which are

“easier” to find. In such cases, it may help to increase NRoots or NInitS to converge to the proper roots. The

program can be made to follow the initial CIS guess by setting FOLLOWCIS to true and is necessary if we

wish to ionize or excite from inner-valence or core orbitals. In the RHF implementation, the core orbital,

from which the ionization or excitation originates, can be specified using the keyword CoreHole, in addition

to setting DoCore and FollowCIS to true. The CoreHole keyword is quite general and in principle, ionization

or excitation processes from any occupied orbital can be specified using this keyword.

9.27.4 Hamiltonian Construction

The Hamiltonian construction begins by calling the sigma routines. In the case of the closed-shell code, the

logical variables UseEOMOptS and UseEOMOptD choose the routines to be used in the evaluation of the singles
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and doubles sigma vectors, respectively. If true, the optimized sigma routine, using dressed integrals, will

be used. This should not be changed, the option is there mainly for debugging purposes. If set to false, an

automatically generated, and much slower serial code will be used instead. In the case of the open-shell

UHF implementation, optimized sigma routines have been generated using the ORCA Automated Generator

Environment (AGE) [437]. In each early iteration, NR sigma vectors will be determined, except in the case of

a restart, where the number of sigma vectors is 2NR. For further details on convergence, see 9.27.6 below.

The most time consuming part of the sigma vector construction is the formation of the external exchange

contribution, which can be influenced via the CC keyword KCOpt. Currently, there are three options that are

compatible with the RHF EOM implementation: KC MO,KC AOX and KC AOBLAS (see the MDCI documentation)

and KC AOX is the only option available in the UHF EOM code. The external exchange term can be treated

most efficiently using COSX, which in the closed-shell case, leads to average speed ups of 10x for the external

exchange term and an overall speedup of 3x for the EOM calculation. This is accompanied by a drastic

reduction of the storage cost [489]. The error introduced is below 1 meV, which is 200-fold less than the error

bar of the method [489] itself. It is the default for KCOpt KC AOX and KC AOBLAS and can be controlled by the

keyword DOCOSXEOM. The default grid settings for EOM are GridX 1 and IntAccX 2.68.

Once the sigma vectors are available, they are multiplied with the trial vectors to yield the reduced space

Hamiltonian. The Hamiltonian is built in a way that, in each iteration, only the new vector products are

added to the “edge” of the old Hamiltonian, so that a full build is avoided. It should be clear that the

parameter NDav plays an important role here, since it determines the maximum size of the Hamiltonian

(NDNR), and also controls how much memory is needed for the trial and sigma vectors, as seen above. Since

the choice of this parameter influences convergence properties, it will be discussed further in 9.27.6.

9.27.5 Solution of the (Nonsymmetric) Eigenproblem

Following the construction of the Hamiltonian, a nonsymmetric eigensolver is called. In this case, it is possible

to have complex eigenvalues. In practice, this is rarely the case, and indicates a problem of some kind. A

warning will be given if this happens, however, one may get away with this if it only happens in an isolated

iteration step.

Once the eigenvectors are available, they are compared with those of the previous iteration, if root homing is

turned on, i.e. if the RootHoming keyword is set to true. This means evaluating the overlap of the old and

new eigenvectors, in order to keep track of the possible movement of the eigenvectors if root flipping occurs.

If converged roots are removed from further iterations (see next section), it is important to keep track of

changes in ordering, especially if a converged and a non-converged root is swapped. After diagonalization,

the Ritz vectors and residuals can be evaluated.

9.27.6 Convergence, Restart, Preconditioning and Subspace Expansion

Convergence is signaled once a residual square norm based criteria is fulfilled. This criteria is determined

by the CheckEachRoot keyword. If it is true (default), the convergence of the residual square norm of each

root is checked separately. This is due to the fact that different roots converge at a different rate. Once a

root is converged, no new trial vectors will be generated, belonging to that vector. This means that the

EOM iterations will progressively become faster (until restart). Turning off the rootwise convergence check

is possible, but not recommended. In this case, the maximum of all residual square norms is checked for
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convergence, and all iterations will take roughly the same amount of time since no vectors are removed in

any iteration. However, this procedure can be numerically unstable, since the residuals of some roots might

become very close to zero, and trying to generate new vectors, which are orthogonal to these, may lead to

numerical disaster. In short, the recommended default is having both CheckEachRoot and RootHoming set

to true. If CheckEachRoot is false, then RootHoming should also be set to false, as it may cause problems if

NDav is too small. The convergence threshold of the residual in Davidson’s method can be larger than that

for the ground state CC residual threshold in order to obtain converged results. Namely, a value of DTol of

1e-5 is almost always enough to get well converged energies.

At this point it is worth discussing the role of the keyword NDav. This keyword determines at what point

the Davidson algorithm should be restarted. If it is chosen too small, it may cause slow convergence. If this

value is too large, this may result in overwhelming demands on memory/disk space requirements. The default

value (20) is chosen with the hope that no, or maybe one restart will be required. It should only be changed

if computational resources demand it. However, the treatment of core ionization or core excitation processes

often requires a large value of NDav. At restart, Ritz vectors are copied as new trial vectors for all roots,

which will then be orthonormalized, while new vectors will only be generated for the non-converged roots.

This means that the step after the rebuilding of the expansion space will be 1-2 times as expensive as one of

the initial steps.

New directions (trial vectors) are generated from the preconditioned residual vectors. If no preconditioning is

applied (the preconditioner is taken to be a unit matrix), one falls back to the Lanczos algorithm, which is

inferior to the Davidson algorithm. This happens if the keyword DoLanczos is true. This is not recommended,

as the Lanczos algorithm converges several times slower than Davidson’s, and is there for debugging mainly.

The original Davidson preconditioner is the inverse of a diagonal matrix which contains the difference of the

diagonal elements of the Hamiltonian and the current approximation to the eigenvalue belonging to the given

root. Let us consider the closed-shell RHF implementation for simplicity. If Ria and Rijab are elements of

the singles and doubles amplitudes, respectively, then the updated vectors (Tia, Tijab) have the form

Tia =
Ria

Dia + ER
(9.292)

for singles, and

Tijab =
Ria

Dijab + ER
(9.293)

for doubles. Here, Dia and Dijab are related to, and possibly approximations of, the respective diagonal

Hamiltonian elements. The simplest approximation is just to construct these from diagonal Fock matrix

elements (i.e. orbital energies) as Dia = εa−εi and Dijab = εa+εb−εi−εj . A slightly better preconditioning

can be obtained as follows. For singles, take the exact CIS diagonal elements, Dia = εa− εi + giiaa, where the

last term is the respective antisymmetrized integral; and construct the doubles as Dijab = Dia +Djb. This is

the default, and can be changed back to the simple Fock matrix guess by setting UseCISUpdate to false.

Following the preconditioning step, the resulting vectors are orthogonalized to the previous set of trial vectors,

and orthonormalized among themselves. Since, the trial vectors do not change once they are generated (unless

a restart occurs), only the new elements of the overlap matrix need to be generated for the orthonormalization.

The numerical threshold for the inversion (and other division steps) is controlled by the parameter OTol.

Finally, the amount of printed information can be controlled via the PrintLevel keyword. If not given or
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equal to 2, only basic iteration information will be printed. If set to 3, detailed iteration information will be

printed (recommended if timing results for individual steps are required), while 4 or higher triggers additional

(and very verbose) information from other subroutines as well.

The default solver is a multi-root Davidson procedure. The single-root solver can be initiated setting

DoRootwise true and FollowCIS to true. The latter is more stable, when large number of roots are

requested.

9.27.7 Properties in the RHF EOM implementation

The only property that can be calculated with the current RHF EOM implementation is the transition

moment. It is calculated as a CI-like expectation value, as proposed by Stanton and Bartlett. The right and

left transition density are defined as

ρGr→Expq = 〈φ0|(1 + Λ)[e−T {p+q−}eT , R]|φ0〉 (9.294)

ρEx→Grpq = 〈φ0|Le−T {p+q−}eT |φ0〉 (9.295)

In the above equation, Λ corresponds to the ground state left vector, which needs to solved once and L is the

left vector , which needs to be solved separately for each root. Once the right and left vectors have been

obtained, the left and right transition densities are constructed and the oscillator strength is calculated using

following formula

f =
2

3
ε|µpqρEx→Grpq ||µpqρGr→Expq | (9.296)

The oscillator strength, calculated by default, employs a linear approximation for Λ. The L vectors are, on

the other hand, calculated as a general inverse of the corresponding R vectors. This approximation requires

no additional effort over the energy calculation and gives similar accuracy as that of the exact oscillator

strength calculation, which is at least twice the cost of the energy calculation. Exact EOMCC transition

moments can, however, be calculated by setting DoLeft and DoTDM to true. Please note that transition

moments have not yet been implemented for the UHF EOM-CCSD approach.

9.27.8 Some tips and tricks for EOM-CC calculation

• The COSX approximation gives significant savings in terms of memory use, disk space use and

computational timings without almost no loss of accuracy [489]. Therefore, the preferred setting for

large scale calculations should include ’DoCOSXEOM true,DoAOX3e true and KCOpt KC AOBLAS’

(N.B. KC AOX is the only option available for KCOpt in the UHF implementation)

• The EOMCC code in ORCA has three version of the Davidson’s solver. The default one is multi-root

solver which does optimization of all the roots together. It gives the fastest convergence and is more

suitable when one is interested only in a few roots of a big molecule. However, the multi-root solver can

land into numerical issues, if more than 10 root are desired. In that case, one can invoke the root-wise

solver by setting DoRootwise true. The single root solver is very stable and should be used when large

number of roots are desired. However, the convergence of the single root solver is slower than the
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multi-root one. In the RHF implementation, there is also a batchwise solver, where a subset of the

total number of roots is optimized together. This can be invoked by setting NRootsPerBatch to true

and is intermediate between the multi-root and single-root solver in terms of stability and convergence.

• If the EOM iterations do not converge within 50 cycles, one can try to increase the number of iterations

by setting MaxIter to a larger value. One can also try to increase the dimension of the Davidson’s

space by increasing the NDAV value and this generally helps in convergence acceleration. However,

setting NDAV to a value larger than 200 can make the calculation prohibitively costly .

• Convergence thresholds of DTol 1e-5 (Davidson convergence) and STOL 1e-7 (ground state CCSD

convergence ) generally yield sufficiently converged energies, and are suitable for most purposes.

• The normal Davidson solver generally leads to the lowest energy solutions. This procedure can also

yield roots dominated by double excitations (the so-called satellite states) for the IP and EA variants

of EOMCC, when one asks for a large number of roots. If one interested in the low lying Koopman’s

type of IP and EA states, they can be obtained by setting FOLLOWCIS to true. This will follow the

initial guess provided by the Fock operators.

9.28 Excited States via STEOM-CCSD

The EOM-CCSD approach for excitation energies becomes prohibitively costly for large systems because of its

O(N6) scaling. Therefore, one needs a more compact form of the wave-function ansatz. A second similarity

transformation can compress the final matrix diagonalization step to the CIS space only. The resulting

STEOM-CCSD method of Marcel Nooijen and co-workers is an efficient way for accurate calculations of

excitation energies.

9.28.1 General Description

In the standard EOMCC method, the transformed Hamiltonian is diagonalized over a singles and doubles

space to obtain ionized, attached, or excited states of the reference state. In STEOMCC, one performs a

second similarity transformation

Ĝ = {eŜ}−1 ˆ̄H{eŜ} (9.297)

The transformation operator Ŝ, including singles and doubles, is defined as

Ŝ = ŜIP + ŜEA (9.298)

ŜIP = Smi′ Ê
m
i′ +

1

2
Smbij Ê

mb
ij (9.299)

ŜEA = Sa
′

e Ê
a′

e +
1

2
Sabej Ê

ab
ej (9.300)
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In the above equations, m and e denote active indices of the hole and particle type respectively, while a

prime denotes a restriction to orbitals that are not active. The amplitudes of the operator Ŝ are defined

in such a way that matrix elements of the transformed Hamiltonian, in second quantized notation, become

equal to zero.

gmi′ = gmbij = ga
′

e = gabej = 0 (9.301)

In addition, the zeros which pre-existed in H̄, after solving the CCSD equations, remain preserved. The

above equations are linear in Ŝ and are equivalent to the Fock space multireference coupled cluster equations

for the one valence problem. However, to ensure numerical stability, the equations are re-casted as matrix

diagonalization problem and solved as EOMIP-CCSD and EOMEA-CCSD problems. The ŜIP and ŜEA

are extracted from converged EOMIP-CCSD and EOMEA-CCSD calculations, respectively, by invoking

intermediate normalization on the suitably chosen eigenvectors corresponding to active holes and active

particles. The total process can be described as following

• Solution of the ground state coupled cluster equations

• Construct the first similarity transformed Hamiltonian as ˆ̄H = e−T̂ ĤeT̂

• Solution of the EOMIP and EOMEA equations

• Extraction of the Ŝ amplitudes

• Construct the second similarity transformed Hamiltonian as ˆ̄G = e−Ŝ ˆ̄HeŜ

• Diagonalization of ˆ̄G in CIS space

The advantage of the above method is that, instead of one iterative O(N6) scaling diagonalization step, it

requires two iterative O(N5) scaling steps, one non-iterative O(N5) scaling step and one iterative O(N4)

scaling matrix diagonalization step. The presence of so-called ’disconnected triples’ terms ensures the

charge transfer separability of the excited states, which is absent even in EOM-CCSD. In addition, since

the final diagonalization step is performed in a CIS space, the spin adaption is trivial and excited states

of triplet multiplicity can be obtained without going through the complications of a spin orbital based

implementation.

The STEOM approach has also recently been extended for applications to open-shell systems within the UHF

formalism [490]. In this case, the expressions for the operators ŜIP and ŜEA take the form,

ŜIP =
1

2

∑
i,e,a,b

sabie
{
â† b̂† ê î

}
+
∑
ī,e,ā,b

sābīe
{

ˆ̄a† b̂† ê ˆ̄i
}

+
1

2

∑
ī,ē,ā,b̄

sāb̄īē
{

ˆ̄a† ˆ̄b† ˆ̄e ˆ̄i
}

+
∑
i,ē,a,b̄

sab̄iē
{
â† ˆ̄b† ˆ̄e î

}
, (9.302)

Ŝ− =
1

2

∑
i,j,a,m

samij
{
â† m̂† ĵ î

}
+
∑
ī,j,ā,m

sāmīj
{

ˆ̄a† m̂† ĵ ˆ̄i
}

+
1

2

∑
ī,j̄,ā,m̄

sām̄īj̄
{

ˆ̄a† ˆ̄m† ˆ̄j ˆ̄i
}

+
∑

i,j̄,a,m̄

sam̄ij̄
{
â† ˆ̄m† ˆ̄j î

}
. (9.303)

where we use overbars to distinguish the β orbitals from the α orbitals. The amplitudes
{
sabie , s

āb
īe

}
are

determined by solving the UHF EA-EOM-CCSD equations for the attachment of an α electron, while



9.28 Excited States via STEOM-CCSD 717

the
{
sāb̄
īē
, sab̄iē

}
amplitudes are extracted from a UHF EA-EOM-CCSD calculation for the attachment of

a β electron. Similarly, the sets of amplitudes
{
samij , s

ām
īj
} and

{
sāb̄
īj̄
, sam̄
ij̄

}
are determined by solving the

decoupled UHF IP-EOM-CCSD problems for the ionization of an α electron and the ionization of a β electron,

respectively. Hence, a UHF STEOM calculation involves two separate IP calculations (O(N5) scaling) and

two separate EA calculations (O(N5) scaling steps).

All the speed up options, including CCSD(2) (only available in RHF implementation) and COSX, which are

available for EOM-CCSD are also available for STEOM. The most important step in a STEOMCC calculation

is the EOMIP-CC and EOMEA-CC calculation steps. These steps are performed using the EOM-CCSD

module and the relevant keywords are the same as that described in 9.27. The keywords which are exclusive

to the RHF STEOM module are:

%mdci

#RHF STEOM parameters - defaults displayed

DoCISNat true # automatic selection of active space

NActIP 3 # number of states defined as active in the IP calculation

NActEA 2 # number of states defined as active in the EA calculation

DoTriplet false # target state of triplet multiplicity

DoDbFilter true # filters out states with doubles excitation character

DoNewActSch true # new active space selection scheme for STEOM-CCSD

DoSOLV # perturbative correction for solvation effects (experimental)

#Default values for automatic active space selection scheme

OThresh 0.001 # Cut off occupation of CIS natural orbitals in IP calculation

VThresh 0.001 # Cut off occupation of CIS natural orbitals in EA calculation

IPSThrs 80 # The percentage singles threshold for the IP calculation

EASThrs 80 # The percentage singles threshold for the EA calculation

end

The keywords pertaining to the UHF STEOM module are:

%mdci

#UHF STEOM parameters - defaults displayed

DoCISNat true # automatic selection of active space

NActIP a 3 # number of states defined as active in the IP calculation

# for the removal of an α electron

NActIP b 3 # number of states defined as active in the IP calculation

# for the removal of a β electron

NActEA a 2 # number of states defined as active in the EA calculation

# for the attachment of an α electron

NActEA b 2 # number of states defined as active in the EA calculation

# for the attachment of a β electron

DoDbFilter true # filters out states with doubles excitation character

UseQROs false # use QROs or not

DoNewActSch true # new active space selection scheme for STEOM-CCSD

#Default values for automatic active space selection scheme
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OThresh 0.001 # Cut off occupation of CIS natural orbitals in tIP calculations

VThresh 0.001 # Cut off occupation of CIS natural orbitals in EA calculations

IPSThrs 80 # The percentage singles threshold for the IP calculations

EASThrs 80 # The percentage singles threshold for the EA calculations

end

9.28.2 Selection of Active space

The results of a STEOMCC calculation depend upon the number of roots selected as active in the EOMIP

and EOMEA calculations. In ORCA, they are chosen automatically, by using state-averaged CIS natural

transition orbitals (NTO). By default, the number of roots included in this initial CIS computation is equal

to the number of roots requested in STEOM (NRoots). However, this can be modified setting NRootsCISNAT

to higher values. The orbitals up to a predefined occupation are then chosen to be active in the EOMIP

and EOMEA calculations, and this is controlled by the keywords OThresh and VThresh respectively. Now,

there is two possible ways to chose active space. One is to use the criteria of percentage occupation of NTO’s

as described in ref [491]. However, a newer and more robust approach is to use the criteria of absolute

occupation, which is default in the current implementation. One can switch on the old percentage occupation

based active space selection by setting DoNewActSch to true.

One can also select the active spaces manually by turning the DoCISNat to false and setting the NActIP

and NActEA (RHF STEOM calculation) or the NActIP a, NActIP b, NActEA a and NActEA b (UHF STEOM

calculation) to desired values. However, this is not recommended for general users. The following shows the

output of the active orbital selection procedure on a closed-shell molecule:

------------------------------------------

STATE AVERAGED NATURAL ORBITALS FOR ACTIVE SPACE SELECTION

------------------------------------------

Solving eigenvalue problem for the occupied space ... Occupied block occupation :

0 0.000478

1 0.002266

2 0.169928

3 0.171663

4 0.310125

5 0.345541

Orbital taken as active for IP roots:

0 0.345541

1 0.310125

2 0.171663

3 0.169928

done

Solving eigenvalue problem for the virtual space ... Virtual block occupation :

6 0.640886

7 0.332262

8 0.017272

9 0.005326

10 0.001752

11 0.000667

12 0.000574
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13 0.000540

14 0.000160

15 0.000150

16 0.000139

17 0.000086

18 0.000082

19 0.000037

20 0.000023

21 0.000016

22 0.000013

23 0.000008

24 0.000003

25 0.000002

26 0.000001

27 0.000000

28 0.000000

29 0.000000

30 0.000000

31 0.000000

32 0.000000

33 0.000000

34 0.000000

35 -0.000000

Orbital taken as active for EA roots :

0 0.640886

1 0.332262

2 0.017272

done

No of roots active in IP calculation: 4

No of roots active in EA calculation: 3

9.28.3 The reliabilty of the calculated excitation energy

The excitation energy for any states calculated in STEOMCC are only reliable when the dominant excitation

for that states are confined within the active space. This can be verified from the percentage active character

of the calculated states, an a posteriori diagnostic which is defined as

%active character =

∑
m,e

C(m, e) ∗ C(m, e)∑
i,a

C(i, a) ∗ C(i, a)
∗ 100 (9.304)

for closed-shell systems and takes the form,

%active character =

∑
m,e

C(m, e) ∗ C(m, e) +
∑̄
m,ē

C(m̄, ē) ∗ C(m̄, ē)∑
i,a

C(i, a) ∗ C(i, a) +
∑̄
i,ā

C (̄i, ā) ∗ C (̄i, ā)
∗ 100. (9.305)

within the UHF formalism. The roots which have %active character higher than 98.0 are considered to be
converged with respect to the active space.

------------------

STEOM-CCSD RESULTS
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------------------

IROOT= 1: 0.145412 au 3.957 eV 31914.3 cm**-1

Amplitude Excitation

-0.169361 4 -> 8

-0.984822 7 -> 8

Percentage Active Character 99.86

Amplitude Excitation in Canonical Basis

-0.166580 4 -> 8

-0.975432 7 -> 8

-0.124356 7 -> 13

IROOT= 2: 0.309409 au 8.419 eV 67907.5 cm**-1

Amplitude Excitation

0.994141 7 -> 9

Percentage Active Character 99.78

Amplitude Excitation in Canonical Basis

-0.990029 7 -> 9

IROOT= 3: 0.336993 au 9.170 eV 73961.4 cm**-1

Amplitude Excitation

-0.994078 5 -> 8

Percentage Active Character 99.10

Amplitude Excitation in Canonical Basis

-0.984116 5 -> 8

-0.136769 5 -> 13

IROOT= 4: 0.357473 au 9.727 eV 78456.2 cm**-1

Amplitude Excitation

0.181761 4 -> 10

0.728209 6 -> 8

0.611668 7 -> 10

-0.191540 7 -> 12

Percentage Active Character 94.10

Warning:: the state may have not converged with respect to active space

-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis

-0.184144 4 -> 10

-0.725183 6 -> 8

-0.633718 7 -> 10

IROOT= 5: 0.386654 au 10.521 eV 84860.8 cm**-1

Amplitude Excitation

0.980406 4 -> 8

-0.178551 7 -> 8

Percentage Active Character 99.79
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Amplitude Excitation in Canonical Basis

0.971678 4 -> 8

0.122877 4 -> 13

-0.179242 7 -> 8

IROOT= 6: 0.444881 au 12.106 eV 97640.1 cm**-1

Amplitude Excitation

-0.995150 6 -> 9

Percentage Active Character 99.69

Amplitude Excitation in Canonical Basis

-0.989966 6 -> 9

If the %active character for any calculated state is less than 98, that state may have not converged with

respect to active space and the excitation energy for that particular state is less reliable. The user should ask

for more no of roots under those conditions.

9.28.4 Removal of IP and EA states with double excitation character

To obtain accurate results with STEOM-CCSD, only the Ŝ amplitudes corresponding to the states dominated

by single excitations should be included in the second similarity transformation. This is ensured in ORCA in

two ways. First, the root following (FollowCIS) is activated by default so that it converges to the states

dominated by singly excited guess vectors. This avoids the calculation of so called ’satellite states’, which are

of double excitation character with respect to the ground state. Secondly, among the converged IP and EA

roots, the states which have %singles character below a certain predefined threshold (i.e. controlled by the

keywords IPThresh and EAThresh) are automatically excluded from the second similarity transformation.

EOM-CCSD RESULTS

----------------

IROOT= 1: 0.105316 au 2.866 eV 23114.2 cm**-1

Amplitude Excitation

0.697547 x -> 8

IROOT= 2: 0.217925 au 5.930 eV 47829.1 cm**-1

Amplitude Excitation

-0.701454 x -> 9

IROOT= 3: 0.304098 au 8.275 eV 66741.8 cm**-1

Amplitude Excitation

-0.700458 x -> 10

IROOT= 4: 0.350387 au 9.535 eV 76901.1 cm**-1

Amplitude Excitation

0.702705 x -> 11

IROOT= 5: 0.651462 au 17.727 eV 142979.4 cm**-1

Amplitude Excitation

0.637352 x -> 12

0.121747 x -> 8 4 -> 10

0.177039 x -> 8 5 -> 9

0.109987 x -> 9 5 -> 8

-0.206789 x -> 8 7 -> 10

-0.109870 x -> 10 7 -> 8
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EA STATE= 0: percentage singles 95.282

EA STATE= 1: percentage singles 96.981

EA STATE= 2: percentage singles 96.540

EA STATE= 3: percentage singles 97.844

EA STATE= 4: percentage singles 68.884

Warning: high double excitation character, excluding from the STEOM transformation

Final no active EA roots: 4

Note that the use of CIS natural transition orbitals can lead to convergence issues for the IP and EA states

which are dominated by double excitation character. This can be remedied by setting DoDbFilter to true.

9.28.5 Transition and difference densities

At the end of a STEOM computation, it is possible to store the final eigenvectors in a file “job.cis”, in analogy

with what is done for CIS and TD-DFT computations. This file can be obtained by setting DoStoreSTEOM

true in the input. This file can then be processed by orca plot to obtain the difference and / or the

transition densities.

9.28.6 Properties

Presently, the only property which can be calculated with the current implementation is the transition

moment. It is calculated using a simple CIS-like formulation, employing the converged STEOM eigenvectors.

The transition moments are computed by default in a STEOM calculation.

9.28.7 Some tips and tricks for STEOMCC calculations

• The accuracy of results depends upon the threshold defining the occupation of the NTOs which are

taken as active. The following threshold settings are optimal and can be used for almost all the

calculations.

%mdci

OThresh 0.001

VThresh 0.001

end

• The convergence problems with the underlying CIS for NTO generation can be removed by setting

MaxIter to a high value.
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9.29 Excited States using PNO based coupled cluster

Despite the successes of the DLPNO-CC approximation for ground states, the use of PNOs for excited states

has been less fruitful. It is not straightforward to define a PNO based scheme for excited states, which will

maintain the balance between speed and accuracy, as observed for the ground state. As an intermediate

solution, the ground state DLPNO quantities are transformed back to the canonical basis and are used

within the canonical EOM routine. This procedure is justified, as the main bottle neck of the EOM-CCSD or

STEOM-CCSD methods comes from the ground state calculation. Approximating the ground state CCSD

amplitudes with MP2 amplitudes is also possible, as in the EOM-CCSD(2) approach. However, it is not very

reliable and can lead to very large errors when the reference Hartree-Fock wave-function does not provide

a correct zeroth order description of the ground state. Note that the back-transformed or bt-PNO scheme

described here is available for both open- (UHF (QROs) or ROHF) and closed-shell (RHF) systems.

9.29.1 General Description

The back-transformation of the ground state DLPNO-CCSD amplitudes to the virtual space involves three

steps. The T amplitudes in the PNO basis are first converted into the PAO basis, then subsequently to the

atomic orbital (AO) basis, and finally to the canonical MO basis [492]. For example, in the closed-shell case,

we have

dijµ̃ãijT
ij

ãij b̃ij
dij
b̃ij µ̃
⇒ Lijµµ̃T

ij
µ̃ν̃L

ij
ν̃ν ⇒ CijaµT

ij
µνC

ij
νb ⇒ T ijab, (9.306)

diµ̃ãiiT
i
ãii ⇒ Liµµ̃T

i
µ̃ ⇒ CiaµT

i
µ ⇒ T ia, (9.307)

The AO basis functions are denoted as µ, ν, . . ., while µ̃, ν̃, . . . refers to PAOs. The missing pairs are treated

using MP2 amplitudes. If all the thresholds are set to zero, the back-transformed amplitudes match exactly

with the canonical RI-EOM-CCSD ones. On the other hand, when all the thresholds are made infinitely

tight, one obtains the EOM-CCSD(2) results. This PNO based excited state approach is available for all the

flavors of EOM-CCSD and for STEOM-CCSD in both open- and closed-shell systems.

Below, we list all the parameters that influence the DLPNO-CCSD based excited state calculations

%mdci

#bt-PNO-EOM and STEOM parameters - defaults displayed

DoEOMMP2 true # MP2 correction for missing pairs

DoRECAN true # recanonicalization of the occupied

# orbitals before the excited state calculation

#(only relevant for the RHF implementation)

end

9.29.2 Reference State Energy

Here it should be noted that the reference energy for PNO based EOM-CCSD or STEOM-CCSD is slightly
different from that printed from a converged ground state DLPNO-CCSD calculation, as it includes the
perturbative correction for different truncated quantities.
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----------------------

COUPLED CLUSTER ENERGY

----------------------

E(0) ... -113.876105722

E(CORR)(strong-pairs) ... -0.332761023

E(CORR)(weak-pairs) ... -0.000059148

E(CORR)(corrected) ... -0.332820172

E(TOT) ... -114.208925894

In the bt-PNO-EOM-CCSD scheme, the CI-like excited state treatment of the reference state is defined by

back transformed DLPNO amplitudes (or MP2 amplitudes for the weak pairs). The energy corresponding to

this set of amplitude is printed at the beginning of the EOM calculations.

Dressing integrals for EOM-CCSD ...

Making TAU ... done ( 0.0)

Reference state energy for bt-PNO-EOM-CCSD ... -114.208868242

Making FD ... done ( 0.7)

Making IKJLD ... done ( 0.0)

Making IKJADs,IKJAD ... done ( 0.9)

Making IJABD,IAJBD ... done ( 0.1)

Making IBACDs,IBACD ... done ( 0.1)

done ( 1.8)

Therefore, to calculate the total energy of an excited (ionized or electron attached) state, one needs to add

the excitation energy to the reference state energy in bt-PNO-EOM-CCSD.

9.29.3 Use of Local Orbitals

The use of local orbitals makes it difficult to follow a particular guess vector in the Davidson digonalization

process in EOM-CC and STEOM-CC. Therefore, it is advisable to recanonicalize the occupied orbitals after

the ground state DLPNO-CCSD calculation by setting DoRECAN to true (i.e. only relevant for the closed-

shell RHF implementation). It should be noted that the recanonicalization does not change the EOM-CCSD

energies. However, the STEOM-CC energies are not invariant to orbital rotations and differ slightly for local

and canonical orbitals. In the open-shell bt-PNO implementation, we follow a different procedure in that all

quantities are transformed to the delocalized basis before proceeding with the back-transformation and the

excited state calculation.

9.29.4 Some tips and tricks for bt-PNO calculations

• The bt-PNO scheme with tightPNO settings gives results, which are within 0.01 eV of the canonical

EOM-CCSD numbers, at a fraction of the computational cost [492]. So, use of bt-PNO scheme is

always preferable over canonical calculations.
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• In the case of an RHF reference, one should set ’DLPNOLINEAR true’ and ’NEWDOMAINS true’ in

the mdci block input to use the 2015 fully linear scaling implementation, which is more robust than

the 2013 implementation used as default in bt-PNO scheme.

• The transition moment in bt-PNO-EOM (RHF only) and bt-PNO-STEOM (RHF, UHF (QROs) or

ROHF) is only available using the linear approximation.

9.30 The Multireference Correlation Module

9.30.1 General Description

A number of uncontracted multireference approaches are implemented in ORCA and reside in the orca mrci

module. All of these approaches start with a reference wavefunction that consists of multiple configurations

(orbital occupation patterns). The reference wavefunction defined in the ref subblock can be a complete

active space (CAS), restricted active space (RAS) or an arbitrary list of configurations. The total wavefunction

is constructed by considering single and double excitations out of the reference configurations. These excited

configurations are then used to generate configuration state functions (CSF) that have the proper spin and

spatial symmetry. The number of wavefunction parameters rapidly grows with the number of reference

functions. The orca mrci module features a set of truncation criteria (TSel, TPre, TNat) that help to reduce

the number of wavefunction parameters. Furthermore, by default, the program only considers reference

configurations that already have the target spin and spatial symmetry. There are situations, where this

is undesired and the restrictions can be lifted with the keyword rejectinvalidrefs false. For more

information on the theory, the program module as well as its usage we recommend the review article by

Neese et al. [493]. A tutorial type introduction to the subject is presented in chapter 9.30 of the manual

and more examples in the CASSCF tutorial. The detailed documentation of all features of the MR-CI and

MR-PT module is somewhat premature and at this point only a summary of keywords is given below. A

thorough description of all technical and theoretical subtleties must wait for a later version of the manual.

The overall scaling of uncontracted approaches is steep. Hence, the methodology is restricted to small

reference spaces and small molecules in general. Note that all integrals must be kept in memory!

Internally contracted multireference approaches such as NEVPT2 do not share these bottlenecks. Aside from

NEVPT2, ORCA features a fully internally contracted MRCI (FIC-MRCI) that resides in the orca autoci

module. For more details on the FIC-MRCI we refer to section 9.20.

%mrci

# -----------------------------------------------------------

# Orbital selection

# NOTE: The orbitals are used as supplied. Thus, the ORDER of

# orbitals is critical. Say you have

# nact electrons in the active space

# nint electrons in the internal space

# nfrozen electrons

# * The first nfrozen/2 orbitals will not be included in the CI

# * The next nint/2 orbitals will be doubly occupied in all

# references
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# * the nact electrons are distributed over the,say, mact

# orbitals according to the active space definitions.

# The remaining orbitals are external.

# IT IS YOUR RESPONSIBILITY THAT THE ORBITAL ORDERING MAKES

# SENSE!

# A sensible two-step procedure is:

# * generate some orbitals and LOOK AT THEM. Decide which ones

# to include in the CI.

# * re-read these orbitals with ! MORead NoIter. Perhaps use

# the "rotate" feature to reorder the MOs

# Then jump right into the CI which is defined in this se-

# cond job

#

# NOTE: the MRCI module respects the %method FrozenCore settings

# -----------------------------------------------------------

Loc 0,0,0

# Localize orbitals in the internal (first flag), active

# (second flag) and external space (third flag).

UseIVOs false

# Use improved virtual orbitals in the CI

# ---------------------------------

# Method selection

# ---------------------------------

CIType MRCI # Multireference CI (default)

MRDDCI1 # Difference dedicated CI 1-degree of freedom

MRDDCI2 # Difference dedicated CI 2-degrees of freedom

MRDDCI3 # Difference dedicated CI 3-degrees of freedom

MRACPF # Average coupled-pair functional

MRACPF2 # Modified version of ACPF

MRACPF2a # A slightly modified version of ACPF-2a

MRAQCC # Average quadratic coupled-cluster

MRCEPA_R # Multireference CEPA due to Ruttink

MRCEPA_0 # CEPA-0 approximation

SORCI # Spectroscopy oriented CI

SORCP # Spectroscopy oriented couplet pair approx.

MRMP2 # Multireference Moeller-Plesset at second order

MRMP3 # Multireference Moeller-Plesset at third order

MRMP4 # Multireference Moeller-Plesset at fourth order

# but keeping only singles and doubles relative to

# the reference configurations.

# ---------------------------------

# Selection thresholds

# ---------------------------------

Tsel 1e-6 # Selection threshold for inclusion in the CI based

# 2nd order MP perturbation theory <0|H|I>/DE(MP)

Tpre 1e-4 # Selection of configurations in the reference space

# after the initial diagonalization of the reference

# space only configurations with a weight large>Tpre

# to any root are included

AllSingles false

# include ALL SINGLES in the CI. Default is now TRUE!!!

# perturbative estimate of the effect of the rejected configurations

EunselOpt 0 # no correction
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1 # based on the overlap with the 0th order wavefunction

2 # calculation with the relaxed reference space

# coefficients. This is the most accurate and only

# slightly more expensive

# For CIType=MRCI,MRDDCI and SORCI the approximate correction for

# higher excitations

DavidsonOpt Davidson1 # default

Davidson2 # modified version

Siegbahn # Siegbahn’s approximation

Pople # Pople’s approximation

# For MRACPF,MRACPF2,MRAQCC and SORCP

NelCorr 0

# Number of electrons used for computing the average coupled-

# pair correction.

# =0 : set equal to ALL electrons in the CI

# =-1: set equal to all ACTIVE SPACE electrons

# =-2: set equal to ACTIVE SPACE electrons IF inactive doubles

# are excluded (as in MRDDCI)

# >0 : set equal to user defined input value

LinearResponse false

# Use ground state correlation energy to compute the shift for

# higher roots (not recommended)

# ---------------------------------

# Natural Orbital Iterations

# ---------------------------------

NatOrbIters 0 # default

# number of average natural orbital iterations

Tnat 1e-4

# cutoff of natural orbitals. NOs with an occupation number less

# then Tnat will not be included in the next iteration

# Also, orbitals with occupation number closer than Tnat to 2.0

# will be frozen in the next iteration

Tnat2 -1

# if chosen >0 then Tnat2 is the threshold for freezing the

# almost doubly occupied orbitals. Otherwise it is set equal

# to Tnat

# ----------------------------------

# Additional flags and algorithmic

# details

# ----------------------------------

PrintLevel 2 # default. Values between 1 and 4 are possible

DoDDCIMP2 false

# for DDCI calculations: if set to true the program computes

# a MP2 like correction for the effect of inactive double

# excitations which are not explicitly included in the CI. This

# is necessary if you compare molecules at different geometries

# or compute potential energy surfaces.

# ----------------------------------

# The SORCP model

# ----------------------------------

CIType_in # First step CIType
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CIType_fi # Second step CIType

Exc_in # First step excitation scheme

Exc_fi # Second step excitation scheme

Tsel_in # First step Tsel

Tsel_fi # Second step Tsel

Tpre_in # First step Tsel

Tpre_fi # Second step Tpre

# Thus, the SORCI model corresponds to CIType=SORCP with

# CIType_in MRCI CIType_fi MRCI

# Exc_in DDCI2 Cexc_fi DDCI3

# Tsel_in 1e-5 Tsel_fi 1e-5

# Tpre_in 1e-2 Tpre_fi 1e-2

# ----------------------------------

# Multirerence perturbation theory

# ----------------------------------

MRPT_b 0.02 # Intruder state avoidance PT after Hirao (default 0.0)

# with this flag individual intruders are shifted away to

# to some extent from the reference space

MRPT_shift 0.3 # Level shift introduced by Roos which shifts the entire

# excited manifold away in order to avoid intruder states.

# A correction is applied afterwards but results do depend

# on this (arbitrary) value to some extent.

H0Opt projected # use an off-diagonal definition of H0

Diagonal # use a diagonal definition of H0 (much faster but maybe

# a little less reliable

Partitioning MP # Moeller plesset partitioning

EN # Epstein-Nesbet partitioning (not recommended)

Fopt Standard # Standard definition of MR Fock operators

G3 # uses Anderson’s g3 correction also used in CASPT2

#---------------------------------------

# restrict reference configurations

#---------------------------------------

RejectInvalidRefs true # by default reference CSFs are restricted

# to target spin and spatial symmetry

# ======================================

# Definitions of blocks of the CI Matrix

# ======================================

NewBlock 2 * # generate a Block with doublet(=2) multiplicity

Nroots 1 # number of roots to be generated

Excitations cis # CI with single excitations

cid # CI with double excitations

cisd # CI with single and double excitations

ddci1 # DDCI list with one degree of freedom

ddci2 # DDCI list with two degrees of freedom

ddci3 # DDCI list with three degrees of freedom

Flags[_class_] 0 or 1

# Turn excitation classes on or off individually

# ‘‘s’’ stands for any SOMO, ‘‘i’’,‘‘j’’ for internal orbitals and

# ‘‘a’’,‘‘b’’ for external orbitals

# Singles _class_ = ss, sa, is, ia

# Doubles _class_ = ijss, ijsa, ijab,
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# isss, issa, isab,

# ssss, sssa, ssab

# ‘‘Flags’’ takes priority over ‘‘Excitations’’. In fact ‘‘Excitations’’

# does nothing but to set ‘‘Flags’’. So, you can use ‘‘Excitations’’

# to provide initial values for ‘‘Flags’’ and then modify them

# with subsequent ‘‘Flags’’ assignments

refs

#

# First choice - complete active space

#

CAS(nel,norb) # CAS-CI reference with nel electrons in

# Norb orbitals

#

# Second choice - restricted active space

#

RAS(nel: m1 h/ m2 / m3 p)

# RAS-reference with nel electrons

# m1= number orbitals in RAS-1

# h = max. number of holes in RAS-1

# m2= number of orbitals in RAS-2 (any number of

# electrons or holes)

# m3= number of orbitals in RAS-3

# p = max. number of particles in RAS-3

#

# Third choice - individually defined configurations

#

{ 2 0 1 0}
{ 1 1 1 0}

etc.

# define as many configurations as you want. Doubly occupied MOs

# singly occupied MOs and empty MOs. Important notes:

# a) the number of electrons must be the same in all references

# b) the number of orbitals is determined from the number of

# definitions. Thus, in the example above we have three active

# electrons and four active orbitals despite the fact that the

# highest orbital is not occupied in any reference.

# The program determines the internal, active and external spaces

# automatically from the number of active electrons and orbitals

end

end

# there can be as many blocks as you want!!!

# ----------------------------------

# Density matrix generation flags

# First Key= State densities <I|D|I>

# =0: none

# =1: Ground state only (lowest root of all blocks; Electron only)

# =2: Ground state only (Electron and spin density)

# =3: Lowest root from each block (Electron density)

# =4: Lowest root from each block (Electron and spin density)

# =5: All states (Electron density)

# =6: All states (Electron and spin density)

# Second Key= Transition densities <I|D|J>

# needed for all transition intensities, g-tensor etc

# =0: none

# =1: from the ground state into all excited states (el)
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# =2: from the ground state into all excited states (el+spin)

# =3: from all lowest states into all excited states (el)

# =4: from all lowest states into all excited states (el+spin)

# =5: all state pairs (el)

# =6: all state pairs (el+spin)

# Note that for perturbation theory the density is computed as

# an expectation value over the first (second) order wavefunction.

# which is renormalized for this purpose

# ----------------------------------

Densities 1,1

# ----------------------------------

# Complete printing of the wavefunction

# ----------------------------------

PrintWF 1 # CFG based printing (default)

det # Determinant based wavefunction printing

TPrintWF 3e-3 # Threshold for the printing of the CFGs/Dets

# ----------------------------------

# Algorithm for the solver

# ----------------------------------

Solver Diag # Davidson like solver

DIIS # DIIS like solver

# both solvers have their pros and cons. The DIIS may converge

# better or use less time since it only recomputes the vectors that

# have not yet converged; The DIIS may be less sensitive to root flipping

# effects but occasionally it converges poorly and states of the same

# symmetry are occasionally a little problematic

# For perturbation theory DIIS is always used.

# For both solvers

MaxIter 100 # the maximum number of iterations

Etol 1e-6 # convergence tolerance for energies in Eh

Rtol 1e-6 # convergence tolerance for residual

# For Solver=Diag (Davidson solver)

Otol 1e-16 # Orthogonality threshold for Schmidt process

NGuessMat 512 # Dimension of the guess matrix 512x512

# be used to compute the initial guess of the actual MRCI calculation

NGuessMatRefCI 512 # Dimension of the guess matrix

# for the reference CI

MaxDim 3 # Davidson expansion space = MaxDim * NRoots

# For the Solver=DIIS. Particularly recommended for anything else but

# straightforward CI and also for calculations in direct2 mode!

MaxDIIS 5 # Maximum number of old vectors to be used in DIIS

RelaxRefs true # Relax reference space coefficients in the CI or

# freeze them to their zeroth order values

LevelShift 0.4 # Level Shift for stabilizing the DIIS procedure

# ----------------------------------

# RI Approximation

# ----------------------------------

IntMode RITrafo #Use RI integrals

FullTrafo #No RI (default)

# ----------------------------------
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# Integral storage, memory and files

# ----------------------------------

IntStorage FloatVals

DoubleVals (default)

# store integrals with float (4 byte) or double (8 byte)

# accuracy in main memory

FourIndexInts false (default)

True

# Store ALL four index integrals over Mos in main memory

# only possible for relatively small systems, perhaps up

# to 150-200 MOs included in the CI

MaxMemInt 256

# Maximum amount of core memory devoted to the storage of

# integrals. If NOT all three index integrals fit into main

# memory the program fails

MaxMemVec 16

# Maximum amount of memory used for section of the trial and

# sigma vectors. This is not a particularly critical variable

KeepFiles false

# Keep integrals and CI program input file (.mrciinp). Then

# you can manually edit the .mrciinp file which is a standard

# ASCII file and run the MRCI program directly. The only thing

# you cannot change is the orbital window.

end

9.30.2 Properties Calculation Using the SOC Submodule

9.30.2.1 Zero-Field Splitting

The spin-orbit coupling (SOC) and spin-spin coupling (SSC) contributions to the zero-field splitting (ZFS)

can be calculated very accurately using a wavefunction obtained from a multiconfigurational calculation of a

multi-reference type such as CASSCF, MRCI, or MRPT in the form of:

∣∣ΨSS
I

〉
=
∑

µ
Cµl

∣∣ΦSSµ 〉 (9.308)

Here the upper indices SS stand for a wave function of the spin quantum number S and spin projection

MS = S. Since the BO Hamiltonian does not contain any complex-valued operator, the solutions
∣∣ΨSS

I

〉
may

be chosen to be real-valued.

The SOC and SSC effects along with the Zeeman interaction can be included by means of the quasi-degenerate

perturbation theory (QDPT). In this approach the SOC, the SSC, and the Zeeman operators are calculated

in the basis of pre-selected solutions of the BO Hamiltonian
{

ΨSM
I

}
.

〈
ΨSM
I

∣∣∣ĤBO + ĤSOC + ĤSSC + ĤZ

∣∣∣ΨS′M ′

J

〉
= δIJδSS′δMM ′E

(S)
I +

〈
ΨSM
I

∣∣∣ĤSOC + ĤSSC + ĤZ

∣∣∣ΨS′M ′

J

〉
(9.309)

Diagonalization of this matrix yields the energy levels and eigenvectors of the coupled states. These

eigenvectors in fact represent linear combinations of the solutions of ĤBO with complex coefficients.
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The effective one-electron SOC operator in second quantized form can be written as:

ĤSOMF =
1

2

∑
pq

z−pqâ
↑
pb̂q + z+

pq b̂
↑
pâq + z0

pq

[
â↑pâq − b̂↑pb̂q

]
(9.310)

Here â↑p and b̂↑p stand for creation of α and β electrons respectively; âp and b̂p represent the corresponding

annihilation operators. The matrix elements z−pq = zxpq − izypq, z+
pq = zxpq + izypq, and z0

pq = zzpq (upper x, y,

z indices denote the Cartesian components) are constructed from the matrix elements described in section

9.36.3.3.

The SSC Hamiltonian reads:

ĤSSC = −3g2
eα

2

8

∑
i6=j

∑
m=0,±1,±2

(−1)
m

r5
ij

[rij × rij ]
(2)
−m [S (i)× S (j)]

(2)

m

(9.311)

For matrix elements between states of the same multiplicity it can be simplified to

〈
aSM

∣∣∣ĤSSC

∣∣∣ a′SM ′〉 =

√
(S+1)(2S+3)√
S(2S−1)

×∑
m

(−1)
m

(
S′ 2

M ′ m

∣∣∣∣∣ SM
)∑

pqrsD
(−m)
pqrs

〈
aSS

∣∣Q0
pqrs

∣∣ a′SS〉 (9.312)

Here

Q(0)
pqrs =

1

4
√

6

{
Epqδsr − SzpsSzrq +

1

2

(
SzpqS

z
rs − EpqErs

)}
(9.313)

represents the two-electron quintet density. The operators Epq = â↑pâq + b̂↑pb̂q and Szpq = â↑pâq− b̂↑pb̂q symbolize

here the one-electron density operator and the spin density operator accordingly. The spatial part

D(0)
pqrs =

1√
6

∫∫
ϕp (r1)ϕr (r2)

3r1zr2z − r1r2

r5
12

ϕq (r1)ϕs (r2) dr1dr2 (9.314)

denotes the two-electron field gradient integrals. These two-electron integrals can be evaluated using the RI

approximation.

Finally, the Zeeman Hamiltonian is included in the form of:

ĤZ = µB

(
L̂ + geŜ

)
B (9.315)

with L̂ representing the total orbital momentum operator, and Ŝ being the total spin operator.

Since the both the energies and the wavefunction of the low-lying spin-orbit states are available, the effective

Hamiltonian theory can be used to extract EPR parameters such as the full G and/or ZFS tensors. In this

approach one starts by constructing a model Hamiltonian, which for the mononuclear complexes is:
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Ĥmod = ŜDŜ (9.316)

provided that the ground state is non-degenerate. By applying this Hamiltonian on the basis of the model

space, i.e. the |S,MS〉 components of the ground state, the interaction matrix is constructed.

The construction of effective Hamiltonian relies on the information contained in both the energies and the

wavefunctions of the low-lying spin-orbit states. Following des Cloizeaux formalism, the effective Hamiltonian

reproduces the energy levels of the “exact” Hamiltonian Ek and the wavefunctions of the low-lying states

projected onto the model space Ψ̃:

Ĥeff|Ψ̃k〉 = Ek|Ψ̃k〉 (9.317)

These projected vectors are then symmetrically orthonormalized resulting in an Hermitian effective Hamilto-

nian, which can be written as:

Ĥeff|Ψ̃〉 =
∑
k

|S− 1
2 Ψ̃k〉Ek〈S−

1
2 Ψ̃k| (9.318)

The effective interaction matrix obtained by expanding this Hamiltonian into the basis of determinants

belonging to the model space, is the compared to the matrix resulted from expanding the model Hamiltonian.

Based on a singular value decomposition procedure, all 9 elements of the G and/or ZFS tensors are extracted.

In the input file the relevant keys are located in the soc sub-block:

%mrci

soc

DoSOC true # include the SOC contribution

DoSSC true # include the SSC contribution

PrintLevel 2 # printing level

TPrint 0.01 # threshold for printing eigenvalue contributions

end

end

Firstly, the SSC contribution to ZFS is calculated. The output file for a CASCI calculation on top of a

CASSCF(8,6) reference of an oxygen molecule with def2-SVP basis set and four singlets and four triplet

states included into the QDPT treatment is presented as follows:

---------------------

SSC MATRIX GENERATION

---------------------

Blocks order: 1 0

Ground state mult 3

Ground state block 1
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Ground state root 0

Calculated reduced SSC matrix elements

BLOCKI(Mult) BLOCKJ(Mult) Root I Root J dxx dyy dzz dxy dxz dyz

1/cm 1/cm 1/cm 1/cm 1/cm 1/cm

1( 3) 1( 3) 0 0 -0.316899 -0.316899 0.633797 -0.000000 -0.000000 -0.000000

1( 3) 1( 3) 1 0 0.000000 0.000000 -0.000000 -0.000000 -0.000000 -0.000000

1( 3) 1( 3) 1 1 0.251010 0.251010 -0.502020 0.000000 -0.000000 -0.000000

1( 3) 1( 3) 2 0 -0.000000 -0.000000 0.000000 0.000000 -0.000000 -0.000000

1( 3) 1( 3) 2 1 -0.000000 0.000000 0.000000 0.000000 -0.000000 -0.000000

1( 3) 1( 3) 2 2 0.251010 0.251010 -0.502020 0.000000 -0.000000 -0.000000

1( 3) 1( 3) 3 0 -0.000000 0.000000 -0.000000 0.000000 -0.000000 -0.000000

1( 3) 1( 3) 3 1 -0.095105 0.095105 -0.000000 -0.010169 -0.000000 -0.000000

1( 3) 1( 3) 3 2 -0.010169 0.010169 -0.000000 0.095105 -0.000000 -0.000000

1( 3) 1( 3) 3 3 0.307060 0.307060 -0.614121 -0.000000 -0.000000 -0.000000

Next, the SSC matrix is constructed form the precalculated matrix elements and subjected to diagonalization.

The full SSC matrix is available with the PrintLevel key set to 3. Then, the SSC energy levels are printed

in cm−1 and eV along with the Boltzmann level populations.

Energy levels (cm-1,eV) : Boltzmann populations for T = : 300.000 K

0 : 0.000 0.0000 3.34e-01

1 : 0.951 0.0001 3.33e-01

2 : 0.951 0.0001 3.33e-01

3 : 7130.461 0.8841 4.71e-16

4 : 7130.996 0.8841 4.69e-16

5 : 13306.276 1.6498 6.45e-29

6 : 46916.451 5.8169 6.38e-99

7 : 48790.859 6.0493 7.95e-103

8 : 48790.859 6.0493 7.95e-103

9 : 48790.859 6.0493 7.95e-103

10 : 48790.859 6.0493 7.95e-103

11 : 48791.612 6.0494 7.93e-103

12 : 48791.612 6.0494 7.93e-103

13 : 49948.158 6.1928 3.09e-105

14 : 49948.158 6.1928 3.09e-105

15 : 49949.079 6.1929 3.08e-105

Additionally, the eigenvectors of the SSC matrix are printed if the PrintLevel key is set to 2:

Eigenvectors :

The threshold for printing is 0.0100000

Weight Real Image : Block Root Spin Ms

STATE 0 : 0.00

1.000000 0.999398 -0.034683 : 1 0 1 0

STATE 1 : 0.95
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0.490154 -0.700086 -0.005795 : 1 0 1 1

0.509846 0.714011 0.005862 : 1 0 1 -1

STATE 2 : 0.95

0.509846 0.714010 -0.005997 : 1 0 1 1

0.490154 0.700085 -0.005927 : 1 0 1 -1

STATE 3 : 7130.24

1.000000 1.000000 -0.000000 : 0 0 0 0

STATE 4 : 7130.77

1.000000 1.000000 -0.000000 : 0 1 0 0

The SSC coupled states are counted here from the lowest one, and the energy of a state is printed in cm−1.

The “Weight” column represents here squared absolute values of the complex contribution coefficients of

the BO Hamiltonian states to the SSC coupled states. “Real” and “Image” are real and imaginary parts of

complex coefficients. Accordingly, “Root”, “Spin”, and “Ms” denote here the spin quantum number and

the spin projection number of a particular contribution. The column “Block” represent the symmetry block

number. Note that the program re-aranges blocks from the oder given in the input file.

Next, the SSC contribution to the ZFS obtained with first-order perturbation theory is printed along with

the D values and the E/D ratio.

---------------------------------

ZERO-FIELD SPLITTING

(SPIN-SPIN COUPLING CONTRIBUTION)

---------------------------------

raw-matrix (cm**-1):

-0.316896 -0.000000 -0.000000

-0.000000 -0.316896 -0.000000

-0.000000 -0.000000 0.633791

diagonalized D-tensor (cm**-1):

-0.316896 -0.316896 0.633791

0.000000 1.000000 0.000000

1.000000 0.000000 0.000000

0.000000 0.000000 1.000000

D = 0.950687 cm**-1

E/D = 0.000000

The eigenvectors are printed as columns for a given eigenvalue. The first vector corresponds to x, the second

to y and the last to z in the magnetic axis frame of the molecule. The magnetic axis are assigned such that

the following condition holds

0 6 E /D 6
1

3
. (9.319)
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Next, the SOC part to the splitting is calculated. Firstly, the diagonal (with respect to the spin) matrix

element type of 〈ΨI |
∑
pq

zxpqS
z
pq |ΨJ〉, 〈ΨI |

∑
pq

zypqS
z
pq |ΨJ〉, 〈ΨI |

∑
pq

zzpqS
z
pq |ΨJ〉 are evaluated between states

of the same multiplicity and 〈ΨI |
∑
pq

zxpqS
+
pq |ΨJ〉, 〈ΨI |

∑
pq

zypqS
+
pq |ΨJ〉, 〈ΨI |

∑
pq

zzpqS
+
pq |ΨJ〉 between states of

different multiplicities.

Calculated reduced SOC matrix elements

BLOCKI(Mult) BLOCKJ(Mult) Root I Root J <I|Lx S |J> <I|Ly S |J> <I|Lz S |J>

1/cm 1/cm 1/cm

0( 3) 0( 3) 0 0 -0.00 0.00 -0.00

0( 3) 0( 3) 1 0 -0.00 0.00 -0.00

0( 3) 0( 3) 1 1 -0.00 -0.00 -0.00

0( 3) 0( 3) 2 0 -0.00 -0.00 -0.00

0( 3) 0( 3) 2 1 -0.00 0.00 -289.98

0( 3) 0( 3) 2 2 -0.00 -0.00 -0.00

0( 3) 0( 3) 3 0 0.00 -0.00 -0.00

0( 3) 0( 3) 3 1 0.00 -0.00 0.00

0( 3) 0( 3) 3 2 0.00 -0.00 0.00

0( 3) 0( 3) 3 3 -0.00 -0.00 -0.00

0( 3) 1( 1) 0 0 -0.00 0.00 -0.00

0( 3) 1( 1) 0 1 -0.00 0.00 -0.00

0( 3) 1( 1) 0 2 -0.00 0.00 -225.16

0( 3) 1( 1) 0 3 0.00 0.00 0.00

0( 3) 1( 1) 1 0 -0.00 0.00 0.00

0( 3) 1( 1) 1 1 0.00 0.00 -0.00

0( 3) 1( 1) 1 2 0.00 0.00 0.00

0( 3) 1( 1) 1 3 -0.00 0.00 -0.00

0( 3) 1( 1) 2 0 0.00 0.00 -0.00

0( 3) 1( 1) 2 1 0.00 -0.00 -0.00

0( 3) 1( 1) 2 2 -0.00 0.00 -0.00

0( 3) 1( 1) 2 3 0.00 -0.00 0.00

0( 3) 1( 1) 3 0 0.00 -0.00 0.00

0( 3) 1( 1) 3 1 -0.00 -0.00 -0.00

0( 3) 1( 1) 3 2 -0.00 -0.00 0.00

0( 3) 1( 1) 3 3 0.00 -0.00 205.22

The full SOC matrix elements can be printed if the PrintLevel key is set to 3. Similar to the SSC contribution,

the SOC energies are printed next.

Energy levels (cm-1,eV) : Boltzmann populations for T = : 300.000 K

0 : 0.000 0.0000 3.35e-01

1 : 1.905 0.0002 3.32e-01

2 : 1.905 0.0002 3.32e-01

3 : 7130.930 0.8841 4.71e-16

4 : 7131.465 0.8842 4.70e-16

5 : 13308.646 1.6501 6.39e-29

6 : 46856.467 5.8095 8.53e-99

7 : 48646.630 6.0314 1.59e-102

8 : 48646.630 6.0314 1.59e-102

9 : 48791.619 6.0494 7.95e-103

10 : 48791.619 6.0494 7.95e-103

11 : 48936.608 6.0674 3.97e-103
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12 : 48936.608 6.0674 3.97e-103

13 : 49948.972 6.1929 3.09e-105

14 : 49948.972 6.1929 3.09e-105

15 : 49955.781 6.1937 2.99e-105

The eigenvectors of the SOC matrix are provided along with contributions from roots S, and Ms.

Eigenvectors :

The threshold for printing is 0.0100000

Weight Real Image : Block Root Spin Ms

STATE 0 : 0.00

0.999857 -0.000000 -0.999928 : 0 0 1 0

STATE 1 : 1.90

0.464214 -0.228955 0.641711 : 0 0 1 1

0.535786 0.154270 -0.715533 : 0 0 1 -1

STATE 2 : 1.90

0.535786 0.730198 0.050967 : 0 0 1 1

0.464214 0.680079 -0.041312 : 0 0 1 -1

STATE 3 : 7130.93

1.000000 1.000000 -0.000000 : 1 0 0 0

STATE 4 : 7131.46

1.000000 -1.000000 0.000000 : 1 1 0 0

Next, the SOC contribution to the ZFS obtained with second-order perturbation theory is printed along with

the D values and the E/D ratio.

----------------------------------

ZERO-FIELD SPLITTING

(SPIN-ORBIT COUPLING CONTRIBUTION)

----------------------------------

raw-matrix (cm**-1):

0.000000 -0.000000 -0.000000

-0.000000 0.000000 0.000000

-0.000000 0.000000 1.905043

diagonalized D-tensor (cm**-1):

0.000000 0.000000 1.905043

0.889614 0.456713 -0.000000

-0.456713 0.889614 0.000000

0.000000 0.000000 1.000000
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Direction X=1 Y=0 Z=2

D = 1.905043 cm**-1

E/D = 0.000000

Independent state contribution to the ZFS is printed if PrintLevel is set to 3.

Individual contributions to D tensor:

block Mult root D E

0 3 0 0.000 0.000

0 3 1 -0.000 0.000

0 3 2 -0.000 -0.000

0 3 3 -0.000 -0.000

1 1 0 0.000 0.000

1 1 1 0.000 -0.000

1 1 2 1.905 0.000

1 1 3 0.000 0.000

From this example is readily seen that the whole contribution to the SOC part of D-value comes from the

interaction between the ground state and the singlet third root.

The ZFS tensor based on the effective Hamiltonian theory is printed next.

--------------------------------------------------------

ZERO-FIELD SPLITTING

(EFFECTIVE HAMILTONIAN SPIN-ORBIT COUPLING CONTRIBUTION)

--------------------------------------------------------

raw-matrix (cm**-1):

-0.000000 0.000000 -0.000000

0.000000 0.000000 -0.000000

-0.000000 -0.000000 1.904771

diagonalized D-tensor (cm**-1):

-0.000000 0.000000 1.904771

0.756590 -0.653889 -0.000000

-0.653889 -0.756590 -0.000000

0.000000 -0.000000 1.000000

Direction X=1 Y=0 Z=2

D = 1.904771 cm**-1

E/D = 0.000000

Finally, all these steps described above are repeated for the combined SOC and SSC matrix.

The diagonal matrix elements of the SOC and SSC matrix which correspond to non-relativistic energies can

be replaced by more accurate values. In the output of the program the corresponding transition energies

printed in cm−1.
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# In case that you want to run QDPT-SOC calculation with manually

#adjusted diagonal energies you can copy the following part into

#the %mrci soc block

#and modify it as needed(energies are given in

#wavenumbers relative to the lowest state)

# NOTE: It is YOUR responsibility to make sure that the CAS-CI state

#that you may want to dress with these energies correlate properly

#with the energies printed here. The order of states or even the

#identity of states may change with and without inclusion of

#dynamic correlation In the case that dynamic correlation strongly

#mixes different CAS-CI states there may not even be a proper

#correlation!

#

EDiag[ 0] 0.00 # root 0 of block 0

EDiag[ 1] 48328.40 # root 1 of block 0

EDiag[ 2] 48328.40 # root 2 of block 0

EDiag[ 3] 49334.96 # root 3 of block 0

EDiag[ 4] 7763.59 # root 0 of block 1

EDiag[ 5] 7763.59 # root 1 of block 1

EDiag[ 6] 11898.46 # root 2 of block 1

EDiag[ 7] 46754.23 # root 3 of block 1

Those transition energies can be substituted by a more accurate energies provided in the input file as follows:

%soc

dosoc true

dossc true

EDiag[ 0] 0.00 # root 0 of block 0

EDiag[ 1] 48328.40 # root 1 of block 0

EDiag[ 2] 48328.40 # root 2 of block 0

EDiag[ 3] 49334.96 # root 3 of block 0

EDiag[ 4] 7763.59 # root 0 of block 1

EDiag[ 5] 7763.59 # root 1 of block 1

EDiag[ 6] 11898.46 # root 2 of block 1

EDiag[ 7] 46754.23 # root 3 of block 1

end

Accurate diagonal energies generally improve the accuracy of the SOC and SSC splittings.

9.30.2.2 Local Zero-Field Splitting

The submodule can also be used to calculate the local ZFS splitting parameters of atomic centers. The

method, referred to as local complete active space configuration interaction (L-CASCI), can be used to

separate into atomic contributions the SOC part of the total ZFS tensor. The rational behind it and additional

details are described in the original publication [494]; below are listed only the steps required to reproduce

the calculation for the dimer complex presented there.

1. The first step consists in obtaining the molecular orbitals that are going to be used in the configuration

interaction (CI) procedure. A good set of orbitals can be obtained from a restricted open-shell spin-averaged

Hartree-Fock (SAHF) calculation. The relevant part of the input is listed below:
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! def2-tzvp keepfock

% scf

hftyp rohf

rohf_case sahf

rohf_numop 2

rohf_nel[1] 9

rohf_norb[1] 10

end

For the present Mn(II)Mn(III) dimer there are a total of 9 electrons distributed into 10 d-orbitals.

2. Next, the molecular orbitals are localized using one of the implemented localization schemes. Below is the

orca loc input used in this case:

sahf.gbw

sahf.loc

0

200 # first of the 10 d-orbitals

209 # last of the 10 d-orbitals

128

0.000001

0.75

0.65

2

3. Following this, the localized orbitals are made locally canonical by block diagonalizing the Fock matrix

using the orca blockf utility.

orca_blockf sahf.fsv sahf.loc 200 204 205 209

The first two numbers define the range of molecular orbitals localized on one center; the last two are for the

second center.

4. The recanonicalized orbitals stored in the sahf.loc file can be then used to calculate the SOC contribution

to the local ZFS of the Mn(III) center using the following MRCI input:

! zora-def2-tzvp def2-tzvp/c zora

! nomulliken noloewdin

! moread noiter allowrhf

! moread

% mrci
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citype mrci

tsel 0

tpre 0

intmode ritrafo

solver diis

soc

intmode ritrafo

dosoc true

end

newblock 10 *

nroots 5

excitations none

refs

# Mn(II) Mn(III)

{1 1 1 1 1 1 1 1 1 0}
{1 1 1 1 1 1 1 1 0 1}
{1 1 1 1 1 1 1 0 1 1}
{1 1 1 1 1 1 0 1 1 1}
{1 1 1 1 1 0 1 1 1 1}
end

end

newblock 8 *

nroots 45

excitations none

refs

# Mn(II) Mn(III)

{1 1 1 1 1 2 1 1 0 0}
{1 1 1 1 1 2 1 0 1 0}
{1 1 1 1 1 2 1 0 0 1}
{1 1 1 1 1 2 0 1 1 0}
{1 1 1 1 1 2 0 1 0 1}
{1 1 1 1 1 2 0 0 1 1}
{1 1 1 1 1 1 2 1 0 0}
{1 1 1 1 1 1 2 0 1 0}
{1 1 1 1 1 1 2 0 0 1}
{1 1 1 1 1 1 1 2 0 0}
{1 1 1 1 1 1 1 1 1 0}
{1 1 1 1 1 1 1 1 0 1}
{1 1 1 1 1 1 1 0 2 0}
{1 1 1 1 1 1 1 0 1 1}
{1 1 1 1 1 1 1 0 0 2}
{1 1 1 1 1 1 0 2 1 0}
{1 1 1 1 1 1 0 2 0 1}
{1 1 1 1 1 1 0 1 2 0}
{1 1 1 1 1 1 0 1 1 1}
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{1 1 1 1 1 1 0 1 0 2}
{1 1 1 1 1 1 0 0 2 1}
{1 1 1 1 1 1 0 0 1 2}
{1 1 1 1 1 0 2 1 1 0}
{1 1 1 1 1 0 2 1 0 1}
{1 1 1 1 1 0 2 0 1 1}
{1 1 1 1 1 0 1 2 1 0}
{1 1 1 1 1 0 1 2 0 1}
{1 1 1 1 1 0 1 1 2 0}
{1 1 1 1 1 0 1 1 1 1}
{1 1 1 1 1 0 1 1 0 2}
{1 1 1 1 1 0 1 0 2 1}
{1 1 1 1 1 0 1 0 1 2}
{1 1 1 1 1 0 0 2 1 1}
{1 1 1 1 1 0 0 1 2 1}
{1 1 1 1 1 0 0 1 1 2}
end

end

end

5. The three second order ZFS components printed at the end of the calculation (Second order D-tensor:

component 0, etc.) are scaled using the S value for the complex, which in this case is 4.5 (9 electrons × 0.5).

In order to obtain the correct local value of the ZFS, the three matrices have to be rescaled using the S value

for Mn(III), which is to 2. Note that the three matrices have different scaling prefactors, and the dependence

on S is not the same:

DSOC−(0) ∝ 1
S2

DSOC−(−1) ∝ 1
S(2S−1)

DSOC−(+1) ∝ 1
(S+1)(2S+1)

These equations can be used to calculate the required prefactors. For example in the case of the SOC -(0) the

prefactor is equal to:

D
SOC−(0)
Mn(III) = 4.52

22 ·DSOC−(0)
dimer = 5.0625 ·DSOC−(0)

dimer

The final step is to scale the two remaining matrices using the appropriate prefactors, sum all three of them

up, diagonalize the resulting the matrix, and use its eigenvalues to calculate the D and E parameters. These

represent the local ZFS parameters of the Mn(III) center.

9.30.2.3 g-Tensor

The orca mrci program contains an option to calculate g-tensors using MRCI wavefunctions. For a system

with an odd number of electrons, the doubly degenerate eigenvalues obtained from the QDPT procedure

represent Kramers pairs, which are used to build the matrix elements of the total spin operator and the total
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angular momentum operator from the Zeeman Hamiltonian. Denoting Ψ as a solution and Ψ̄ as its Kramers

partner and using matrix element notations

Φk11 = 〈Ψ| L̂k + geŜk |Ψ〉 , Φk12 = 〈Ψ| L̂k + geŜk
∣∣Ψ̄〉 , k = x, y, z (9.320)

The elements of g-matrix are obtained as:

gkz = 2Φk11, gky = −2=
(
Φk12

)
, gkx = 2<

(
Φk12

)
(9.321)

Then, the true tensor G is built from g-matrices:

G = ggT (9.322)

G is subjected further to diagonalization yielding positive eigenvalues, the square roots of which give the

principal values of g-matrix.

gxx =
√
Gxx, gyy =

√
Gyy, gzz =

√
Gzz (9.323)

A typical mrci block of the input file for a g-tensor calculation should (e.g. for a S=3/2 problem) look as the

following:

%mrci ewin -4,1000

citype mrci

cimode direct2

intmode fulltrafo

solver diis

etol 1e-8

rtol 1e-8

tsel 1e-6

tpre 1e-5

soc

PrintLevel 2

GTensor true # make g-tensor calculations

NDoubGTensor 2 # number of Kramers doublets to account

# for every pair a separate

# calculation is performed

end

newblock 4 *

excitations cisd

nroots 10

refs cas(7,5) end

end

end
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The result for the first Kramers pair is printed as follows:

--------------

KRAMERS PAIR 1

--------------

Matrix elements Re<1|S|1> -0.072128 0.024511 -2.998843

Matrix elements Re<1|S|2> -0.001088 0.000366 -0.002010

Matrix elements Im<1|S|2> -0.000354 -0.001037 -0.000173

Matrix elements Re<1|L|1> -0.027067 0.009209 -1.123531

Matrix elements Re<1|L|2> -0.000031 0.000010 -0.000763

Matrix elements Im<1|L|2> -0.000006 -0.000011 -0.000065

-------------------

ELECTRONIC G-MATRIX

-------------------

g-matrix:

-0.002240 0.000754 -0.005551

0.000720 0.002100 0.000477

-0.198556 0.067498 -8.251703

g-factors:

0.002220 0.002222 8.254370 iso = 2.752937

g-shifts:

-2.000100 -2.000098 6.252051 iso = 0.750618

Eigenvectors:

0.057426 0.998060 0.024055

0.998327 -0.057244 -0.008177

0.006784 -0.024484 0.999677

Here for the L and S matrix elements indices 1 and 2 are assumed to denote Kramers partners, and three

numbers in the first row stand for x, y, z contributions.

In addition the g-tensor is calculated within the Effective Hamiltonian formalism.

----------------------------------------------

ELECTRONIC G-MATRIX FROM EFFECTIVE HAMILTONIAN

----------------------------------------------

g-matrix:

1.978874 -0.000345 0.018908

-0.000345 1.977899 -0.006433

0.018879 -0.006418 2.763402

g-factors:

1.977789 1.978477 2.763909 iso = 2.240058

g-shifts:

-0.024530 -0.023843 0.761590 iso = 0.237739

Eigenvectors:

0.288884 0.957062 0.024060
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0.957364 -0.288770 -0.008181

0.000882 -0.025397 0.999677

# The g-factors are square roots of the eigenvalues of gT*g

# Orientations are the eigenvectors of gT*g

Finally and only within the MRCI module the g-tensor is evaluated by using the Sum Over States formalism

[495]:

---------------------------------------------------------------------------

SUM OVER STATES CALCULATION OF THE SPIN HAMILTONIAN (for g and HFC tensors)

---------------------------------------------------------------------------

Ground state index = 0

Ground state multiplicity = 4

Ground state spin density = P[ 1]

State = 1 <0|P|I>= 2 <0|Q|I>= 19

State = 2 <0|P|I>= 3 <0|Q|I>= 27

State = 3 <0|P|I>= 4 <0|Q|I>= 34

State = 4 <0|P|I>= 5 <0|Q|I>= 40

State = 5 <0|P|I>= 6 <0|Q|I>= 45

State = 6 <0|P|I>= 7 <0|Q|I>= 49

State = 7 <0|P|I>= 8 <0|Q|I>= 52

State = 8 <0|P|I>= 9 <0|Q|I>= 54

State = 9 <0|P|I>= 10 <0|Q|I>= 55

Origin for angular momentum ... ( -0.0006, -0.0010, 0.0021)

Kinetic Energy ... done

Relativistic mass correction ... done

Gauge correction ... done

Angular momentum integrals ... done

Reading Spin-Orbit Integrals ... done

-----------------------

MATRIX ELEMENT PRINTING

-----------------------

Energy differences (DE=EI-E0) and spin-orbit matrix elements (SO=<I|HSO|0>) are

printed in cm**-1. Orbital Zeeman matrix elements (L=<I|L|0>) are printed in au.

State DE LX LY LZ SOX SOY SOZ

1 1349.3 0.0464 -0.0158 1.9264 -23.432 7.965 -974.312

2 13026.2 -0.6596 0.6888 0.0214 337.028 -351.116 -10.966

3 13615.1 -0.6961 -0.6514 0.0113 354.225 332.219 -5.736

4 56686.3 -0.0053 0.0077 0.0971 1.794 -1.696 -36.786

5 56954.2 -0.0516 -0.0048 -0.0042 28.211 5.821 1.459

6 56994.0 -0.0418 0.0233 -0.0025 15.185 -2.144 1.145

7 63371.5 -0.0211 0.0226 0.0078 3.833 -2.948 -2.724

8 64176.0 -0.0652 0.0032 -0.0002 32.779 6.146 0.063

9 74309.9 -0.0007 0.0032 0.0380 0.183 -1.058 -13.517

-------------------

ELECTRONIC G-MATRIX

-------------------
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raw-matrix :

2.025533 -0.000738 0.021755

-0.000738 2.024537 -0.007389

0.021755 -0.007389 2.928943

g-factors:

2.024122 2.025363 2.929527 iso = 2.326338

g-shifts:

0.021803 0.023044 0.927208 iso = 0.324018

Eigenvectors:

0.533896 -0.845208 0.024064

0.845530 0.533866 -0.008182

-0.005932 0.024715 0.999677

Euler angles w.r.t. molecular frame (degrees):

-76.5038 1.4564 -161.2223

-----------------------------

CONTRIBUTIONS TO THE G-MATRIX

-----------------------------

Term g1 g2 g3

--------------------------------------------------------------------

Relativistic mass correction: -0.0008220 -0.0008220 -0.0008220

Gauge correction : 0.0000000 0.0000000 0.0000000

g(OZ/SOC) : 0.0226250 0.0238662 0.9280297

State 1 : 0.0000000 -0.0000000 0.9279829

State 2 : 0.0013767 0.0223913 0.0000000

State 3 : 0.0212332 0.0014408 0.0000000

State 4 : 0.0000000 0.0000004 0.0000418

State 5 : 0.0000074 0.0000099 0.0000001

State 6 : 0.0000002 0.0000078 0.0000001

State 7 : 0.0000000 0.0000015 0.0000002

State 8 : 0.0000076 0.0000144 0.0000000

State 9 : 0.0000000 0.0000000 0.0000046

-----------------------------------------

Total g-shifts : 0.0218030 0.0230442 0.9272077

# The g-factors are square roots of the eigenvalues of gT*g

# Orientations are the eigenvectors of gT*g

Note that within the SOS formalism in addition to the second order (SOC) contributions the bilinear to

the field terms: Relativistic mass correction and diamagnetic spin-orbit term (Gauge) are evaluated. As

can be seen these corrections are rather negligible in comparison to the second order SOC contributions

and most of the time can be safely omitted. Moreover further insight is obtained by printing the individual

contribution of each excited state to the g-tensor. In the example above the first excited state contributes to

the gz component while the next two to both the gx and gy components, respectively.

So to summarize the g-tensor calculations in the framework of wavefunction based methods like MRCI and/or
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CASSCF can be evaluated:

• via the QDPT approach within an individual Kramers doublet. This is valid analysis only for non-

integer spin cases. In particular for systems with well isolated Kramers doublets where the EPR

spectrum originates only from one Kramers doublet defined within the pseudo spin 1/2 formalism.

This analysis has been proven useful in determining the sign of the ZFS and the electronic structure of

the system under investigation. [496]

• within the effective Hamiltonian approach. This is a valid analysis for all spin cases as it provides

the principal g-values of the system under investigation evaluated in the molecular axis frame. These

g-values can be directly compared with the experimentally determined ones. [497]

• within the sum over states formalism (SOS). As above this analysis is valid for all spin cases and is

only available via the MRCI module.

9.30.2.4 Magnetization and Magnetic Susceptibility

The MRCI and CASSCF modules of ORCA allow for the calculation of magnetization and magnetic

susceptibility curves at different fields and temperatures by differentiation of the QDPT Hamiltonian with

respect to the magnetic field. For magnetic susceptibility, calculations are performed in two ways when a

static field different from zero is defined: (i) as the second derivative of energy with respect to the magnetic

field and (ii) as the magnetization divided by the magnetic field. Although the first method corresponds to

the definition of magnetic susceptibility, the second approach is widely used in the experimental determination

of χ ∗ T curves. If the static field is low, both formulas tend to provide similar values.

The full list of keywords is presented below.

%mrci

citype mrci

newblock 3 *

excitations none

refs cas(2,7) end

end

soc

dosoc true

domagnetization true # Calculate magnetization (def: false)

dosusceptibility true # Calculate susceptiblity (def: false)

LebedevPrec 5 # Precision of the grid for different field

# directions (meaningful values range from 1

# (smallest) to 10 (largest))

nPointsFStep 5 # number of steps for numerical differentiation

# (def: 5, meaningful values are 3, 5 7 and 9)

MAGFieldStep 100.0 # Size of field step for numerical differentiation

# (def: 100 Gauss)

MAGTemperatureMIN 4.0 # minimum temperature (K) for magnetization

MAGTemperatureMAX 4.0 # maximum temperature (K) for magnetization
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MAGTemperatureNPoints 1 # number of temperature points for magnetization

MAGFieldMIN 0.0 # minimum field (Gauss) for magnetization

MAGFieldMAX 70000.0 # maximum field (Gauss) for magnetization

MAGNpoints 15 # number of field points for magnetization

SUSTempMIN 1.0 # minimum temperature (K) for susceptibility

SUSTempMAX 300.0 # maximum temperature (K) for susceptibility

SUSNPoints 300 # number of temperature points for susceptibility

SUSStatFieldMIN 0.0 # minimum static field (Gauss) for susceptibility

SUSStatFieldMAX 0.0 # maximum static field (Gauss) for susceptibility

SUSStatFieldNPoints 1 # number of static fields for susceptibility

end

end

The same keywords apply for CASSCF calculations in rel block (instead of soc in MRCI). Although different

aspects of integration and grid precision can be modified through keywords, default values should provide an

accurate description of both properties. Calculated magnetization and susceptibility are printed in .sus and

.mag files, respectively and also in the output file.

-------------------------------------------------------------------------------

FIELD DEPENDENT MAGNETIZATION AND MEAN SUSCEPTIBILITY (chi=M/B)

-------------------------------------------------------------------------------

TEMPERATURE (K) M. FIELD (Gauss) MAGNETIZATION (B.M.) chi*T (cm3*K/mol)

-------------------------------------------------------------------------------

4.00 0.00 0.000000 inf

4.00 5000.00 0.350759 1.567189

4.00 10000.00 0.688804 1.538788

4.00 15000.00 1.003466 1.494496

4.00 20000.00 1.287480 1.438115

4.00 25000.00 1.537346 1.373773

4.00 30000.00 1.752841 1.305282

4.00 35000.00 1.936067 1.235764

4.00 40000.00 2.090450 1.167516

4.00 45000.00 2.219920 1.102067

4.00 50000.00 2.328368 1.040315

4.00 55000.00 2.419335 0.982690

4.00 60000.00 2.495883 0.929301

4.00 65000.00 2.560582 0.880052

4.00 70000.00 2.615538 0.834730

-----------------------------------------------------------

-----------------------------------------------------------

TEMPERATURE DEPENDENT MAGNETIC SUSCEPTIBILITY

-----------------------------------------------------------

STATIC FIELD TEMPERATURE chi*T (cm3*K/mol)

(Gauss) (K) M/B d2E/dB2

-----------------------------------------------------------

0.00 1.00 ---- 1.576836

0.00 2.00 ---- 1.576910



9.30 The Multireference Correlation Module 749

0.00 3.00 ---- 1.576951

0.00 4.00 ---- 1.576988

0.00 5.00 ---- 1.577023

0.00 6.00 ---- 1.577057

0.00 7.00 ---- 1.577091

0.00 8.00 ---- 1.577125

0.00 9.00 ---- 1.577159

0.00 10.00 ---- 1.577193

0.00 11.00 ---- 1.577227

.....

0.00 300.00 ---- 1.586942

1000.00 1.00 1.570517 1.558042

1000.00 2.00 1.575324 1.572178

1000.00 3.00 1.576246 1.574845

1000.00 4.00 1.576590 1.575802

1000.00 5.00 1.576768 1.576264

1000.00 6.00 1.576880 1.576530

1000.00 7.00 1.576961 1.576704

1000.00 8.00 1.577026 1.576829

.....

9.30.2.5 MCD and Absorption Spectra

The MRCI module of the ORCA program allows calculating MCD spectra and the SOC effects on absorption

spectra. The formalism is described in detail by Ganyushin and Neese [498]. The approach is based on the

direct calculation of the transition energies and transition probabilities between the magnetic levels. Namely,

the differential absorption of LCP- and RCP photons for transitions from a manifold of initial states A to a

manifold of final states J . Using Fermi’s golden rule, the Franck-Condon approximation, assuming a pure

electronic dipole mechanism and accounting for the Boltzmann populations of the energy levels, the basic

equation of MCD spectroscopy may be written as (atomic units are used throughout):

∆ε

E
= γ

∑
a,j

(Na −Nj)
(
|〈Ψa |mLCP|Ψj〉|2 − |〈Ψa |mRCP|Ψj〉|2

)
f (E) (9.324)

Here a and j label members of the initial and state manifold probed in the experiments.

Na (B, T ) =
exp (−Ea/kT )∑
i

exp (−Ei/kT )
(9.325)

denotes the Boltzmann population and if the a-th ground state sublevel at energy Ea, f (E) stands for a line

shape function, and γ denotes a collection of constants. The electric dipole operators are given by:

mLCP ≡ mx − imy (9.326)

mRCP ≡ mx + imy (9.327)
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They represent linear combinations of the dipole moment operator:

~m =
∑
N

ZN ~RN −
∑
i

~ri (9.328)

where N and i denotes summations of nuclei (at positions ~RN with charges ZN ) and electrons (at positions

~ri) respectively. The calculated transition dipole moment are subjected to the space averaging over the Euler

angles which is performed by a simple summation over three angular grids.

(
∆ε

E

)
ev

=
1

8π2

2π∫
ψ=0

2π∫
φ=0

π∫
θ=0

(
∆ε

E

)
sin θdθdφdψ ≈

∑
µητ

(
∆ε

E

)
µητ

sin θτ (9.329)

Finally, every transition is approximated by a Gaussian curve with a definite Gaussian shape width parameter.

Hence, the final calculated MCD spectrum arises from the superposition of these curves.

As an illustration, consider calculation of a classical example of MCD spectrum of [Fe(CN)6]3−. The mrci

block of the input file is presented below.

%mrci ewin -4,10000

citype mrddci2

intmode ritrafo

Tsel 1e-6

Tpre 1e-5

etol 1e-8

rtol 1e-8

cimode direct2

maxmemint 300

solver diis

davidsonopt 0

nguessmat 150

MaxIter 50

LevelShift 0.5

PrintLevel 3

soc

printlevel 3

mcd true # perform the MCD calculation

NInitStates 24 # number of SOC and SSC state to account

# Starts from the lowest state

NPointsTheta 10 # number of integration point for

NPointsPhi 10 # Euler angles

NPointsPsi 10 #

B 43500 # experimental magnetic field strength

# in Gauss

Temperature 299.0 # experimental temperature (in K)
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end

newblock 2 *

nroots 12

excitations cisd

refs cas(23,12) end

end

end

The parameters B and Temperature can be assigned in pairs, i.e. B = 1000, 2000, 3000. . . , Temperature = 4,

10, 300. . . . The program calculates the MCD and absorption spectra for every pair. Now for every point

of the integration grid the program prints out the Euler angles, the orientation of the magnetic field in the

coordinate system of a molecule, and the energy levels.

Psi = 36.000 Phi = 72.000 Theta = 20.000

Bx = 8745.0 By = 12036.5 Bz = 40876.6

Energy levels (cm-1,eV):Boltzmann populations for T = 299.000 K

0 : 0.000 0.0000 4.53e-01

1 : 3.943 0.0005 4.45e-01

2 : 454.228 0.0563 5.09e-02

3 : 454.745 0.0564 5.08e-02

4 : 1592.142 0.1974 2.13e-04

5 : 1595.272 0.1978 2.10e-04

6 : 25956.363 3.2182 2.59e-55

7 : 25958.427 3.2184 2.56e-55

8 : 25985.656 3.2218 2.25e-55

9 : 25987.277 3.2220 2.23e-55

10 : 26070.268 3.2323 1.49e-55

11 : 26071.484 3.2325 1.49e-55

12 : 31976.645 3.9646 6.78e-68

13 : 31979.948 3.9650 6.67e-68

14 : 32018.008 3.9697 5.56e-68

15 : 32021.074 3.9701 5.48e-68

16 : 32153.427 3.9865 2.90e-68

17 : 32157.233 3.9870 2.84e-68

18 : 42299.325 5.2444 1.81e-89

19 : 42303.461 5.2450 1.78e-89

20 : 42346.521 5.2503 1.45e-89

21 : 42348.023 5.2505 1.44e-89

22 : 42456.119 5.2639 8.53e-90

23 : 42456.642 5.2640 8.51e-90

In the next lines, ORCA calculates the strength of LCP and RCP transitions and prints the transition energies,

the difference between LCP and RCP transitions (denoted as C), and sum of LCP and RCP transitions
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(denoted as D), and C by D ratio.

dE Na C D C/D

0 -> 1 3.943 4.53e-01 1.14e-13 8.13e-13 0.00e+00

0 -> 2 454.228 4.53e-01 5.01e-09 9.90e-09 5.06e-01

0 -> 3 454.745 4.53e-01 -4.65e-09 7.00e-09 -6.65e-01

0 -> 4 1592.142 4.53e-01 -8.80e-08 1.02e-07 -8.67e-01

0 -> 5 1595.272 4.53e-01 -2.29e-08 2.97e-08 -7.71e-01

0 -> 6 25956.363 4.53e-01 1.22e+01 9.60e+01 1.27e-01

0 -> 7 25958.427 4.53e-01 3.44e+01 3.52e+01 9.77e-01

0 -> 8 25985.656 4.53e-01 3.83e+01 1.70e+02 2.25e-01

0 -> 9 25987.277 4.53e-01 -7.73e+00 6.03e+01 -1.28e-01

0 ->10 26070.268 4.53e-01 -6.11e+00 2.85e+01 -2.14e-01

0 ->11 26071.484 4.53e-01 6.17e+00 9.21e+00 6.70e-01

0 ->12 31976.645 4.53e-01 2.45e+01 6.21e+01 3.95e-01

0 ->13 31979.948 4.53e-01 -6.58e+01 6.93e+01 -9.50e-01

0 ->14 32018.008 4.53e-01 3.42e-01 1.07e+02 3.21e-03

0 ->15 32021.074 4.53e-01 -6.16e+00 3.24e+01 -1.90e-01

0 ->16 32153.427 4.53e-01 -4.73e+01 1.37e+02 -3.46e-01

0 ->17 32157.233 4.53e-01 -1.02e+00 5.97e+01 -1.71e-02

0 ->18 42299.325 4.53e-01 6.47e+00 2.11e+01 3.07e-01

0 ->19 42303.461 4.53e-01 -2.59e+00 7.61e+00 -3.40e-01

0 ->20 42346.521 4.53e-01 1.90e+01 8.99e+01 2.11e-01

0 ->21 42348.023 4.53e-01 3.36e+00 3.55e+00 9.48e-01

0 ->22 42456.119 4.53e-01 2.52e-01 4.86e-01 5.20e-01

0 ->23 42456.642 4.53e-01 -2.01e+00 2.91e+00 -6.91e-01

1 -> 2 450.285 4.45e-01 4.59e-09 6.87e-09 6.69e-01

1 -> 3 450.802 4.45e-01 -4.96e-09 9.73e-09 -5.09e-01

All C and D values are copied additionally into the text files input.1.mcd, input.2.mcd. . . , for every pair of

Temperature and B parameters. These files contain the energies and C and D values for every calculated

transition. These files are used by the program orca mapspc to calculate the spectra lines. The orca mapspc

program generates from the raw transitions data into spectra lines. The main parameters of the orca mapspc

program are described in section 7.18.1. A typical usage of the orca mapspc program for MCD spectra

calculation for the current example may look as the following:

orca_mapspc input.1.mcd MCD -x020000 -x150000 -w2000

Here the interval for the spectra generation is set from 20000 cm−1 to 50000 cm−1, and the line shape

parameter is set to 2000 cm−1.

Very often, it is desirable to assign different line width parameters to different peaks of the spectra to obtain

a better fitting to experiment. orca mapspc can read the line shape parameters from a simple text file named

as input.1.mcd.inp. This file should contain the energy intervals (in cm−1) and the line shape parameters for

this energy interval in the form of:
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20000 35000 1000

35000 40000 2000

40000 50000 1000

This file should not be specified in the executing command; orca mapspc checks for its presence automati-

cally:

orca_mapspc input.1.mcd MCD -x020000 -x150000

Mode is MCD

Number of peaks ... 276001

Start wavenumber [cm-1] ... 20000.0

Stop wavenumber [cm-1] ... 50000.0

Line width parameters are taken from the file:input.1.mcd.inp

Number of points ... 1024

Finally, the orca mapspc program generates the output text file input.1.mcd.dat which contains seven columns

of numbers: transition energies, intensities of MCD transitions (the MCD spectrum), intensities of absorption

transitions (the absorption spectrum), the ratio between the MCD and absorption intensities, and the last

three columns represent the “sticks” of the corresponding transitions.

Energy C D C/D C D E/D

24310.8 0.6673 980.2678 0.0006 0.0000 0.0000 0.0000

24340.1 0.8471 1174.3637 0.0007 -0.0001 0.0129 -0.0112

24369.5 1.0664 1408.5788 0.0007 0.0001 0.0281 0.0033

24398.8 1.3325 1690.5275 0.0007 0.0000 0.0000 0.0000

24428.1 1.6542 2029.0152 0.0008 0.0000 0.0000 0.0000

24457.4 2.0416 2434.1699 0.0008 0.0000 0.0332 0.0003

Now the MCD and the absorption spectra can be plotted with a suitable graphical program, for instance

with the Origin program.

9.30.2.6 Addition of Magnetic Fields

The inclusion of the Zeeman contribution into the QDPT procedure allows to obtain the splittings of the

magnetic levels in an external magnetic field. The switch for this calculation and the magnetic field strength

are defined in the soc subblock of the mrci block:

%mrci

soc

DoSOC true #

DoSSC true #

MagneticField true # default false
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Figure 9.33: Calculated MCD and absorption spectra of [Fe(CN)6]3− (dash lines) compared to
experimental spectra (solid lines).

B 1,10,100,1000 # Strengh of the magnetic field in Gauss.

# 4000 is the default value

end

end

Then, the output contains three sets of data of splittings of the magnetic levels with the magnetic field

applied parallel to x, y, and z directions:

End B (Gauss) Energy levels (cm-1) and populations for B || x

1.0 -0.030 0.333 0.012 0.333 0.018 0.333

10.0 -0.030 0.333 0.012 0.333 0.018 0.333

100.0 -0.031 0.333 0.012 0.333 0.020 0.333

1000.0 -0.102 0.333 0.012 0.333 0.091 0.333

B (Gauss) Energy levels (cm-1) and populations for B || y

1.0 -0.030 0.333 0.012 0.333 0.018 0.333

10.0 -0.030 0.333 0.012 0.333 0.018 0.333

100.0 -0.032 0.333 0.014 0.333 0.018 0.333

1000.0 -0.105 0.334 0.018 0.333 0.087 0.333

B (Gauss) Energy levels (cm-1) and populations for B || z

1.0 -0.030 0.333 0.012 0.333 0.018 0.333

10.0 -0.030 0.333 0.011 0.333 0.018 0.333
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100.0 -0.030 0.333 0.005 0.333 0.025 0.333

1000.0 -0.079 0.333 -0.030 0.333 0.108 0.333

Here the number in a row represents the strength of the magnetic field (in Gauss), and the following pairs of

numbers denote the energy of the magnetic level (in cm−1) with its occupation number. This table can be

readily plotted with any suitable graphical program.

9.30.2.7 Relativistic Picture Change in Douglas-Kroll-Hess SOC and Zeeman Operators

The DKH correction to the SOC operator is implemented in ORCA as a correction to the one-electron part

of the SOMF operator. The DKH transformation is performed up to the second order, and the two-electron

part in our implementation is left untransformed. However, the electronic density employed for evaluating the

SOMF matrix elements is obtained from a scalar relativistic calculation. The inclusion of the DKH correction

is controlled by the picturechange key in the rel block:

%rel method DKH # relativistic method

picturechange 2 # include the DKH correction to SOC

end

The “picturechange” key can be set to 0, 1, and 2 for no picture change, the first order, and the second order

DKH transformations of the SOC operator.

With “picturechange” set to 1 or 2 the DKH correction are applied in the first order to the Zeeman operator.

This correction has a visible effect on calculated g-tensors for molecules containing third-row and heavier

atoms.

9.30.2.8 X-ray Spectroscopy

Likewise to the CASCI/NEVPT2 computational protocol presented in section 9.13.4 starting from ORCA

4.2 the MRCI module can be used to compute core excited spectra, namely X-ray absorption (XAS) and

resonant inelastic scattering (RIXS) spectra.

As discussed in the case of CASCI/NEVPT2 protocol 9.13.4 a similar strategy is followed to compute

XAS/RIXS spectra within the MRCI module. In principle the XAS/RIXS spectra calculations require two

steps:

• In a first step one needs to optimize the valence active space orbitals in the framework of SA-CASSCF

calculations, e.g. including valence excited states in the range between 6 to 15 eV.

• In a second step the relevant core orbitals are rotated into the active space and the MRCI problem is

solved by saturating the excitation space with singly core-excited electronic configurations using the

previously optimized sets of orbitals.
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• The core orbitals are also included in the XASMOs definition. The use of this keyword is two fold. At

first it effecteively reduces the number of the generated configuration state functions (CSFs) to those

that exclusively contain contributions from the defined core orbitals. In the case of RIXS also XES

(see below) the specified XASMOs are used to define intermediate or core ionized states.

A representative input for the case of Fe(Cl)4 is provided bellow:

• In the first step one performs a SA-CASSCF calculation for the 5 and 15 quintet and triplet states

(FeIICl4.casscf.inp).

!CC-PWCVTZ-DK cc-pVTZ/C RIJCOSX SARC/J TightSCF DKH2 PAL8

%rel

FiniteNuc true

end

%basis

newgto Cl "cc-pVTZ-DK" end

newauxgto Cl "cc-pVTZ/C" end

end

%method FrozenCore FC_NONE

end

%casscf nel 6

norb 5

mult 5,3

nroots 5,15

switchstep nr

end

* xyz -2 5

Fe -17.84299991694815 -0.53096694321123 6.09104775508499

Cl -19.84288422845700 0.31089495619796 7.04101319789001

Cl -17.84298666758073 0.11868125024595 3.81067954087770

Cl -17.84301352218429 -2.87052442818457 6.45826391412877

Cl -15.84311566482982 0.31091516495189 7.04099559201853

*

• In a second step the core orbitals are rotated in the active space and the MRCI problem is solved by

saturating the excitation space with all the quintet and triplet states that involve single excitations

from the core orbitals (FeIICl4-mrci.inp)
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!MORead CC-PWCVTZ-DK cc-pVTZ/C RIJCOSX SARC/J TightSCF DKH2 PAL8

%moinp "FeIICl4-casscf.gbw"

%rel

FiniteNuc true

end

%method FrozenCore FC_NONE

end

%scf

rotate 6,42,90 7,43,90 8,44,90 end

end

%basis

newgto Cl "cc-pVTZ-DK" end

newauxgto Cl "cc-pVTZ/C" end

end

%casscf nel 12

norb 8

mult 5,3

nroots 34,195

maxiter 1

switchstep nr

end

%mrci

CIType MRCI

intmode fulltrafo

XASMOs 42, 43, 44

newblock 5 *

nroots 34

excitations cisd

refs CAS(12,8)

end

end

newblock 3 *

nroots 195

excitations cisd

refs CAS(12,8)

end
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end

maxiter 100

soc

printlevel 3

dosoc true

end

end

* xyz -2 5

Fe -17.84299991694815 -0.53096694321123 6.09104775508499

Cl -19.84288422845700 0.31089495619796 7.04101319789001

Cl -17.84298666758073 0.11868125024595 3.81067954087770

Cl -17.84301352218429 -2.87052442818457 6.45826391412877

Cl -15.84311566482982 0.31091516495189 7.04099559201853

*

In a similar fashion Multireference Equation of Motopn Couple Cluster MR-EOM-CC (see next section) can

also be used to compute X-ray spectra. Further information can be found in reference [499]

As it is explicitly described in the respective ROCIS section RIXS spectra can be requested by the following

keywords:

RIXS true #Request RIXS calculation (NoSOC)

RIXSSOC true #Request RIXS calculation (with SOC)

Elastic true #Request RIXS calculation (Elastic)

Please consult section 9.24.4 for processing and analyzing the generated spectra

Starting from ORCA 4.2 the previously reported RASCI-XES protocol reference [500], which can compute

Kβ Mainline XES spectra, can be processed entirely within the ORCA modules.

• Like above or in the CASCI/NEVPT2 case in a first step one needs to optimize the valence active

space orbitals in the framework of SA-CASSCF calculations, e.g. including valence excited states in

the range between 6 to 15 eV for the N electron system.

• In a second step the the metal 1s and 3p orbitals are rotated in the active space and the 1s MO is

defined in the XASMOs list

• Computes the XES spectrum in the RASCI framework for the N-1 electron system in the presence of

SOC if the XESSOC keyword for all the states that are dominated by 3p-1s electron decays.

A representative input sequence for the case of Fe(Cl)6 is provided bellow:

As described in reference [500] at first for a CAS(5,5) the excitation space is saturated by the sextet as well

as the 24 quartet and the 75 doublet states which are optimized in the SA-CASSCF fashion.
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!ZORA def2-TZVP def2-TZVP/C normalprint PAL4

%cpcm epsilon 80

refrac 1.33

end

%scf

MaxDisk 40000

end

%casscf

nel 5

norb 5

mult 6,4,2

nroots 1,24,75

shiftup 0.5

shiftdn 0.5

trafostep RI

maxiter 150

end

*xyzfile -3 6

Fe 0.0000 0.0000 0.000000

Cl 2.478 0.0000 0.000

Cl -2.478 0.0000 0.000

Cl 0.000005 2.478 0.00000

Cl 0.000005 -2.478 -0.0000

Cl -0.000 -0.000 2.478

Cl 0.000 -0.0000 -2.478

*

In following the 1s and 3p Fe based MOs are rotated in the active space and the XES spectra are computed

for the [Fe(Cl)6]+ system for the 4 septet and 81 quintet states.

! ZORA def2-TZVP def2-TZVP/C noiter moread normalprint RHF AllowRHF

%moinp "fecl6_casscf.gbw"

%cpcm epsilon 80

refrac 1.33

end
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%scf

MaxDisk 40000

end

%scf

rotate {0,59,90} {36, 60, 90} {37,61,90} {38,62,90} end end

%mrci citype mrci

UseIVOs false

Etol 1e-5

newblock 5 *

excitations none

nroots 81

refs ras(12:4 1/5/ 0 0) end

end

newblock 7 *

excitations none

nroots 4

refs ras(12:4 1/5/ 0 0) end

end

XASMOs 59

soc

dosoc true

XESSOC true

end

end

*xyzfile -2 7

Fe 0.0000 0.0000 0.000000

Cl 2.478 0.0000 0.000

Cl -2.478 0.0000 0.000

Cl 0.000005 2.478 0.00000

Cl 0.000005 -2.478 -0.0000

Cl -0.000 -0.000 2.478

Cl 0.000 -0.0000 -2.478

*

As a result the X-ray emission spectrum is calculated and the intensities are computed on the basis of the

transition electric dipole moments
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Printing the XES spectrum ...

-------------------------------------------------------------------------------------

SPIN-ORBIT X-RAY EMISSION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-------------------------------------------------------------------------------------

Transition Energy INT TX TY TZ

1 421 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000

2 422 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000

3 423 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000

4 424 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000

5 425 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000

...

242 422 -> 25 7177.286 0.000917305388 0.00025 0.00171 0.00149

243 423 -> 25 7177.286 0.002043577370 0.00197 0.00211 0.00181

244 424 -> 25 7177.286 0.000789769987 0.00114 0.00133 0.00119

245 425 -> 25 7177.286 0.000026130790 0.00018 0.00034 0.00002

246 426 -> 25 7177.286 0.000035191741 0.00034 0.00028 0.00003

247 427 -> 25 7177.286 0.005143175830 0.00294 0.00345 0.00296

248 428 -> 25 7177.341 0.000000000000 0.00000 0.00000 0.00000

249 429 -> 25 7177.341 0.000000000001 0.00000 0.00000 0.00000

250 430 -> 25 7177.341 0.000000000001 0.00000 0.00000 0.00000

251 431 -> 25 7177.341 0.000000000000 0.00000 0.00000 0.00000

252 432 -> 25 7177.341 0.000000000000 0.00000 0.00000 0.00000

...

4991 431 -> 420 7153.111 0.000195885011 0.00106 0.00000 0.00000

4992 432 -> 420 7153.111 0.002719228427 0.00256 0.00299 0.00002

All Done

-------------------------------------------------------------------------------------

The resulted XES spectrum can be visualized by processing the above output file with the orca mapspc

orca_mapspc fecl6_xes.out XESSOC -x07140 -x17190 -w4.0 -eV -n10000

This will result in Figure 9.34.

Figure 9.34: Calculated RASCI Kβ XES spectrum of [Fe(Cl)6]+.
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9.31 Multireference Equation of Motion Coupled-Cluster

(MR-EOM-CC) Theory

In analogy with single reference EOM-CC (see sections 8.8 and 9.27) and STEOM-CC (see sections 8.9 and

9.28), Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) theory [187–192] can be viewed

a transform and diagonalize approach to molecular electronic structure theory. An MR-EOM calculation

involves a single state-averaged CASSCF calculation, incorporating a small number of low-lying states and the

solution of a single set of cluster amplitudes, which define a sequence of similarity transformed Hamiltonians.

The ultimate goal of these many-body transformations is to effectively decouple the CAS configurations from

important excited configurations (e.g. 2p2h, 2p1h, 1p1h, etc.) which comprise the first-order interacting

space. Through the definition of suitable cluster operators, in each of the transformations, the majority of

these excitations can be included in an internally-contracted fashion. Hence, the resulting final transformed

Hamiltonian can be diagonalized over a small subspace of the original first-order interacting space in order to

gain access to a large number of electronic states. As discussed in section 8.13, the MR-EOM implementation

in ORCA therefore, makes use of the CASSCF module (to obtain the state-averaged CASSCF reference), the

MDCI module for the solution of the amplitude equations and the calculation of the elements of the various

similarity transformed Hamiltonians and the MRCI module for the diagonalization of the final transformed

Hamiltonian. Some desirable features of this methodology are:

• Many states can be obtained through the diagonalization of a similarity transformed Hamiltonian over

a compact diagonalization manifold (e.g. the final diagonalization space in MR-EOM-T|T†|SXD|U
only includes the CAS configurations and 1h and 1p configurations).

• Only a single state-averaged CASSCF calculation and the solution of a single set of amplitudes is

required to define the final similarity transformed Hamiltonian and the results are typically quite

insensitive to the precise definition of the CAS (only a few low lying multiplets need to be included in

the state-averaging)

• The MR-EOM approach is rigourously invariant to rotations of the orbitals in the inactive, active and

virtual subspaces and it preserves both spin and spatial symmetry.

As the details concerning the MR-EOM methodology are rather involved, we refer the interested reader

to Refs. [187–192] for a more detailed discussion. Note that the details concerning the implementation of

MR-EOM in ORCA can be found in Refs. [191] and [192]. In the following discussion, we note that general

spatial orbitals p, q, r, s, which comprise the molecular orbital basis, are partitioned into (doubly occupied)

inactive core orbitals i′, j′, k′, l′, occupied orbitals i, j, k, l (i.e. the union of the inactive core and active

orbital subspaces), active orbitals w, x, y, z and virtual orbitals a, b, c, d. In general, the many-body similarity

transformations assume the general form

Ĝ =
{
eŶ
}−1Ĥ2

{
eŶ
}

= g0 +
∑
p,q

gpq
{
Êpq
}

+
∑
p,q,r,s

gpqrs
{
Êpqrs

}
+ . . . , (9.330)

in which Ŷ is a cluster operator and Ĥ2 is the bare Hamiltonian or a similarity transformed Hamiltonian

truncated up to two-body operators. The braces indicate Kutzelnigg-Mukherjee normal ordering [501,502],

which is used extensively in the definition of the MR-EOM formalism. The various transformations which

need to be considered in the ORCA implementation of MR-EOM are summarized in Table 9.16. The

table also includes the expressions for the operator components of the various internally-contracted cluster
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Table 9.16: The details of the various MR-EOM transformations that are considered in the ORCA
implementation of MR-EOM. The equations for the operator components and the resid-
ual equations which determine the corresponding amplitudes also appear in the Table.
Note that we use the usual (Einstein) convention that repeated indices are summed
over.

Name Transformation Operators Operator Components Residual Equation

T Ĥ = e−T̂ ĤeT̂ T̂ = T̂1 + T̂2 T̂1 = tai Ê
a
i Rai =

∑
m wm 〈Φm| ÊiaĤ |Φm〉

= h0 +hpq
{
Êpq
}

+hpqrs
{
Êpqrs

}
+ . . . T̂2 = 1

2
tabij Ê

ab
ij Rabij = habij

T† Ĥ = eT̂
†
Ĥ2e−T̂

†
T̂ † = T̂ †1 + T̂ †2 T̂ †1 = tiaÊ

i
a None (i.e. set tia ≈ tai )

= h̃0 + h̃ pq
{
Êpq
}

+ h̃ pqrs
{
Êpqrs

}
+ . . . T̂ †2 = 1

2
tijabÊ

ij
ab None (i.e. set tijab ≈ t

ab
ij )

SXD F̂ =
{
eŜ+X̂+D̂

}−1Ĥ2

{
eŜ+X̂+D̂

}
Ŝ = Ŝ2 Ŝ2 = saw

i′j′ Ê
aw
i′j′ Raw

i′j′ = f aw
i′j′

= f0 + f pq
{
Êpq
}

+ f pqrs
{
Êpqrs

}
+ . . . X̂ = X̂2 X̂2 = xaw

i′xÊ
aw
i′x Raw

i′x = f aw
i′x

D̂ = D̂2 D̂2 = daw
xi′ Ê

aw
xi′ Raw

xi′ = f aw
xi′

U Ĝ = e−ÛF̂2eÛ Û = Û2 Û2 = uwx
i′j′ Ê

wx
i′j′ Rwx

i′j′ = gwx
i′j′

= g0 + gpq
{
Êpq
}

+ gpqrs
{
Êpqrs

}
+ . . .

operators and the residual equations that must be solved for the various amplitudes. Note that the residual

equations are typically of the many-body type (i.e. obtained by setting the corresponding elements of the

similarity transformed Hamiltonian to zero). The only exception is the residual equation which defines the tai
amplitudes, which is a projected equation of the form

Rai =
∑
m

wm

〈
Φm|ÊiaĤ|Φm

〉
. (9.331)

Here, |Φm

〉
is the mth state included in the state averaged CAS, with weight wm. The reason why the equation

for the singles is of the projected form is that it satisfies the Brillouin theorem (i.e. the first order singles

vanish for all i and a), whereas the corresponding many-body equation (h̄ai = 0) does not.

Table 9.17: Details of the three MR-EOM approaches implemented in ORCA

Method Input Keyword Operators Diagonalization Manifold

MR-EOM-T|T†-h-v MR-EOM-T|Td T̂ ; T̂ † CAS, 2h1p, 1h1p, 2h, 1h, 1p

MR-EOM-T|T†|SXD-h-v MR-EOM-T|Td|SXD T̂ ; T̂ †; Ŝ + X̂ + D̂ CAS, 2h, 1h, 1p

MR-EOM-T|T†|SXD|U-h-v MR-EOM T̂ ; T̂ †; Ŝ + X̂ + D̂; Û CAS, 1h, 1p

Note that there are three different MR-EOM approaches which have been implemented in ORCA. Namely, the

current implementation allows for MR-EOM-T|T†-h-v, MR-EOM-T|T†|SXD-h-v and MR-EOM-T|T†|SXD|U-

h-v calculations. At this point it is useful to discuss the naming convention used for these approaches. We

use a vertical line to separate each transformation involved in the sequence of transformations defining the

given MR-EOM approach. For example T|T†|SXD indicates that a T transformation, is followed by a T†

tranformation, which is then followed by an SXD transformation. The h-v indicates that the elements of the
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transformed Hamiltonian have been hermitized (h) and vertex symmetrized (v) before entering the MRCI

diagonalization (see Ref. [192] for more information). Essentially, this means that the full eightfold symmetry

of the two-electron integrals (and hermiticity of the one-body elements) have been enforced upon the elements

of the transformed Hamiltonian. The details of the three MR-EOM approaches are summarized in Table

9.17. This table includes the keyword (in the first line of input) used to initiate the calculation in ORCA,

the various operators involved and the configurations included in the final diagonalization manifold. One can

clearly see that the MR-EOM-T|T†|SXD|U-h-v approach is the most cost effective, as it only includes the 1h

and 1p configurations, beyond the CAS, in the final diagonalization manifold.

The various %mdci keywords, which are important for controlling MR-EOM calculations are (i.e. default

values are given here):

%mdci

STol 1e-7 #Convergence Tolerance on Residual Equations

MaxIter 100 #Maximum Number of Iterations

DoSingularPT false #Activate the Singular PT/Projection Procedure

SingularPTThresh 0.01 #Threshold for the Singular PT/Projection

#Procedure

PrintOrbSelect false #Print the Eigenvalues of the Orbital Selection

#Densities (and R_core and R_virt values)

#and Terminate the Calculation

CoreThresh 0.0 #Core Orbital Selection Threshold

VirtualThresh 1.0 #Virtual Orbital Selection Threshold

end

As discussed below, the orbital selection scheme is activated by adding the keyword OrbitalSelection to

the first line of input. Keywords that are specific to the CASSCF and MRCI modules are discussed in sections

9.13 and 9.30, respectively. We note that in MR-EOM-T|T†-h-v and MR-EOM-T|T†|SXD-h-v calculations,

it is possible to overide the default excitation classes in the final MRCI diagonalization. This is done by

specifying excitations none and then explicitly setting the excitation flags within a given multiplicity block.

For example, if we wanted to have 1h, 1p, 1h1p, 2h and 2h1p excitations in the final diagonalization manifold,

we would specify (i.e. here we have requested 6 singlets and have a CAS(6,4) reference):

%mrci

newblock 1 *

excitations none

Flags[is] 1

Flags[sa] 1

Flags[ia] 1

Flags[ijss] 1

Flags[ijsa] 1

nroots 6

refs

cas(6,4)

end
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end

end

9.31.1 The Steps Required to Run an MR-EOM Calculation

In order to illustrate the various steps required in a typical MR-EOM calculation, we will consider the

calculation of the excitation energies of the neutral Fe atom at the MR-EOM-T|T†|SXD|U-h-v level of

theory.

9.31.1.1 State-Averaged CASSCF Calculation

Evidently, the first step is to determine a suitable state-averaged CASSCF reference for the subsequent

MR-EOM calculation. In choosing the state-averaged CAS for an MR-EOM calculation, we typically include

a few of the low-lying multiplets that have the same character as the (much larger number of) states that we

wish to compute in the final MR-EOM calculation. For the neutral Fe atom, we typically have electronic states

which have either 4s23d6 character or 4s13d7 character. From the NIST atomic spectra database [503,504], we

find that the lowest lying a5D multiplet is of 4s23d6 character and the higher lying a5F multiplet is of 4s13d7

character. Hence, we can set up a state-averaged CASSCF(8,6) calculation (i.e. 8 electrons in 6 orbitals (4s

and 3d)) which includes the 5D and 5F states and choose the weights such that the average occupation of

the 4s orbital is 1.5. As discussed in Ref. [193], this is done to avoid a preference toward either of the 4s

configurations in the state-averaging. We will run the state-averaged CASSCF calculation, making use of

the second order DKH (see 9.18.3) method for the inclusion of relativistic effects in a Def2-TZVPP basis

(i.e. the DKH-Def2-TZVPP relativistically recontracted basis, listed in section 9.4). The input file for the

state-averaged CASSCF(8,6) calculation takes the form:

!CASSCF DKH-Def2-TZVPP VeryTightSCF DKH

%casscf

nel 8

norb 6

mult 5

nroots 12

weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

end

* xyz 0 5

Fe 0.000000 0.000000 0.000000

end

Here, we have requested 12 quintet states (the lowest lying 5D and 5F multiplets) and we have chosen the

weights to be 0.7 for the five 5D states and 0.5 for the seven 5F states, such that the overall occupation of the

4s orbital will be 1.5. Once the calculation has converged, it is important to inspect the results printed in the

final macro-iteration of the CASSCF calculation (macro-iteration 19 in this case). In this case, we have:
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MACRO-ITERATION 19:

--- Inactive Energy E0 = -1249.82392501 Eh

--- All densities will be recomputed

CI-ITERATION 0:

-1271.258898198 0.000000000000 ( 0.00)

-1271.258898198 0.000000000000

-1271.258898198 0.000000000000

-1271.258898198 0.000000000000

-1271.258898198 0.000000000000

-1271.186289789 0.000000000000

-1271.186289789 0.000000000000

-1271.186289789 0.000000000000

-1271.186289789 0.000000000000

-1271.186289789 0.000000000000

-1271.186289789 0.000000000000

-1271.186289789 0.000000000000

CI-PROBLEM SOLVED

DENSITIES MADE

E(CAS)= -1271.222593993 Eh DE= 0.000000000

--- Energy gap subspaces: Ext-Act = 0.276 Act-Int = 2.469

--- current l-shift: Up(Ext-Act) = 0.02 Dn(Act-Int) = 0.00

N(occ)= 1.50000 1.30000 1.30000 1.30000 1.30000 1.30000

||g|| = 0.000000404 Max(G)= -0.000000204 Rot=18,5

Directly below CI-ITERATION 0, the final CAS-CI energies are printed and one observes that they follow

the correct degeneracy pattern (i.e. 5 states with energy -1271.258898198 and 7 states with energy

-1271.186289789). Furthermore, the final state-averaged CASSCF energy (E(CAS)= -1271.222593993) and

occupation numbers (N(occ)= 1.50000 1.30000 1.30000 1.30000 1.30000 1.30000) are also printed.

As expected, the occupation number of the 4s orbital is indeed 1.5, while the 3d orbitals each have an

occupation of 1.3.

9.31.1.2 Selection of the States to Include in the MR-EOM Calculation

Once a satisfactory CASSCF reference has been obtained, the next step is to determine the number of states

to include in the MR-EOM calculation. From the NIST atomic spectra database, one finds that the higher

lying states of 4s23d6 and 4s13d7 character are either singlets, triplets or quintets. In order to figure out how

many states should be included in each multiplicity block, one can perform an inexpensive CAS-CI calculation.

This is done by reading in the orbitals from the previous CASSCF calculation (here they are stored in the

file CAS.gbw) and requesting a single iteration (i.e. using the NoIter keyword) of a state-averaged CASSCF

calculation:

!CASSCF DKH-Def2-TZVPP ExtremeSCF DKH NoIter

!MOREAD

%moinp "CAS.gbw"

%casscf

nel 8
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norb 6

mult 5,3,1

nroots 15,90,55

end

* xyz 0 5

Fe 0.000000 0.000000 0.000000

end

Here, after some experimentation, we have chosen 15 quintets, 90 triplets and 55 singlets. It is important that

we calculate states up to sufficiently high energy (i.e. all the states that are of interest) and it is absolutely

imperative that we have complete multiplets. Hence, several iterations of this procedure might be required to

choose the proper number of states for each multiplet. The relevant section of the output file which should

be analyzed is the SA-CASSCF TRANSITION ENERGIES. For the above calculation, we obtain (i.e. only the

CAS-CI energies for the first 33 roots are shown here):

-----------------------------

SA-CASSCF TRANSITION ENERGIES

------------------------------

LOWEST ROOT (ROOT 0 ,MULT 5) = -1271.258898198 Eh -34592.713 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1

1: 1 5 0.000000 0.000 0.0

2: 2 5 0.000000 0.000 0.0

3: 3 5 0.000000 0.000 0.0

4: 4 5 0.000000 0.000 0.0

5: 5 5 0.072608 1.976 15935.7

6: 6 5 0.072608 1.976 15935.7

7: 7 5 0.072608 1.976 15935.7

8: 8 5 0.072608 1.976 15935.7

9: 9 5 0.072608 1.976 15935.7

10: 10 5 0.072608 1.976 15935.7

11: 11 5 0.072608 1.976 15935.7

12: 0 3 0.092859 2.527 20380.1

13: 1 3 0.092859 2.527 20380.1

14: 2 3 0.092859 2.527 20380.1

15: 3 3 0.092859 2.527 20380.1

16: 4 3 0.092859 2.527 20380.1

17: 5 3 0.092859 2.527 20380.1

18: 6 3 0.092859 2.527 20380.1

19: 8 3 0.092859 2.527 20380.1

20: 7 3 0.092859 2.527 20380.1

21: 9 3 0.092859 2.527 20380.1

22: 10 3 0.092859 2.527 20380.1

23: 11 3 0.101847 2.771 22352.7

24: 12 3 0.101847 2.771 22352.7

25: 13 3 0.101847 2.771 22352.7

26: 14 3 0.101847 2.771 22352.7

27: 15 3 0.101847 2.771 22352.7

28: 16 3 0.101847 2.771 22352.7
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29: 17 3 0.101847 2.771 22352.7

30: 18 3 0.102559 2.791 22509.1

31: 19 3 0.102559 2.791 22509.1

32: 20 3 0.102559 2.791 22509.1

9.31.1.3 Running the MR-EOM Calculation

Now that we have chosen a suitable CASSCF reference and the states that we wish to calculate, we can

finally proceed with the MR-EOM calculation. The following input file runs an MR-EOM-T|T†|SXD|U-h-v

calculation for 15 quintet, 90 triplet and 55 singlet states of the neutral Fe atom (i.e. the CASSCF orbitals

are read from CAS.gbw):

!MR-EOM DKH-Def2-TZVPP VeryTightSCF DKH

!MOREAD

%moinp "CAS.gbw"

%method frozencore fc_ewin end

%casscf

nel 8

norb 6

mult 5

nroots 12

weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

end

%mdci

ewin -6, 10000

STol 1e-7

end

%mrci

ewin -6, 10000

MaxIter 200

newblock 5 *

nroots 15

refs cas(8,6) end

end

newblock 3 *

nroots 90

refs cas(8,6) end
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end

newblock 1 *

nroots 55

refs cas(8,6) end

end

end

* xyz 0 5

Fe 0.000000 0.000000 0.000000

end

Note that since the default frozen core settings exclude the 3p orbitals from the correlation treatment, we

have used an energy window (i.e. the line ewin -6, 10000 in both the %mdci and %mrci blocks) such that

they are included in the current calculation. We note that a detailed discussion of the input and output of an

MR-EOM calculation has already been given in section 8.13 and thus, we do not repeat it here. It is important

to reiterate that one should always inspect the values of the largest (T, S and U) amplitudes. Ideally, the

largest amplitudes should be smaller than 0.1 and should not exceed 0.15. If some of the amplitudes are

larger than 0.15, it might be necessary to revisit the definition of the CAS and the weights used. For the T

amplitudes, an alternative solution is to use the projection/singular PT scheme discussed in section 9.31.3

below.

As discussed in section 8.13, the excitation energies are printed under the heading TRANSITION ENERGIES.

For the current calculation, we obtain the following results (only the results for 33 states are shown here):

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -1271.833871758 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 5 -1 0 0 0.000 0.000 0.0

1 5 -1 1 0 0.000 0.000 0.0

2 5 -1 2 0 0.000 0.000 0.0

3 5 -1 3 0 0.000 0.000 0.0

4 5 -1 4 0 0.000 0.000 0.0

5 5 -1 5 0 33.901 0.922 7440.3

6 5 -1 6 0 33.901 0.922 7440.3

7 5 -1 7 0 33.901 0.922 7440.3

8 5 -1 8 0 33.901 0.922 7440.3

9 5 -1 9 0 33.901 0.922 7440.3

10 5 -1 10 0 33.901 0.922 7440.3

11 5 -1 11 0 33.901 0.922 7440.3

12 3 -1 0 1 54.743 1.490 12014.7

13 3 -1 1 1 54.743 1.490 12014.7

14 3 -1 2 1 54.743 1.490 12014.7

15 3 -1 3 1 54.743 1.490 12014.7

16 3 -1 4 1 54.743 1.490 12014.7
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17 3 -1 5 1 54.743 1.490 12014.7

18 3 -1 6 1 54.743 1.490 12014.7

19 5 -1 12 0 78.790 2.144 17292.4

20 5 -1 13 0 78.790 2.144 17292.4

21 5 -1 14 0 78.790 2.144 17292.5

22 3 -1 7 1 95.413 2.596 20940.8

23 3 -1 8 1 95.413 2.596 20940.8

24 3 -1 9 1 95.413 2.596 20940.8

25 3 -1 10 1 95.413 2.596 20940.8

26 3 -1 11 1 95.413 2.596 20940.8

27 3 -1 12 1 95.413 2.596 20940.8

28 3 -1 13 1 95.413 2.596 20940.8

29 3 -1 14 1 95.413 2.596 20940.8

30 3 -1 15 1 95.413 2.596 20940.8

31 3 -1 16 1 95.413 2.596 20940.8

32 3 -1 17 1 95.413 2.596 20940.8

It is also important to recall that one should always inspect the reference weights for each state, as only

states which are dominated by reference space configurations can be treated accurately at the MR-EOM level

of theory. As a general rule, the reference weights should be larger (or close to) 0.9. In each multiplicity

block, the individual state energies and reference weights can be found following convergence of the MRCI

procedure, under the heading CI-RESULTS (see section 8.13 for a more detailed discussion).

9.31.2 Approximate Inclusion of Spin-Orbit Coupling Effects in MR-EOM

Calculations

The effects of spin-orbit coupling can approximately be included in MR-EOM calculations using the SOC

submodule of the MRCI module, as outlined in section 9.30.2. This can be viewed as a first order approximation

to the inclusion of spin-orbit coupling effects in MR-EOM. In a more rigourous formulation, one would have

to consider the various similarity transformations of the spin-orbit coupling operator. The details of the

SOC submodule of the MRCI module have already been discussed in detail in 9.30.2 and its usage within

the MR-EOM formalism is identical to that discussed therein. Let us consider the calculation of spin-orbit

coupling effects in the excitation spectrum of the neutral Fe atom considered in the previous section. The

input file for this calculation is:

!MR-EOM DKH-Def2-TZVPP ExtremeSCF DKH

%method frozencore fc_ewin end

%casscf

nel 8

norb 6

mult 5

nroots 12

weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

etol 1e-12

gtol 1e-12



9.31 Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) Theory 771

end

%mdci

ewin -6, 10000

MaxIter 300

STol 1e-12

end

%mrci

ewin -6, 10000

MaxIter 200

newblock 5 *

nroots 15

refs cas(8,6) end

end

newblock 3 *

nroots 90

refs cas(8,6) end

end

newblock 1 *

nroots 55

refs cas(8,6) end

end

soc

dosoc true #include spin-orbit coupling effects

end

end

* xyz 0 5

Fe 0.000000 0.000000 0.000000

end

In contrast with the calculation performed in section 9.31.1, the convergence thresholds have been tightened in
all aspects of the calculation (i.e. the use of the ExtremeSCF keyword, etol and gtol (CASSCF energy and
orbital gradient convergence tolerance) are set to 1× 10−12 and the convergence tolerance for the residuals in
the MR-EOM amplitude iterations have been set to 1× 10−12). We note that with the use of the ExtremeSCF
keyword, the convergence tolerance on the energy (Etol) and residual (Rtol) in the MRCI portion of the
calculation are also set to 1 × 10−12. Although it is not absolutely necessary, we have used very strict
convergence thresholds in order to preserve the degeneracies of the various multiplets as much as possible.
The output of spin-orbit corrected MR-EOM spectrum appears under the heading SPIN-ORBIT CORRECTED
MRCI ABSORPTION SPECTRUM (i.e. only the excitation energies for the first 36 states are shown here):

------------------------------------------------------------------------------------------

SPIN-ORBIT CORRECTED MRCI ABSORPTION SPECTRUM

------------------------------------------------------------------------------------------

States Energy Wavelength fosc T2 |TX| |TY| |TZ|

(cm-1) (nm) (D**2) (D) (D) (D)

------------------------------------------------------------------------------------------

0 1 0.0 6262179496748.3 0.000000000 0.00000 0.00000 0.00000 0.00000
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0 2 0.0 3643449889017.2 0.000000000 0.00000 0.00000 0.00000 0.00000

0 3 0.0 2456298495.9 0.000000000 0.00000 0.00000 0.00000 0.00000

0 4 0.0 2453471569.3 0.000000000 0.00000 0.00000 0.00000 0.00000

0 5 0.0 1842867662.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 6 0.0 1840768531.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 7 0.0 1840312096.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 8 0.0 1364058512.5 0.000000000 0.00000 0.00000 0.00000 0.00000

0 9 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 10 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 11 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 12 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 13 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 14 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 15 391.8 25525.6 0.000000000 0.00000 0.00000 0.00000 0.00000

0 16 671.9 14883.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 17 671.9 14883.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 18 671.9 14883.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 19 671.9 14883.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 20 671.9 14883.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 21 853.8 11711.8 0.000000000 0.00000 0.00000 0.00000 0.00000

0 22 853.8 11711.8 0.000000000 0.00000 0.00000 0.00000 0.00000

0 23 853.8 11711.8 0.000000000 0.00000 0.00000 0.00000 0.00000

0 24 943.7 10597.0 0.000000000 0.00000 0.00000 0.00000 0.00000

0 25 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 26 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 27 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 28 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 29 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 30 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 31 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 32 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 33 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 34 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

0 35 7317.2 1366.7 0.000000000 0.00000 0.00000 0.00000 0.00000

The first 25 values in the table above make up the a5D states with J values from J = L + S = 2 + 2 =

4 to J = L - S = 0. The states 25 to 35 constitute the J = 5 level of the a5F multiplet. Also, note that

the wavelengths that are printed for the first eight states have no physical meaning (i.e. correspond to zero

energy). The large values that appear in the output above should therefore, be disregarded.

It is possible to obtain more accurate results by performing an MR-EOM-T|T†|SXD-h-v calculation and

including the 1h1p excitations. It is important to note that these calculations are significantly more expensive.

As discussed above, to run an MR-EOM-T|T†|SXD-h-v calculation, the keyword MR-EOM-T|Td|SXD must

appear in the first line of input and in order to activate the 1h1p excitations in each multiplicity block of the

MRCI calculation, the %mrci block takes the form:

%mrci

ewin -6, 10000

MaxIter 200

newblock 5 *

nroots 15
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excitations none

Flags[is] 1

Flags[sa] 1

Flags[ia] 1

Flags[ijss] 1

refs cas(8,6) end

end

newblock 3 *

nroots 90

excitations none

Flags[is] 1

Flags[sa] 1

Flags[ia] 1

Flags[ijss] 1

refs cas(8,6) end

end

newblock 1 *

nroots 55

excitations none

Flags[is] 1

Flags[sa] 1

Flags[ia] 1

Flags[ijss] 1

refs cas(8,6) end

end

soc

dosoc true

end

end

We use excitations none to set the default excitation flags to false and then manually set the 1h (Flags[is]),

1p (Flags[sa]), 1h1p (Flags[ia]) and 2h (Flags[ijss]) excitation flags to true.

WARNINGS

• Currently, MR-EOM-T|T†|SXD|U-h-v calculations can only be run with the default excitation classes

in the final MRCI (i.e. 1h and 1p). Any other input options for the excitation flags will automatically

be overwritten and set to the default values.

• Only the inclusion of spin-orbit coupling effects has been tested for MR-EOM calculations. Other

features that are available in the MRCI module (e.g. spin-spin coupling, magnetic property calculations,

etc.) have not been tested for use within MR-EOM calculations.
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9.31.3 A Projection/Singular PT Scheme to Overcome Convergence Issues in the T

Amplitude Iterations

In certain cases, there may be nearly singular T2 amplitudes (often, but not always large in magnitude),

which can cause convergence issues in the solution of the T amplitude equations. Hence, it is sometimes

necessary to discard some of the amplitudes in order to remedy these convergence problems. The nearly

singular T2 amplitudes are of the form tabwx, where (w, x) is a pair of active orbitals which corresponds to

a small eigenvalue (pair occupation number nwx) of the two-body reduced density matrix (RDM). When

nearly singular amplitudes are present, it is possible to employ a singular PT/projection scheme (i.e. Scheme

I described in Ref. [187]), using the two-body RDM as the metric matrix, in order to discard these nearly

singular amplitudes and replace them with suitable perturbative estimates. As a first example, let’s consider

the following calculation on the cyclopentadiene molecule:

!MR-EOM def2-SVP VeryTightSCF

%casscf

nel 4

norb 4

nroots 2

mult 3

end

%mdci

STol 1e-7

MaxIter 60

end

%mrci

newblock 1 *

nroots 3

refs cas(4,4) end

end

newblock 3 *

nroots 3

refs cas(4,4) end

end

end

* xyz 0 1

H -0.879859 0.000000 1.874608

H 0.879859 0.000000 1.874608

H 0.000000 2.211693 0.612518

H 0.000000 -2.211693 0.612518

H 0.000000 1.349811 -1.886050

H 0.000000 -1.349811 -1.886050

C 0.000000 0.000000 1.215652

C 0.000000 -1.177731 0.285415
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C 0.000000 1.177731 0.285415

C 0.000000 -0.732372 -0.993420

C 0.000000 0.732372 -0.993420

*

The T amplitude iterations do not converge after 60 iterations and show no signs of convergence (i.e. final
largest residual of 0.000458135 and oscillatory behaviour over a significant portion of the iterations). If we
inspect the largest T amplitudes,

--------------------

LARGEST T AMPLITUDES

--------------------

19-> 24 19-> 24 0.043128

19-> 23 19-> 23 0.031123

11-> 25 11-> 25 0.028458

19-> 41 19-> 41 0.027950

11-> 47 11-> 47 0.027026

19-> 22 19-> 22 0.025188

15-> 26 15-> 26 0.022084

19-> 21 19-> 21 0.022038

11-> 47 11-> 25 0.022033

11-> 25 11-> 47 0.022033

19-> 29 19-> 24 0.021769

19-> 24 19-> 29 0.021769

19-> 36 19-> 36 0.020987

17-> 38 17-> 38 0.019743

19-> 41 16-> 36 0.019107

18-> 40 18-> 40 0.017949

one can see that there are no unusually large amplitudes. If we turn on the singular PT/projection scheme

by adding the line DoSingularPT true to the %mdci block:

%mdci

STol 1e-7

MaxIter 60

DoSingularPT true

end

and rerun the calculation, we find that the T amplitude iterations now successfully converge in 23 iterations.

If we look at the largest T amplitudes:

--------------------

LARGEST T AMPLITUDES

--------------------

11-> 25 11-> 25 0.028440

11-> 47 11-> 47 0.027027

15-> 26 15-> 26 0.022069

11-> 47 11-> 25 0.022031
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11-> 25 11-> 47 0.022031

19-> 41 19-> 41 0.020463

17-> 38 17-> 38 0.018288

11-> 43 11-> 43 0.017250

11-> 39 11-> 39 0.016838

15-> 27 15-> 27 0.016001

13-> 26 13-> 26 0.015985

16-> 36 16-> 36 0.015759

19-> 41 16-> 36 0.015697

18-> 40 18-> 40 0.015376

17-> 31 17-> 31 0.015074

18-> 40 17-> 38 0.014470

the majority of the amplitudes corresponding to the active pair (w, x) = (19, 19) no longer appear in the list

(i.e. they are nearly singular amplitudes which have been projected out). The only one that does appear in

the list, corresponds to a projected perturbative estimate (e.g. 19-> 41 19-> 41 0.020463).

By default, when the singular PT/projection scheme is active, the amplitudes tabwx for which the pair occupation

numbers satisfy nwx < 0.01 (i.e. SingularPTThresh =0.01), are replaced by perturbative amplitudes in

the procedure. However, in some cases, it might be necessary to increase the SingularPTThresh threshold

beyond the default value in order to achieve convergence. One such example is the ferrocene molecule.

Consider the following calculation:

!MR-EOM def2-SVP

%casscf

nel 6

norb 5

mult 1,3

nroots 5,6

end

%mdci

DoSingularPT true

MaxIter 50

end

%mrci

newblock 1 *

nroots 18

refs cas(6,5) end

end

newblock 3 *

nroots 10

refs cas(6,5) end

end

end
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* xyz 0 1

Fe 0.000000 0.000000 0.000000

C 0.000000 1.220080 1.650626

C -1.160365 0.377025 1.650626

C -0.717145 -0.987065 1.650626

C 0.717145 -0.987065 1.650626

C 1.160365 0.377025 1.650626

C 0.000000 1.220080 -1.650626

C 1.160365 0.377025 -1.650626

C 0.717145 -0.987065 -1.650626

C -0.717145 -0.987065 -1.650626

C -1.160365 0.377025 -1.650626

H 0.000000 2.306051 1.635648

H -2.193184 0.712609 1.635648

H -1.355463 -1.865634 1.635648

H 1.355463 -1.865634 1.635648

H 2.193184 0.712609 1.635648

H 0.000000 2.306051 -1.635648

H 2.193184 0.712609 -1.635648

H 1.355463 -1.865634 -1.635648

H -1.355463 -1.865634 -1.635648

H -2.193184 0.712609 -1.635648

end

The T amplitude iterations do not converge after 50 iterations, even though the singular PT/projection

scheme is activated. If we increase SingularPTThresh to 0.05 by adding the line SingularPTThresh 0.05

to the %mdci block:

%mdci

DoSingularPT true

SingularPTThresh 0.05

MaxIter 50

end

the T amplitude iterations successfully converge in 25 iterations.

In conclusion, it occasionally happens that the T amplitude iterations do not converge. In these cases,

the singular PT/projection scheme can be activated (DoSingularPT true) to overcome these convergence

difficulties. Sometimes, like in the case of ferrocene, it is necessary to adjust the threshold for the singular

PT/projection procedure (SingularPTThresh) in order to achieve convergence. If the procedure still fails

with larger values of the threshold, then it might be necessary to revisit the definition of the state-averaged

CAS.
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9.31.4 An Orbital Selection Scheme for More Efficient Calculations of Excitation

Spectra with MR-EOM

As described in Ref. [191], the MR-EOM implementation in ORCA can make use of a sophisticated scheme

to discard inactive and virtual orbitals, which are not important for the description of the excited states

of interest. The selection of inactive core orbitals is based on the eigenvalues of the core orbital selection

density

Di′j′ = Dt
i′j′ +

Tr (Dt)

Tr (Ds) + Tr (Du)

(
Ds
i′j′ +Du

i′j′
)
, (9.332)

in which

Dt
i′j′ =

∑
w,a,b

tab
(1)

i′w

(
2tab

(1)

j′w − tba
(1)

j′w

)
, (9.333)

Ds
i′j′ =

∑
k,w,a

[
saw

(1)

i′k

(
2aw

(1)

j′k − saw(1)

kj′

)
+ saw

(1)

ki′

(
2saw

(1)

kj′ − saw(1)

j′k

) ]
, (9.334)

Du
i′j′ =

∑
k′,w,x

uwx
(1)

i′k′

(
2uwx

(1)

j′k′ − uwx
(1)

k′j′

)
, (9.335)

are respectively, the contributions from the first order tab
(1)

i′w , saw
(1)

i′k and uwx
(1)

i′k′ amplitudes (i.e. note that

all amplitudes have at least one active label). Similarly, the selection of virtual orbitals is based upon the

eigenvalues of the virtual orbital selection density

ρab = ρtab +
Tr (ρt)

Tr (ρs)
ρsab, (9.336)

in which, the contribution ρt, from the first order T2 amplitudes, is given by

ρtab =
∑
k,w,c

tac
(1)

wk

(
2tbc

(1)

wk − tcb
(1)

wk

)
+
∑
i′,w,c

tac
(1)

i′w

(
2tbc

(1)

i′w − tcb
(1)

i′w

)
, (9.337)

and the contribution ρs, from the first order S2 amplitudes, is given by

ρsab =
∑
i′,k,w

saw
(1)

i′k

(
2sbw

(1)

i′k − sbw(1)

ki′

)
+
∑
i′,w,x

saw
(1)

xi′

(
2sbw

(1)

xi′ − sbw
(1)

i′x

)
. (9.338)

Diagonalization of the core orbital selection density Di′j′ and the virtual orbital selection density ρab then

yields two respective sets of eigenvalues {λi′} and {λa}. We have found it useful to compute the ratios,

Rcore =

∑nexcluded
core

i′=0 λi′∑ncore

i′=0 λi′
× 100%, (9.339)

Rvirt =

∑nexcluded
virt
a=0 λa∑nvirt

a=0 λa
× 100%, (9.340)
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of the sum of the excluded eigenvalues to the sum over all eigenvalues. The orbital selection in the core and

virtual subspaces is then based upon the values of these ratios, as will be discussed below.

The orbital selection procedure is activated by adding the keyword OrbitalSelection to the first line of

input, e.g.

! MR-EOM def2-TZVPP VeryTightSCF OrbitalSelection

There are two threshold parameters CoreThresh and VirtualThresh, which are used to determine which

inactive core and virtual orbitals are to be discarded in the orbital selection procedure, respectively. Namely,

all inactive core orbitals for which Rcore < CoreThresh (i.e. Rcore as defined in Eq. 9.339) are discarded

and all virtual orbitals satisfying the condition Rvirt < VirtualThresh (i.e. Rvirt as defined in Eq. 9.340)

are discarded. The default values of these thresholds are CoreThresh = 0.0 (no core orbital selection) and

VirtualThresh = 1.0. However, the values of these parameters can easily be changed by redefining them in

the %mdci block:

%mdci

CoreThresh 1.0

VirtualThresh 1.0

end

Let us consider the calculation of the previous section (9.31.3) on ferrocene, with the orbital selection

procedure activated (using the default thresholds):

!MR-EOM def2-SVP OrbitalSelection

%casscf

nel 6

norb 5

mult 1,3

nroots 5,6

end

%mdci

DoSingularPT true

SingularPTThresh 0.05

MaxIter 50

end

%mrci

newblock 1 *

nroots 18

refs cas(6,5) end

end

newblock 3 *
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nroots 10

refs cas(6,5) end

end

end

* xyz 0 1

Fe 0.000000 0.000000 0.000000

C 0.000000 1.220080 1.650626

C -1.160365 0.377025 1.650626

C -0.717145 -0.987065 1.650626

C 0.717145 -0.987065 1.650626

C 1.160365 0.377025 1.650626

C 0.000000 1.220080 -1.650626

C 1.160365 0.377025 -1.650626

C 0.717145 -0.987065 -1.650626

C -0.717145 -0.987065 -1.650626

C -1.160365 0.377025 -1.650626

H 0.000000 2.306051 1.635648

H -2.193184 0.712609 1.635648

H -1.355463 -1.865634 1.635648

H 1.355463 -1.865634 1.635648

H 2.193184 0.712609 1.635648

H 0.000000 2.306051 -1.635648

H 2.193184 0.712609 -1.635648

H 1.355463 -1.865634 -1.635648

H -1.355463 -1.865634 -1.635648

H -2.193184 0.712609 -1.635648

end

The details of the orbital selection procedure are printed under the heading ORBITAL SELECTION:

------------------------------------------------

ORBITAL SELECTION

------------------------------------------------

T1 is NOT used in the construction of the orbital selection densities

Factor (in percent) for inactive (core) orbital selection ... 0.000000000

Factor (in percent) for virtual orbital selection ... 1.000000000

Inactive orbitals before selection: 15 ... 44 ( 30 MO’s/ 60 electrons)

Virtual orbitals before selection: 50 ... 220 (171 MO’s )

Inactive orbitals after selection: 15 ... 44 ( 30 MO’s/ 60 electrons)

Virtual orbitals after selection: 50 ... 126 ( 77 MO’s )

-------------------------------------------

TIMINGS FOR THE ORBITAL SELECTION PROCEDURE

-------------------------------------------

Total Time for Orbital Selection ... 98.492 sec
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First Half Transformation ... 93.948 sec ( 95.4%)

Second Half Transformation ... 2.752 sec ( 2.8%)

Formation of Orbital Selection Densities ... 1.775 sec ( 1.8%)

Core Orbital Selection ... 0.001 sec ( 0.0%)

Virtual Orbital Selection ... 0.009 sec ( 0.0%)

Finalization of Orbitals ... 0.007 sec ( 0.0%)

Comparing the number of virtual orbitals before the orbital selection procedure (171) with the number that are

left after orbital selection (77), we see that more than half have been discarded (94). The canonical calculation

(without orbital selection) takes 149373 seconds to run and yields the following excitation energies:

-------------------

TRANSITION ENERGIES

-------------------

The lowest energy is -1648.190045042 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 1 -1 0 0 0.000 0.000 0.0

1 3 -1 0 1 65.110 1.772 14289.9

2 3 -1 1 1 65.110 1.772 14289.9

3 3 -1 2 1 70.413 1.916 15454.0

4 3 -1 3 1 70.413 1.916 15454.0

5 3 -1 4 1 95.979 2.612 21065.0

6 3 -1 5 1 95.979 2.612 21065.0

7 1 -1 1 0 105.302 2.865 23111.1

8 1 -1 2 0 105.302 2.865 23111.1

9 1 -1 3 0 107.034 2.913 23491.4

10 1 -1 4 0 107.034 2.913 23491.4

11 1 -1 5 0 160.595 4.370 35246.6

12 1 -1 6 0 160.596 4.370 35246.6

13 3 -1 6 1 164.694 4.482 36146.1

14 3 -1 7 1 165.379 4.500 36296.6

15 3 -1 8 1 165.379 4.500 36296.6

16 3 -1 9 1 171.464 4.666 37632.1

17 1 -1 7 0 208.587 5.676 45779.6

18 1 -1 8 0 208.587 5.676 45779.6

19 1 -1 9 0 213.093 5.799 46768.6

20 1 -1 10 0 213.093 5.799 46768.6

21 1 -1 11 0 216.225 5.884 47456.0

22 1 -1 12 0 220.230 5.993 48334.9

23 1 -1 13 0 220.230 5.993 48334.9

24 1 -1 14 0 224.583 6.111 49290.3

25 1 -1 15 0 224.583 6.111 49290.3

26 1 -1 16 0 237.914 6.474 52216.0

27 1 -1 17 0 237.914 6.474 52216.0

In contrast, the calculation with the orbital selection procedure activated runs in 28977 seconds (a factor of 5
speedup) and produces the following excitation energies:

-------------------

TRANSITION ENERGIES
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-------------------

The lowest energy is -1647.788478559 Eh

State Mult Irrep Root Block mEh eV 1/cm

0 1 -1 0 0 0.000 0.000 0.0

1 3 -1 0 1 65.112 1.772 14290.4

2 3 -1 1 1 65.134 1.772 14295.3

3 3 -1 2 1 70.520 1.919 15477.3

4 3 -1 3 1 70.520 1.919 15477.3

5 3 -1 4 1 96.105 2.615 21092.7

6 3 -1 5 1 96.134 2.616 21099.0

7 1 -1 1 0 105.415 2.868 23136.0

8 1 -1 2 0 105.450 2.869 23143.5

9 1 -1 3 0 107.294 2.920 23548.3

10 1 -1 4 0 107.294 2.920 23548.3

11 1 -1 5 0 161.082 4.383 35353.4

12 1 -1 6 0 161.094 4.384 35356.0

13 3 -1 6 1 164.786 4.484 36166.4

14 3 -1 7 1 165.465 4.503 36315.4

15 3 -1 8 1 165.465 4.503 36315.5

16 3 -1 9 1 171.542 4.668 37649.1

17 1 -1 7 0 208.853 5.683 45838.0

18 1 -1 8 0 208.853 5.683 45838.0

19 1 -1 9 0 213.419 5.807 46840.1

20 1 -1 10 0 213.419 5.807 46840.1

21 1 -1 11 0 216.526 5.892 47521.9

22 1 -1 12 0 220.611 6.003 48418.4

23 1 -1 13 0 220.611 6.003 48418.5

24 1 -1 14 0 225.135 6.126 49411.5

25 1 -1 15 0 225.136 6.126 49411.5

26 1 -1 16 0 238.388 6.487 52320.1

27 1 -1 17 0 238.388 6.487 52320.1

We note that the excitation energies in the orbital selection procedure agree very nicely with those of

the canonical calculation. However, the total energies are significantly different, as we currently have not

implemented a procedure to correct them. Hence, the following warning is very important.

WARNING

• The orbital selection procedure should only be used for the calculation of excitation energies. Total

energies computed with the orbital selection procedure have not been corrected and can differ greatly

from the canonical results.

Before leaving the discussion of the orbital selection procedure, we note that there is also a keyword

PrintOrbSelect, which can be added to the %mdci block in order to print the eigenvalues of the inactive

core orbital selection and virtual orbital selection densities and the corresponding values of Rcore and Rvirt

defined in Eqs. 9.339 and 9.340, respectively. This is useful if one wants to manually select the orbitals to

discard in the orbital selection procedure by adjusting the values of CoreThresh and VirtualThresh. We

note that the program terminates after printing. In the case of the calculation on ferrocene, if we modify the

%mdci block to read
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%mdci

DoSingularPT true

SingularPTThresh 0.05

MaxIter 50

PrintOrbSelect True

end

we find the following information in the ORBITAL SELECTION section of the output (only the first 50 values

for the virtual orbital selection density are shown here):

Eigenvalues and corresponding R_core values for the core orbital selection density

Orbital Eigenvalue R_core

0 0.00026936 0.419318

1 0.00027080 0.840883

2 0.00038739 1.443947

3 0.00038739 2.047011

4 0.00040299 2.674355

5 0.00040299 3.301700

6 0.00077636 4.510285

7 0.00086085 5.850394

8 0.00086085 7.190503

9 0.00091850 8.620358

10 0.00091850 10.050213

11 0.00112826 11.806598

12 0.00115561 13.605563

13 0.00137961 15.753236

14 0.00137961 17.900908

15 0.00139093 20.066210

16 0.00139093 22.231512

17 0.00143349 24.463072

18 0.00143350 26.694633

19 0.00148539 29.006985

20 0.00148539 31.319338

21 0.00173415 34.018940

22 0.00224131 37.508054

23 0.00224132 40.997171

24 0.00533017 49.294785

25 0.00533019 57.592429

26 0.00658679 67.846267

27 0.00662033 78.152314

28 0.00701718 89.076149

29 0.00701719 100.000000

Eigenvalues and corresponding R_virt values for the virtual orbital selection density

Orbital Eigenvalue R_virt

0 0.00000119 0.000450

1 0.00000119 0.000899

2 0.00000134 0.001404

3 0.00000134 0.001909

4 0.00000136 0.002423

5 0.00000177 0.003091



784 9 Detailed Documentation

6 0.00000178 0.003764

7 0.00000178 0.004437

8 0.00000215 0.005248

9 0.00000224 0.006096

10 0.00000224 0.006944

11 0.00000238 0.007844

12 0.00000347 0.009154

13 0.00000347 0.010465

14 0.00000364 0.011841

15 0.00000386 0.013299

16 0.00000396 0.014793

17 0.00000396 0.016287

18 0.00000437 0.017937

19 0.00000437 0.019587

20 0.00000499 0.021472

21 0.00000499 0.023357

22 0.00000794 0.026354

23 0.00000794 0.029352

24 0.00000819 0.032447

25 0.00000819 0.035543

26 0.00000927 0.039044

27 0.00000927 0.042546

28 0.00001002 0.046332

29 0.00001002 0.050119

30 0.00001137 0.054415

31 0.00001137 0.058711

32 0.00001158 0.063086

33 0.00001158 0.067461

34 0.00001381 0.072678

35 0.00001381 0.077894

36 0.00001417 0.083249

37 0.00001417 0.088604

38 0.00001465 0.094137

39 0.00001495 0.099785

40 0.00001495 0.105432

41 0.00001554 0.111302

42 0.00001554 0.117172

43 0.00001623 0.123303

44 0.00001689 0.129685

45 0.00001754 0.136310

46 0.00001754 0.142934

47 0.00001805 0.149752

48 0.00001805 0.156570

49 0.00002111 0.164546

.

.

.

In conclusion, the orbital selection scheme provides a more efficient way to calculate accurate excitation

spectra within the framework of MR-EOM. It can be used to extend the applicability of this approach to

larger systems and we expect it to be much more effective in larger systems where the chromophore is localized

to a small part of the molecule. We reiterate that it is currently limited to the calculation of excitation

energies and should not be used if one is interested in total energies.
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9.31.5 Nearly Size Consistent Results with MR-EOM by Employing an MR-CEPA(0)

Shift in the Final Diagonalization Procedure

One drawback of the MR-EOM methodology is that it is not size-extensive (or size-consistent). The size-

extensivity errors arise due to the final uncontracted MR-CI diagonalization step. Namely, they result

from the components of the eigenvectors of the transformed Hamiltonian, which lie outside of the CASSCF

reference space (e.g. 1h, 1p, etc. configurations). As more of the excitation classes are included through

the successive similarity transformations of the Hamiltonian, the size of the final diagonalization manifold is

greatly decreased resulting in much smaller size-extensivity errors upon going from MR-EOM-T|T†-h-v to

MR-EOM-T|T†|SXD|U-h-v. To illustrate this, let us consider the O2—O2 dimer where the O2 molecules are

separated by a large distance. For the O2 monomer, we employ a minimal active space consisting of 2 electrons

distributed amongst the two π∗ orbitals and we only consider the ground 3Σ−g state (no state-averaging). In

the MR-EOM calculations, we also calculate the higher lying 1∆g and 1Σ+
g singlet states. For example, the

input file for the MR-EOM-T|T†|SXD|U-h-v calculation is given by:

!MR-EOM AUG-CC-PVTZ EXTREMESCF

%casscf

nel 2

norb 2

nroots 1

mult 3

end

%mdci

MaxIter 300

STol 1e-12

end

%mrci

newblock 1 *

nroots 3

refs cas(2,2) end

end

newblock 3 *

nroots 1

refs cas(2,2) end

end

end

* xyz 0 3

O 0.00000000 -0.00000000 -0.60500000

O -0.00000000 0.00000000 0.60500000

*

In the case of the dimer, we take the reference state as the coupled quintet state which is formed as the
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product 3Σ+
g ⊗ 3Σ+

g of the monomer states. We note that at large separation, in the non-interacting limit, the

dimer state energies can be decomposed as the sum of monomer state energies. There are various possibilities,

taking into account the degeneracies of the various states:

1. a singlet, a triplet and a quintet with energy E(3Σ−g + 3Σ−g ),

2. four triplets with energy E(3Σ−g + 1∆g),

3. two triplets with energy E(3Σ−g + 1Σ+
g ),

4. four singlets with energy E(1∆g + 1∆g),

5. four singlets with energy E(1∆g + 1Σ+
g ),

6. a singlet with energy E(1Σ+
g + 1Σ+

g ).

Hence, in the final diagonalization step of the MR-EOM calculation, we must ask for 10 singlets, 7 triplets

and 1 quintet. The input file for the MR-EOM-T|T†|SXD|U-h-v calculation on the dimer is given by:

!MR-EOM AUG-CC-PVTZ EXTREMESCF

%casscf

nel 4

norb 4

nroots 1

mult 5

etol 1e-13

gtol 1e-13

end

%mdci

MaxIter 300

STol 1e-12

end

%mrci

newblock 1 *

nroots 10

refs cas(4,4) end

end

newblock 3 *

nroots 7

refs cas(4,4) end

end

newblock 5 *

nroots 1

refs cas(4,4) end

end

end
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* xyz 0 5

O 0.00000000 0.00000000 -500.60500000

O 0.00000000 -0.00000000 -499.39500000

O -0.60500000 0.00000000 500.00000000

O 0.60500000 -0.00000000 500.00000000

*

In Table 9.18, we have compiled the results of the size consistency test, taking the difference of the dimer

state energies (at large separation) and the sum of the monomer state energies (in mEh). It is evident

that as more excitation classes are included in the similarity transformed Hamiltonian and the size of the

final diagonalization manifold is decreased, the size-consistency errors decrease. Of particular note are the

results for the MR-EOM-T|T†|SXD|U-h-v approach (only includes 1h and 1p configurations in the final

diagonalization manifold), for which the largest deviation is 1.25× 10−2 mEh. The much larger deviations

for the MR-EOM-T|T†|SXD-h-v approach clearly demonstrate the large effect that the 2h excitations have

on the size-consistency errors.

Table 9.18: Test for size consistency in MR-EOM: Differences in energy (in mEh) between the O2—
O2 dimer energies (at large separation) and the sum of the monomer energies for the
ground state and various excited states. The results were obtained in an aug-cc-pVTZ
basis using minimal active spaces.

T|T†-h-v T|T†|SXD-h-v (with 1h1p) T|T†|SXD-h-v T|T†|SXD|U-h-v

∆E(3Σ−g + 3Σ−g ) 12.74 2.77 1.11 1.00 × 10−5

∆E(3Σ−g + 1∆g) 14.20 3.84 1.85 1.54 × 10−4

∆E(3Σ−g + 1Σ+
g ) 17.21 5.52 2.83 4.13 × 10−4

∆E(1∆g + 1∆g) 15.69 3.10 2.31 5.26 × 10−3

∆E(1∆g + 1Σ+
g ) 18.83 7.52 4.76 5.89 × 10−3

∆E(1Σ+
g + 1Σ+

g ) 22.34 10.75 7.31 1.25 × 10−2

In order to reduce the size-consistency errors, one can make use of the MR-CEPA(0) shift in the final

diagonalization step. This MR-CEPA(0) shift can easily be activated by adding the line

citype mrcepa_0

to the beginning of the %mrci block. The results of the size-consistency test with the use of the MR-CEPA(0)

shift are tabulated in Table 9.19. For each of the methods, we see a marked improvement over the results

of Table 9.18, which do not make use of the MR-CEPA(0) shift. The greatest improvement occurs in the

MR-EOM-T|T†|SXD-h-v and the MR-EOM-T|T†|SXD|U-h-v results. Namely, the errors in the former

case are on the order of nano Hartrees, while the errors in the MR-EOM-T|T†|SXD|U-h-v results are not

detectable (sub nano Hartree), as the energy is only printed with nine decimal places. It is interesting to note

that upon adding the 1h1p configurations to the diagonalization manifold in the MR-EOM-T|T†|SXD-h-v

calculations (i.e. with 1h1p), the size-consistency errors increase greatly. Hence, it appears that the use of
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the MR-CEPA(0) shift is most effective at reducing the size-consistency errors resulting from the presence

of the 1h, 1p and 2h configurations in the final diagonalization manifold. In any case, one can easily take

advantage of this approach to obtain nearly size-consistent results with both the MR-EOM-T|T†|SXD-h-v

and MR-EOM-T|T†|SXD|U-h-v methods.

Table 9.19: Test for size consistency in MR-EOM, using the MR-CEPA(0) shift: Differences in
energy (in mEh) between the O2—O2 dimer energies (at large separation) and the
sum of the monomer energies for the ground state and various excited states. The
results were obtained in an aug-cc-pVTZ basis using minimal active spaces and the
MR-CEPA(0) shift was applied in the final diagonalization in each case.

.

T|T†-h-v T|T†|SXD-h-v (with 1h1p) T|T†|SXD-h-v T|T†|SXD|U-h-v

∆E(3Σ−g + 3Σ−g ) 2.75 × 10−3 0.01 2.00 × 10−6 0.00

∆E(3Σ−g + 1∆g) 0.06 0.07 0.00 0.00

∆E(3Σ−g + 1Σ+
g ) 0.14 0.15 4.00 × 10−6 0.00

∆E(1∆g + 1∆g) 0.21 0.22 1.00 × 10−6 0.00

∆E(1∆g + 1Σ+
g ) 0.42 0.44 5.00 × 10−6 0.00

∆E(1Σ+
g + 1Σ+

g ) 0.82 0.87 9.00 × 10−6 0.00

9.32 Simulation and Fit of Vibronic Structure in Electronic Spectra,

Resonance Raman Excitation Profiles and Spectra with the

orca asa Program

In this section various aspects of the simulation and fit of optical spectra, including absorption, fluorescence,

and resonance Raman are considered. This part of the ORCA is fairly autonomous and can also be used in a

data analysis context, not only in a “quantum chemistry” mode. The program is called orca asa, where

ASA stands for “Advanced Spectral Analysis”. The program was entirely designed by Dr. Taras Petrenko.

The general philosophy is as follows: An ORCA run produces the necessary data to be fed into the orca asa

program and writes an initial input file. This input file may be used to directly run orca asa in order to

predict an absorption, fluorescence or resonance Raman spectrum. Alternatively, the input file may be edited

to change the parameters used in the simulations. Last – but certainly not least – the orca asa program can

be used to perform a fit of the model parameters relative to experimental data.

All examples below are taken from the paper:

Petrenko, T.; Neese, F. (2007) Analysis and Prediction of Absorption Bandshapes, Fluorescence

Bandshapes, Resonance Raman Intensities and Excitation Profiles using the Time Dependent

Theory of Electronic Spectroscopy. J. Chem. Phys., 127, 164319

Which must be cited if you perform any work with the orca asa program!
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9.32.1 General Description of the Program

The program input comprises the following information: (1) model and specification of the model parameters

characterizing the electronic structure of a molecule, as well as lineshape factors; (2) spectral ranges and

resolution for simulations; (3) specification of vibrational transitions for rR excitation profile and spectra

generation; (4) certain algorithm-selecting options depending on the model; (5) fitting options.

All optional parameters (1)-(3) are given in the %sim block, and fitting options are in the %fit block. The

model parameters are specified within various blocks that will be described below. The program orca asa is

interfaced to ORCA and inherits its input style. The input for orca asa run can be also generated upon

ORCA run.

The current implementation features so called “simple”, “independent mode, displaced harmonic oscillator”

(IMDHO), and “independent mode, displaced harmonic oscillator with frequency alteration” (IMDHOFA)

models.

9.32.2 Spectral Simulation Procedures: Input Structure and Model Parameters

9.32.2.1 Example: Simple Mode

This model represents the simplest approach which is conventionally used in analysis of absorption spectra.

It neglects vibrational structure of electronic transitions and approximates each individual electronic band

by a standard lineshape, typically a Gaussian, Lorentzian or mixed (Voigt) function. This model can only

make sense if vibrational progressions are not resolved in electronic spectra. Upon this approximation

the intensity of absorption spectrum depends on the energy of the incident photon (EL), the electronic

transition energy (ET ), the transition electric dipole moment (M, evaluated at the ground-state equilibrium

geometry). Lineshape factors are specified by homogeneous linewidth Γ and standard deviation parameter

σ corresponding to Gaussian distribution of transition energies. The following example illustrates a simple

input for simulation of absorption bandshapes using various intensity and lineshape parameters.
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# example001.inp

#

# Input file to generate absorption spectrum consisting

# of 3 bands with different lineshape factors:

#

# 1. Lorentzian centered at 18000cm**-1 (damping factor Gamma= 100 cm**-1)

# 2. Gaussian centered at 20000cm**-1

# (standard deviation Sigma= 100 cm**-1)

# 3. Mixed Gaussian-Lorentzian band representing Voigt profile

# centered at 21000 cm**-1

%sim

Model Simple

# Spectral range for absorption simulation:

AbsRange 17000.0, 23000.0

# Number of points to simulate absorption spectrum:

NAbsPoints 2000

end

#---------------------------------------------------------------------------

# Transition Gamma Sigma Transition Dipole Moment (atomic unit)

# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz

#---------------------------------------------------------------------------

$el_states

3 # number of electronic states

1 18000.0 100.00 0.0 1.0 0.0 0.0

2 20000.0 0.00 100.0 1.0 0.0 0.0

3 22000.0 50.00 50.0 1.0 0.0 0.0

The parameters of of the final electronic states reached by the respective transitions are specified in the

$el states block. The spectral range and resolution used in the calculation are defined by the AbsRange

and NAbsPoints keywords in %sim block. The calculation of the absorption spectrum is automatically

invoked if NAbsPoints>1. After the orca asa run you will find in your directory file example001.abs.dat

containing absorption spectrum in simple two-column ASCII format suitable to be plotted with any spread-

sheet program. Absorption spectra corresponding to individual electronic transitions are stored in file

example001.abs.as.dat ( the suffix “as” stands for “All States”).

The output of the program run also contains information about oscillator strengths and full-width-half-

maximum (FWHM) parameters corresponding to each electronic band:

----------------------------------------------

State EV fosc Stokes shift

(cm**-1) (cm**-1)

----------------------------------------------

1: 18000.00 0.054676 0.00

2: 20000.00 0.060751 0.00

3: 22000.00 0.066826 0.00
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Figure 9.35: Absorption spectrum generated after orca asa run on file example001.inp. Three
bands have different lineshape pararameters. Note that although all transitions are
characterized by the same transition electric dipole moment their intensities are scaled
proportionally to the transition energies.

----------------------------------------

BROADENING PARAMETETRS (cm**-1)

----------------------------------------

State Gamma Sigma FWHM

----------------------------------------

1: 100.00 0.00 200.00

2: 0.00 100.00 235.48

3: 50.00 50.00 180.07

Note that although all three types of lineshape functions are symmetric this is not true for the overall shapes

of individual absorption bands since the extinction coefficient (absorption cross-section) is also proportional to

the incident photon energy. Therefore, if the linewidth is larger than 10% of the peak energy the asymmetry

of the electronic band can be quite noticeable.

9.32.2.2 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO

Model

The IMDHO model is the simplest approach that successfully allows for the prediction of vibrational structure

in electronic spectra as well as rR intensities for a large variety of real systems. This model assumes:

1. harmonic ground- and excited-state potential energy surfaces;

2. origin shift of the excited-state potential energy surface relative to the ground-state one;

3. no vibrational frequency alteration or normal mode rotation occurs in the excited state;

4. no coordinate dependence of the electronic transition dipole moment.
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In addition to the parameters that enter the “Simple model” defined above it requires some information

about the vibrational degrees of freedom. The required information consists of the ground-state vibrational

frequencies {ωgm} and (dimensionless) origin shifts {∆mi}, where i and m refer to electronic states and

normal modes respectively. ∆ is expressed in terms of dimensionless normal coordinates. Accordingly, for the

IMDHO model one has to specify the following blocks

• The $el states block contains the parameters ET ,Γ, σ,M for each electronic state. By default ET is

assumed to be adiabatic minima separation energy. Alternatively, it can be redefined to denote for the

vertical transition energy.This is achieved by specifiying the keyword EnInput=EV in the %sim block.

• A $vib freq gs block specifies ground-state vibrational frequencies.

• A $sdnc block contains parameters {∆mi} in matrix form such that the i-th column represents the

dimensionless displacements along all normal modes for the i-th excited-state PES.

The file example002.inp provides the input for simulation of absorption and fluorescence spectra of a system

characterized by significant displacements of the excited-state origin along 5 normal coordinates.

# example002.inp

#

# Input file for simulation of vibrational structure

# in absorption and fluorescence spectra assuming

# origin shift of excited PES along 5 normal coordinates.

# The simulated spectra closely reproduce the experimental

# optical bandshapes for the tetracene molecule.

#

%sim

Model IMDHO

# spectral range for absorption simulation (cm**-1)

AbsRange 20000.0, 27000.0

NAbsPoints 2000 # number of points in absorption spectrum

# spectral range for simulation of fluorescence (cm**-1)

FlRange 22000.0, 16000.0

NFlPoints 2000 # number of points in fluorescence spectrum

# the following options require the spectra to be normalized

# so that their maxima are equal to 1.0

AbsScaleMode Rel

FlScaleMode Rel # default for fluorescence

# for absorption spectrum the default option is AbsScaleMode= Ext

# which stands for extinction coefficient

end

#---------------------------------------------------------------------------

# Transition Gamma Sigma Transition Dipole Moment (atomic unit)

# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz

#---------------------------------------------------------------------------

$el_states

1
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1 21140.0 50.00 100.0 1.0 0.0 0.0

# Block specifying Stokes Shift parameter for each electronic state

# This information is optional

$ss

1 # number of excited states

1 300.0 # the Stokes shift for the 1st electronic transition

# Block providing the values of VIBrational FREQuencies

# for 5 Ground-State normal modes.

# Obligatory for IMDHO and IMDHOFA models.

$vib_freq_gs

5

1 310.0

2 1193.0

3 1386.0

4 1500.0

5 1530.0

# Block specifying origin Shift of the excite-state PES

# along each normal mode in terms of the ground-state

# Dimensionless Normal Coordinates

# Obligatory for IMDHO and IMDHOFA models.

$sdnc

5 1

1

1 0.698

2 -0.574

3 0.932

4 -0.692

5 0.561

The calculation of absorption and fluorescence spectra is automatically invoked if the parameters NAbsPoints>1

and NFlPoints>1. The input file also contains the optional block $ss which specifies the Stokes shift λ

for each electronic transition. This parameter is equal to the energy separation between the 0-0 vibrational

peaks in the absorption and fluorescence spectra as shown in Figure 9.36 . In general λ accounts for solvent

induced effects as well as unresolved vibrational structure corresponding to low-frequency modes that are not

specified in the input. Note that we have specified parameters AbsScaleMode=Rel and FlScaleMode=Rel in

%sim block in order to ensure that the simulated spectra are normalized to unity. The calculated absorption

and fluorescence spectra are stored in example002.abs.dat and example002.fl.dat files, respectively.

9.32.2.3 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOFA

Model

IMDHOFA (Independent Mode Displaced Harmonic Oscillators with Frequency Alteration) is based on the

same assumptions as the IMDHO model except for vibrational frequency alteration in excited state can

take place. The file example003.inp features almost the same input parameters as example002.inp. The

IMDHOFA model is invoked by the keyword Model=IMDHOFA in the %sim block. Additionally, one has to

provide the obligatory block $vib freq es. It contains the excited-state vibrational frequencies {ωemi} in
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Figure 9.36: Absorption and fluorescence spectra generated after orca asa run on the file
example002.inp. If the homogeneous broadening is set to be Γ = 10 cm−1 one can
resolve underlying vibrational structure and identify various fundamental and combi-
nation transitions.

matrix form such that the i-th column represents the vibrational frequencies of all normal modes for the i-th

excited-state PES.

# Block providing the values of VIBrational FREQuencies

# for 5 Excited-State normal modes.

# Obligatory for IMDHOFA model.

$vib_freq_es

5 1 # number of modes and number of excited states

1

1 410.0

2 1293.0

3 1400.0

4 1600.0

5 1730.0
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Figure 9.37: Absorption and fluorescence spectra generated after orca asa run on the file
example003.inp. Also, the high-resolution spectra corresponding to homogeneous
broadening Γ = 10 cm−1 are shown.

9.32.2.4 Example: Modelling of Effective Broadening, Effective Stokes Shift and

Temperature Effects in Absorption and Fluorescence Spectra within the IMDHO

Model

For the IMDHO model the orca asa is capable to model absorption and emission spectra in the finite-

temperature approximation. While the keyword Model=IMDHO assumes the zero-temperature approximation,

the value of Model=IMDHOT invokes the calculation of the spectra for the finite temperature which is specified

by the paramter TK in the block %sim:

# example004.inp

#

#

%sim

Model IMDHOT

TK 300 # temperature (in Kelvin)

# spectral range for absorption simulation (cm**-1)

AbsRange 18000.0, 35000.0

NAbsPoints 5000 # number of points in absorption spectrum

# spectral range for simulation of fluorescence (cm**-1)

FlRange 22000.0, 10000.0

NFlPoints 5000 # number of points in fluorescence spectrum

# the following options require the spectra to be normalized

# so that their maxima are equal to 1.0

AbsScaleMode Rel

FlScaleMode Rel # default for fluorescence

end
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#---------------------------------------------------------------------------

# Transition Gamma Sigma Transition Dipole Moment (atomic unit)

# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz

#---------------------------------------------------------------------------

$el_states

1

1 21140.0 50.00 100.0 1.0 0.0 0.0

# Block specifying Stokes Shift parameter for each electronic state

$ss

1 # number of excited states

1 300.0 # the Stokes shift for the 1st electronic transition

# Block providing the values of VIBrational FREQuencies

# for 10 Ground-State normal modes.

$vib_freq_gs

10

1 30.0

2 80.0

3 100.0

4 120.0

5 130.0

6 140.0

7 160.0

8 200.0

9 310.0

10 1300.0

# Block specifying origin Shift of the excite-state PES

# along each normal mode in terms of the ground-state

# Dimensionless Normal Coordinates

$sdnc

10 1

1

1 2.5

2 2.0

3 1.8

4 1.9

5 1.5

6 1.9

7 2.4

8 1.9

9 2.5

10 0.9

This example illustrates a typical situation in large molecules which feature a number of low frequency modes

with significant values of dimensionless displacements for a given excited-state PES. In the case of high density

of vibrational states with frequencies below or comparable to the intrincic value of FWHM (determined

by Γ and σ) the vibrational progression is unresolved, whereby the spectra become very diffuse and show

large separation between the maxima of absorption and emission spectra (Figure 9.37). Besides, upon the

condition hνi 6 kT the effective bandwidths and positions of maxima in the spectra can be strongly subject

to temperature effects.
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Figure 9.38: Absorption and fluorescence spectra for T=0 K (blue) and T=300 K (red) generated
after orca asa run on the file example004.inp. Black lines show spectra corresponding
to the case where all low-frequency modes were excluded from the calculation.

The effective Stokes shift and linewidth parameters which are evaluated in the simple self-consistent procedure

are given in the output of the orca asa run:

------------------------------------------------------------------------------

State E0 EV fosc Stokes shift Effective Stokes shift

(cm**-1) (cm**-1) (cm**-1) (cm**-1)

------------------------------------------------------------------------------

1: 21140.00 24535.85 0.074529 300.00 7091.70

-----------------------------------------------------------------------------------------------

BROADENING PARAMETETRS (cm**-1)

-----------------------------------------------------------------------------------------------

Intrinsic Effective

State -------------------------- --------------------------------------------------------

Sigma FWHM

Gamma Sigma FWHM --------------------------- ---------------------------

0K 298.15K 300.00K 0K 298.15K 300.00K

-----------------------------------------------------------------------------------------------

1: 50.00 100.00 293.50 1125.34 1411.13 1413.57 2703.84 3376.75 3382.48

Note that the evaluation of the effective parameters is rather approximate and these values can noticeable

deviate from those which can be directly deduced from the calculated spectra. However, such an information

usually provides the proper order of magnitude of the effective vibronic broadening and Stokes shift. As

indicated in the program output above, the effective bandshape has predominantly a Gaussian character

which varies with the temperature so that σ = 1125 cm−1 (T = 0 K) and σ = 1414 cm−1 (T = 300 K). Indeed,

as shown in Figure 9.39 the absorption spectrum at T = 300 K can be well fitted using Gaussian lineshape

with σ = 1388 cm−1 (FWHM= 3270 cm−1). One can see that at higher temperatures the deviation between

the spectrum and its Gauss fit becomes even smaller.

In molecules the normal distribution of the electronic transition energies in the ensemble would give rise to a

Gaussian bandshape of the absorption band. However, the corresponding standard deviation is expected to

be of the order of 100 cm−1, whereby a typical Gaussian bandwidth of the order of 1000 cm−1 appears to
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result from unresolved vibronic progression. In general, this statement is supported by quantum chemical

calculation of the model parameters. In principle the effective bandwidth parameters can also be used for

characterization and assignement of individual electronic bands.

Figure 9.39: Absorption spectrum (blue) for T = 300 K generated after orca asa run on the file
example004.inp. Red line represents the Gauss-fit of the calculated spectrum.

9.32.2.5 Example: Modelling of Absorption and Resonance Raman Spectra for the 1-1Ag →
1-1Bu Transition in trans-1,3,5-Hexatriene

The hexatriene molecule is characterized by 9 totally-symmetric normal modes which dominate vibrational

structure in absorption and are active in rR spectra corresponding to the strongly dipole-allowed 1−1 Ag →
1−1 Bu transition around 40000 cm−1 . Except for some peculiarities related to the neglect of normal mode

rotations in the excited state the optical spectra are quite satisfactorily described by the IMDHO model.

The following input exemplifies simulation of absorption spectrum and rR spectra for an arbitrary predefined

number of excitation energies.

#

# example005.inp

#

# input for simulation of absorption and resonance Raman spectra

# using experimental values of transition energy and displacement

# parameters corresponding to the strongly allowed 1-1Ag 1-1Bu transition

# in trans-1,3,5-hexatriene

#

%sim

Model IMDHO

AbsRange 38000.0, 48000.0

NAbsPoints 2000

AbsScaleMode Rel

# resonance Raman intensities will be calculated

# for all vibrational states with excitation number

# up to RamanOrder:

RamanOrder 4
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# excitation energies (cm**-1) for which rR spectra will be calculated:

RRSE 39500, 39800, 41400

# full width half maximum of Raman bands in rR spectra (cm**-1):

RRS_FWHM 10

RSRange 0, 5000 # spectral range for simulation of rR spectra (cm**-1)

NRRSPoints 5000 # number of points to simulate rR spectra (cm**-1)

end

$el_states

1

1 39800.0 150.00 0.0 1.0 0.0 0.0

$vib_freq_gs

9

1 354.0

2 444.0

3 934.0

4 1192.0

5 1290.0

6 1305.0

7 1403.0

8 1581.0

9 1635.0

$sdnc

9 1

1

1 0.55

2 0.23

3 0.23

4 0.82

5 0.485

6 0.00

7 0.085

8 0.38

9 1.32

After the orca asa run the following files will be created:

• example005abs.dat contains the simulated absorption spectrum. It is shown in Figure 9.40.

• example005.o4.rrs.39500.dat, example005.o4.rrs.39800.dat and example005.o4.rrs.41400.dat

contain the simulated rR spectra for excitation energies at 39500, 39800 and 41400 cm−1, respec-

tively. The suffix “o4” stands for the order of Raman scattering specified in the input by keyword

RamanOrder=4. The rR specta are shown in Figure 9.41.

• example005.o4.rrs.39500.stk, example005.o4.rrs.39800.stk and example005.o4.rrs.41400.stk

provide Raman shifts and intensities for each vibrational transition. Corresponding vibrational states

are specified by the quantum numbers of excited modes.
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Figure 9.40: Absorption spectrum corresponding to 1 −1 Ag → 1 −1 Bu transition in trans-1,3,5-
hexatriene generated after orca asa run on the file example005.inp.

Figure 9.41: Resonance Raman spectra for 3 different excitation energies which fall in resonance
with 1−1 Ag → 1−1 Bu transition in trans-1,3,5-hexatriene.

NOTE

• By default the program provides rR spectra on an arbitrary scale since only relative rR intensities

within a single rR spectrum are of major concern in most practical cases. However, one can put rR

spectra corresponding to different excitation energies on the same intensity scale by providing the
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keyword RSISM=ASR in %sim block (RSISM – Raman Spectra Intensity Scaling Mode; ASR – All

Spectra Relative). By default RSISM=SSR (SSR – Single Spectrum Relative) for which each rR spectrum

is normalized so that the most intense band in it has intensity 1.0. The relative intensities of bands

in rR spectra measured for different excitation energies can be compared if they are appropriately

normalized relative to the intensity of a reference signal (e.g. Raman band of the solvent). We also

keep in mind the possibility to extend our methodology in order to provide the absolute measure of rR

intensities in terms of the full or differential cross-sections.

• Within the harmonic model, for a single electronic state neither relative rR intensities nor absorption

bandshapes in the case of AbsScaleMode=Rel do depend on the values of the electronic transition

dipole moment (unless it is precisely zero).

In the example above resonance Raman spectra have been generated for all vibrational transitions with

total excitation number up to the value specified by the parameter RamanOrder. Its is also possible to make

explicit specification of vibrational states corresponding to various fundamental, overtone and combination

bands via the $rr vib states block. In such a case rR spectra involving only these vibrational transitions

will be generated separately.

$rr_vib_states 5 # total number of vibrational transitions

1

modes 1

quanta 1; # final vibrational state for the fundamental band corresponding to mode 1

2

modes 9

quanta 1; # final vibrational state for the fundamental band corresponding to mode 9

3

modes 3, 4

quanta 1, 1; # final vibrational state for the combination band involving single

# excitations in modes 3 and 4

4

modes 5

quanta 3; # final vibrational state for the second overtone band corresponding to

# mode 5

5

modes 1, 5,9

quanta 1,2, 1; # final vibrational state for the combination band involving single

# excitations in modes 1 and 2, and double excitation in mode 5

Each vibrational transition is specified via the subblock which has the following structure:

k

modes m1,m2,...mn

quanta q1,q2,...qn;

This means that the k-th transition is characteriezed by excitation numbers qi for modes mi so that

corresponding Raman shift is equal to ν =
∑
qiνi, where νi is vibrational frequency of the mode mi.

After the orca asa run the following files will be created in addition:
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• example005.us.rrs.39500.dat, example005.us.rrs.39800.dat and example005.us.rrs.41400.dat

contain the simulated rR spectra involving only vibrational transitions specified in the $rr vib states

block, for excitations energies at 39500, 39800 and 41400 cm−1, respectively. The suffix “us” stands for

“User specified vibrational States”.

• example005.us.rrs.39500.stk, example005.us.rrs.39800.stk and example005.us.rrs.41400.stk

provide Raman shifts and intensities for each vibrational transition specified in the $rr vib states

block.

9.32.2.6 Example: Modelling of Absorption Spectrum and Resonance Raman Profiles for the

1-1Ag → 1-1Bu Transition in trans-1,3,5-Hexatriene

The following example illustrates an input for simulation of absorption bandshape and resonance Raman

profiles (RRP):

#

# example006.inp

#

# input for simulation of absorption and resonance Raman profiles

# using experimental values of transition energy and displacement

# parameters corresponding to the strongly allowed 1-1Ag 1-1Bu transition

# in trans-1,3,5-hexatriene

#

%sim

Model IMDHO

AbsRange 38000.0, 48000.0

NAbsPoints 2000

AbsScaleMode Rel

RRPRange 38000.0, 48000.0 # spectral range for simulation of

# rR profiles (cm**-1)

NRRPPoints 2000 # number of points for simulation of rR profiles

CAR 0.8

RamanOrder 2

end

$el_states

1

1 39800.0 150.00 0.0 1.0 0.0 0.0

$vib_freq_gs

9

1 354.000000
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2 444.000000

3 934.000000

4 1192.000000

5 1290.000000

6 1305.000000

7 1403.000000

8 1581.000000

9 1635.000000

$sdnc

9 1

1

1 0.55

2 0.23

3 0.23

4 0.82

5 0.485

6 0.00

7 0.085

8 0.38

9 1.32

$rr_vib_states 5 # total number of vibrational transitions

1

modes 1

quanta 1;

2

modes 9

quanta 1;

3

modes 3, 4

quanta 1, 1;

4

modes 5

quanta 3;

5

modes 1, 5,9

quanta 1,2, 1;

The keyword RamanOrder=2 will invoke generation of rR profiles for all vibrational transitions with total

excitation number up to 2 in the range of excitation energies specified by the keywords RRPRange and

NRRPPoints. Likewise, rR profiles for the vibrational states given in the $rr vib states block will be

generated separately. Since in most cases only relative rR intensities are important, and one would be

interested to compare absorption bandshape and shapes of individual rR profiles, the keyword CAR = 0.8 is

used to scale rR profiles for all vibrational transitions by a common factor in such a way that the ratio of the

maximum of all rR intensities and the maximum of absorption band is equal to 0.8.

After the orca asa run the following files will be created:

• example006.abs.dat contains the simulated absorption spectrum (Figure 9.42).

• example006.o1.rrp.dat and example006.o2.rrp.dat contain rR profiles for vibrational transitions

with total excitation numbers 1 and 2, respectively. RR profiles for all fundamental bands (from the
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file example006.o1.rrp.dat) are shown in Figure 9.42.

• example006.o1.info and example006.o1.info contain specification of vibrational transitions with

total excitation numbers 1 and 2, respectively, as well as corresponding Raman shifts.

• example006.us.rrp.1.dat--example006.us.rrp.5.dat contain rR profiles for vibrational transitions

1–5 specified in the $rr vib states block.

Figure 9.42: Absorption spectrum and resonance Raman profiles of fundamental bands correspond-
ing to 1−1 Ag → 1−1 Bu transition in trans-1,3,5-hexatriene.

9.32.3 Fitting of Experimental Spectra

9.32.3.1 Example: Gauss-Fit of Absorption Spectrum

An absorption spectrum basically consists of a number of absorption bands. Each absorption band corresponds

to a transition of the ground electronic state to an excited electronic state. In molecules such transitions

are usually considerably broadened. In many cases there will be overlapping bands and one would need

to deconvolute the broad absorption envelope into contributions from individual transitions. Within the

“Simple model” the orca asa program enables fit of an absorption spectrum with a sum of standard lineshape

functions (Gaussian, Lorentzian) or more general Voigt functions. In most cases, one simply performs a

“Gauss-Fit”. That is, it is assumed that the shape of each individual band is that of a Gaussian function. Then

one applies as many (or as few) Gaussians as are necessary for an accurate representation of the absorption

envelope. In order to explain the fitting procedures within the “Simple model” let us consider an experimental

absorption spectrum in Figure 9.43:
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Figure 9.43: Experimental absorption spectrum. Bars indicate transition energies which were used
for the initial guess in the input for spectral fitting.

As shown in Figure 9.43 one can identify roughly 7 electronic bands. The initial estimates of transition energies

corresponding to the maxima and shoulders in the absorption spectrum (indicated by bars in Figure 9.43)

and rather approximate values of inhomogeneous broadening and transition dipole moment components are

specified in the $el states block of the input file for the spectral fitting:

# example007.inp

#

# Input file for fitting of experimental absorption spectrum

#

%sim

model Simple

end

%fit

Fit true # Global flag to turn on the fit

AbsFit true # Flag to include absorption into the fit

method Simplex

WeightsAdjust true

AbsRange 0.0, 100000.0 # absorption spectral range to be included in the fit;

# in the present case all experimental points

# will be included

AbsName "absexp.dat" # name of the file containing experimental

# absorption spectrum in a simple two-column

# ASCII format

ExpAbsScaleMode Ext # This keyword indicates that the experimental

# absorption intensity is given in terms of
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# the extinction coefficient. This is important

# for the proper fitting of transition dipole

# moments and oscillator strengths

NMaxFunc 10000 # maximum number of function evaluations in simplex

# algorithm

MWADRelTol 1e-5 # Relative Tolerance of the Mean Weighted Absolute

# Difference (MWAD) function which specifies the

# convergence criterion

E0Step 500.00 # initial step for the transition energies

# in the simplex fitting

TMStep 0.5 # initial step for the transition dipole moments

# in the simplex fitting

E0SDStep 500.0 # initial step for the inhomogeneous linewidth (Sigma)

# in the simplex fitting

end

# ! Parameters specified in the $el_states block

# are used as initial guess in the fit

#---------------------------------------------------------------------------

# Transition Gamma Sigma Transition Dipole Moment (atomic unit)

# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz

#---------------------------------------------------------------------------

$el_states

7

1 11270 0.0 1000.00 1.0000 0.0000 0.0000

2 15100 0.0 1000.00 1.0000 0.0000 0.0000

3 20230 0.0 1000.00 1.0000 0.0000 0.0000

4 27500 0.0 1000.00 1.0000 0.0000 0.0000

5 31550 0.0 1000.00 1.0000 0.0000 0.0000

6 37070 0.0 1000.00 1.0000 0.0000 0.0000

7 39800 0.0 1000.00 1.0000 0.0000 0.0000

# the integer values specified in $el_states_c block indicate parameters

# in the $el_states block to be varied

$el_states_c

7

1 1 0 1 1 0 0

2 2 0 2 2 0 0

3 3 0 3 3 0 0

4 4 0 4 4 0 0

5 5 0 5 5 0 0

6 6 0 6 6 0 0

7 7 0 7 7 0 0

The functionality of the constraint block $el states c should be understood as follows: 1) 0 flag indicates
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that the corresponding parameter in the $el state block will not be varied in the fitting; 2) if the number

corresponding to a certain parameter coincides with the number of the corresponding electronic state this

parameter will be varied independently. Thus, the block $el states c in the input indicates that all transition

energies, inhomogeneous linewidths and x-components of the transition electric dipole moment will be varied

independently, while homogeneous linewidths, y- and z-components of the transition dipole moment will be

fixed to their initial values.

The following considerations are important:

• Since in conventional absorption spectroscopy one deals with the orientationally averaged absorption

cross-section, the signal intensity is proportional to the square of the transition electric dipole moment

|M|2. Thus, the intensities do not depend on the values of the individual components of M as long

as |M|2 = const. Therefore, we have allowed to vary only Mx components. Otherwise there can be

problems in convergence of the fitting algorithm.

• The sum of the weights of experimental points which enter the mean absolute difference function

employed in the the minimization is always kept equal to the number of experimental points. In the

case of equidistant experimental photon energies all weights are assumed to be equal. However, in

experimental electronic spectra the density of spectral points can increase significantly upon going from

high- to low-energy spectral regions, which is due to the fact that experimental absorption spectra are

initially acquired on the wavelength scale. In such a case the quality of the fit can be noticeably biased

towards low-energy spectral region. Therefore, it is advisable to adjust relative weights of experimental

points according to the their density which is controlled by the keyword WeightsAdjust in the %fit

block. Although this parameter is not crucial for the present example, in general, it will provide a

more balanced fit.

• The parameters E0Step, TMStep, E0SDStep in the %fit block specify the initial dimension of the

simplex in the space of ET ,M, σ and should roughly correspond to the expected uncertainty of initial

guess on these parameters in the $el states block relative to their actual values. The quality of the

fit can noticeably deteriorate if the parameters specifying initial steps are too low or too high.

The fit run of orca asa on file example007.inp will converge upon approximately 3600 function evaluations

(for MWADRelTol=1e-5). The results of the fit will be stored in file example007.001.inp which has the same

structure as the input file example007.inp. Thus, if the fit is not satisfactory and/or it is not fully converged

it can be refined in a subsequent orca asa run upon which file example007.002.inp will be created, and so

on. Some model parameters in intermediate files can be be additionally modified and/or some constraints can

be lifted or imposed if so desired. The output file example007.001.inp will contain fitted model parameters

stored in the $el states block:

$el_states

7

1 11368.24 0.00 732.50 1.6290 0.0000 0.0000

2 15262.33 0.00 495.17 -0.2815 0.0000 0.0000

3 19500.08 0.00 1023.39 0.2300 0.0000 0.0000

4 26969.01 0.00 1832.30 1.4089 0.0000 0.0000

5 31580.41 0.00 1440.87 1.8610 0.0000 0.0000

6 35769.07 0.00 1804.02 1.5525 0.0000 0.0000

7 39975.11 0.00 1909.38 2.4745 0.0000 0.0000
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The overall quality of the fit is determined by the parameter MWAD which upon convergence reaches the

value of ≈0.009 (MWAD stands for Mean Weighted Absolute Difference).

After the orca asa run files absexp.fit.dat and absexp.fit.as.dat will be created. Both files contain the

experimental and fitted spectra which are shown in Figure 9.44 . In addition, the file absexp.fit.as.dat

will contain individual contributions to the absorption spectrum corresponding to different excited states.

Figure 9.44: Comparison of the experimental (black curve) and fitted (red) absorption spectra
corresponding to the fit run of orca asa on the file example007.inp. Blue curves
represent individual contributions to the absorption spectrum from each state.

Since there is a noticeable discrepancy between the fitted and experimental spectra around 13000 cm−1 (Figure

9.44) it is worthwhile to refine the fit after adding parameters for a new state in the file example007.001.inp:

$el_states

8

1 11368.24 0.00 732.50 1.6290 0.0000 0.0000

... ... ...

8 13280.00 0.00 1000.00 1.000 0.0000 0.0000

$el_states_c

8

1 1 0 1 1 0 0

... ... ...

8 8 0 8 8 0 0

Actually, the character of the discrepancy in the present case is very similar to that in Figure 9.41 (section

9.32.2.4) where a vibronically broadened absorption spectrum was fitted with a Gaussian lineshape. Thus,

the poor fit in the region around 1300 cm−1 is most likely due to the essentially asymmetric character of the

vibronic broadening rather than to the presence of another electronic band.



9.32 The orca asa Program 809

Figure 9.45: Comparison of the experimental (black) and fitted (red) absorption spectra corre-
sponding to the fit run of orca asa on the file example007.001.inp. Blue curves
represent individual contributions to the absorption spectrum from each state.

As shown in Figure 9.45 the refined fit leads to much better agreement between the experimental and fitted

absorption spectra (MWAD=0.0045).

Due to some peculiarities of the simplex algorithm for function minimization, you can still refine the fit by

rerunning orca asa on the file example007.002.inp! This leads to an even lower value of the parameter

MWAD= 0.0038, and therefore to better agreement of experimental and fitted spectra (even though the

previous run has been claimed to be converged).

It is also possible to perform a fit using the same value of inhomogeneous linewidth for all electronic states.

For this purpose one needs to choose as a guess the same linewidth parameters in the $el states block:

$el_states

8

1 11118.58 0.00 1000.0 1.0687 0.0000 0.0000

2 13673.38 0.00 1000.0 -0.5530 0.0000 0.0000

3 21267.40 0.00 1000.0 0.3675 0.0000 0.0000

4 27024.71 0.00 1000.0 1.4041 0.0000 0.0000

5 31414.74 0.00 1000.0 1.7279 0.0000 0.0000

6 35180.77 0.00 1000.0 1.6246 0.0000 0.0000

7 39985.52 0.00 1000.0 2.5708 0.0000 0.0000

8 11665.01 0.00 1000.0 1.2332 0.0000 0.0000

In addition the constraint block should be modified as follows:

$el_states_c

8

1 1 0 1 1 0 0

2 2 0 1 2 0 0

3 3 0 1 3 0 0
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4 4 0 1 4 0 0

5 5 0 1 5 0 0

6 6 0 1 6 0 0

7 7 0 1 7 0 0

8 8 0 1 8 0 0

The constraint parameters for the inhomogeneous broadening were chosen to be 1, which means that formally

σ1 corresponding to the first state is varied independently while the linewidths {σi} for other bands are

varied in such a way that the ratios σi/σ1 are kept fixed to their initial values, whereby the same linewidth

parameter will be used for all states.

Figure 9.46: Comparison of the experimental (black) and fitted (red) absorption spectra corre-
sponding to the fit run of orca asa on the file example007.002.inp in which equal
broadening was assumed for all electronic bands. Blue curves represent individual
contributions to the absorption spectrum from each state.

One can see (Figure 9.46) that the assumption of equal linewidths for all electronic bands leads to a rather

pronounced deterioration of the quality of the fit in the low-energy spectral range (MWAD=0.017). Apparently,

this discrepancy can be fixed assuming more electronic states at higher energies.

NOTE

• The homogeneous linewidth parameters can also be included in the fit in a similar way. However, one

can see that in most cases they appear to be much smaller than corresponding Gaussian linewidth

parameters.

• Gauss-fit of absorption spectra is coventionally performed assuming the same linewidth parameters

for all bands. However, since a large portion of Gaussian broadening is mainly due to the unresolved

vibronic structure in the spectra which can significantly vary depending on the nature of transition,

the assumption of unequal Gaussian bandwidths seems to be a physical one.
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9.32.3.2 Example: Fit of Absorption and Resonance Raman Spectra for 1-1Ag → 1-1Bu

Transition in trans-1,3,5-Hexatriene

Below we provide an example of the fit of the lineshape parameters and {∆m} corresponding to the strongly

dipole-allowed 1-1Ag →1-1Bu transition in hexatriene. It is known that the most intense bands in rR spectra

correspond to the most vibronically active in absorption spectrum. For the IMDHO model this correlation

is determined by the values of {∆m}. Thus, the larger ∆, the larger is the rR intensity of a given mode

and the more pronounced is the progression in the absorption spectrum corresponding to this mode. In

principle, if all vibrational transitions in absorption are well resolved it is possible to determine {∆m} by

a fit of the absorption spectrum alone. In practice this task is ambiguous due to the limited resolution of

the experimental absorption spectra. The observation of a rR spectrum enables the identification of the

vibrational modes that are responsible for the progression in the absorption spectrum, as well as a quantitative

analysis in terms of {∆m}. The file example006.inp provides a brute-force example on how to approach

the fit employing the minimal possible experimental information: 1) An absorption spectrum; 2) relative

rR intensities of fundamental bands for a given excitation energy. The rR spectrum upon the excitation in

resonance with the 0-0 vibronic band at 39809 cm−1 is shown in Figure 9.35.

Figure 9.47: Experimental Resonance Raman spectrum corresponding to 1-1Ag → 1-1Bu transition
in trans-1,3,5-hexatriene.

The experimental rR spectrum has enabled the identification of seven vibrational modes that give rise to

the most intense resonance Raman bands. Therefore, they are expected to have the largest excited-state

displacements and the most pronounced effect on the vibrational structure of the absorption spectrum. Their

vibrational frequencies have been entered as input for the fit as shown below:

#

# example008.inp

#

# Input for fit of absorption and resonance Raman spectra

# corresponding to the strongly allowed 1-1Ag 1-1Bu transition

# in 1,3,5 trans-hexatriene.
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#

# Parameters to be varied:

# 1) adiabatic minima transiton energy

# 2) homogeneous linewidth (Gamma)

# 3) dimensionless normal coordinate displacements of the

# excited-state origin

#

%sim

Model IMDHO

end

%fit

Fit true # boolean parameter to switch on the fit

# boolean parameter to include experimental absorption

# spectrum in the fit:

AbsFit true

# boolean parameter to include experimental rR spectra

# specified in $rrs_exp block in the fit:

RRSFit true

AbsExpName "hex-abs.dat" # name of the file with experimental absorption

# spectrum

# the following value of keyword ExpAbsScaleMode

# indicates that only the shape of absorption band

# but not its total intensity will be accounted in the fit:

ExpAbsScaleMode Rel

# the weight of absorption relative to the total weight of

# rR intensities in the difference function to be minimized:

CWAR 5.0

NMaxFunc 1000 # maximum number of function evaluations in simplex

# algorithm

MWADRelTol 1e-4 # Relative Tolerance of the Mean Weighted Absolute

# Difference (MWAD) function which specifies the

# convergence criterion

SDNCStep 1.0

end

# The values specified in $el_states block serve as initial guess in the fit

$el_states

1

1 40000.0 200.00 0.0 1.0 0.0 0.0

# the integer values specified in $el_states_c block indicate parameters

# in $el_states block to be varied

$el_states_c
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1

1 1 1 0 0 0 0

# 7 totally symmetric vibrations which give rise to the most

# intense bands in the rR spectra are included into analysis.

# Experimental values of vibration frequencies are given:

$vib_freq_gs

7

1 354.0

2 444.0

3 934.0

4 1192.0

5 1290.0

6 1403.0

7 1635.0

# Initial guess for the values of dimensionless normal

# coordinate displacements of the excited-state origin

$sdnc

7 1

1

1 0.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0

7 0.0

# the integer values specified in $sdnc_c block indicate parameters

# in $sdnc block to be varied

$sdnc_c

7 1

1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

# specification of vibrational transitions and their intensities

# in experimental rR spectra:

$rrs_exp

1 # number of rR spectra

1 1 # start of the block specifying the 1st rR spectrum

Ex 39809.0 # excitation energy for the first rR spectrum

NTr 7 # number of vibrational transitions for which intensities are

# provided

1

int 10.0 1.0

modes 1

quanta 1;

2
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int 5.0 1.0

modes 2

quanta 1;

3

int 1.5 1.0

modes 3

quanta 1;

4

int 21.0 1.0

modes 4

quanta 1;

5

int 7.5 1.0

modes 5

quanta 1;

6

int 2.0 1.0

modes 6

quanta 1;

7

int 46.0 1.0

modes 7

quanta 1;

The input of rR intensities for an arbitrary number of excitation energies follows the keyword $rrs exp

block:

$rrs_exp

1 # number of rR spectra

1 1

The first “1” in the last line denotes the number of the rR spectrum for which specification starts below. If

the second number is the same as the number of the spectrum, then it means that only relative intensities

for the first rR spectrum are meaningful in the fit. If several spectra are given in the input then the second

number may have a different value, e.g.:

$rrs_exp

3 # number of rR spectra

1 2

...

This input is to be interpreted as indicating that 3 rR spectra are provided and the relative intensities for the

first spectrum are given on the same scale as the second one that will be accounted for in the fit. The value

of the excitation energies and the number of vibrational transitions specified are indispensable within the

blocks specifying intensities for each rR spectrum.

Following the number of vibrational transitions given by the keyword NTr one has to specify each vibrational

transition and its intensity. Thus, in the present case there are seven subblocks with the following structure:
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k int I W

modes m1,m2,...mn

quanta q1,q2,...qn;

This means that the k-th transition has intensity I and weight W in the mean absolute difference function

that is used for the minimization (W is an optional parameter). The following 2 lines specify the vibrational

transitions by providing excitation numbers qi for modes mi so that the corresponding Raman shift is equal

to ν =
∑
qiνi

, where νi is vibrational frequency of the mode mi.

The parameters that are to be varied are specified within the constraint blocks $el states c and $sdnc c.

Both blocks have the same structure and number of parameters as $el states and $sdnc, respectively. A

parameter from the $el states block is supposed to be independently varied if its counterpart from the

$el states c block is equal to the number of the electronic state. Likewise, a parameter from the $sdnc

block is supposed to be independently varied if its counterpart from the $sdnc c block is equal to the number

of the normal mode. Model parameters that are set to 0 in the corresponding constraint blocks are not varied

in the fit. The values of the following parameters may be important for the quality of the fit:

• CWAR in the %fit block specifies the weight of absorption relative to the weight of rR intensities in

the difference function to be minimized. If this parameter was not specified the fit would be almost

insensitive to the rR intensities in the input, since typically the number of experimental absorption

points is much larger than the number of rR transitions in the input. In most cases the value of CWAR

in the range 1.0–5.0 is a good choice since the error in the measured experimental intensity is expected

to be much smaller for absorption than for resonance Raman.

• SDNCStep in the %fit block specifies the initial dimension of the simplex in the space of {∆m} and

should roughly correspond to the expected uncertainty of initial guess on {∆m} in the $sdnc block

compared to their actual values. You can notice in the present example that if this parameter is too

large (>2.0) or too small (<0.4) the quality of the fit may significantly deteriorate

• Although the default initial dimensions of the simplex have reasonable values for different types of

parameters it may turn out to be helpful in some cases to modify the default values:

FREQGStep 10.0 # ground-state vibrational frequencies

FREQEStep 10.0 # excited-state vibrational frequencies

E0Step 300.0 # transition energies

SSStep 20.0 # Stokes shift

TMStep 0.5 # electronic transition dipole moment

GammaStep 50.0 # homogeneous linewidth

E0SDStep 50.0 # inhomogeneous linewidth

SDNCStep 1.0 # origin shift along dimensionless normal coordinate

The fit run of orca asa on the file example008.inp will converge upon approximately 700 function evaluations

(for MWADRelTol=1e-4). The results of the fit will be stored in file example008.001.inp which has the same

structure as the input file example008.inp. Thus, if the fit is not satisfactory and/or it is not fully converged

it can be refined in subsequent orca asa run upon which file example008.002.inp will be created, and so

on. Some model parameters in intermediate files can be be additionally modified and/or some constraints

can be lifted if so desired. The output file example008.001.inp will contain fitted displacement parameters

{∆m}stored in the $sdnc block:
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$sdnc

7 1

1

1 0.675000

2 -0.194484

3 -0.217527

4 0.811573

5 0.529420

6 -0.149991

7 1.314915

In the present example, these parameters are actually in very close agreement with those published for the

hexatriene molecule!

The overall quality of the fit is determined by the parameter MWAD which upon convergence reaches the

value of ≈0.027. The fitted rR intensities are presented in the commented lines next to the experimental rR

intensities in file example008.001.inp:

$rrs_exp

1

1 1 3.495285e+001

Ex 39809.00

NT 7

1

Int 10.0 1.0 # simulated intensity: 1.000982e+001

modes 1

quanta 1;

2

Int 5.0 1.0 # simulated intensity: 8.976285e-001

modes 2

quanta 1;

3

Int 1.5 1.0 # simulated intensity: 1.255880e+000

modes 3

quanta 1;

4

Int 21.0 1.0 # simulated intensity: 1.761809e+001

modes 4

quanta 1;

5

Int 7.5 1.0 # simulated intensity: 7.499749e+000

modes 5

quanta 1;

6

Int 2.0 1.0 # simulated intensity: 6.014466e-001

modes 6

quanta 1;

7

Int 46.0 1.0 # simulated intensity: 4.600071e+001

modes 7

quanta 1;

The file hex-abs.fit.dat will contain the experimental and fitted absorption spectra in ASCII format which

can be plotted in order to visualize the quality of absorption fit (Figure 9.48).
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Figure 9.48: Experimental (black) and fitted (red) absorption spectrum corresponding to 1-1Ag →
1-1Bu transition in 1,3,5 trans-hexatriene.

NOTE

• The more experimental rR intensities are included in the analysis the more reliable is the fit. In

principle it is possible to obtain fully consistent results even if only a limited number of vibrational

transitions is provided. However, in such a case it is desirable to include into analysis at least a single

Raman transition involving the mode for which ∆ is to be determined.

• The quality of the fit can be improved if the IMDHOFA model is invoked and excited-state vibrational

frequencies are allowed to vary.

• Due to the initial guess and dimension of the simplex, as well as some peculiarities of the sim-

plex algorithm for function minimization, you can still refine the fit by rerunning orca asa on file

example008.001.inp that may lead to an even lower value of the parameter MWAD = 0.021, and

therefore to better agreement of experimental and fitted spectra (even though the previous run has

been claimed to be converged).

• In this respect it appears to be wise to perform the fit in 3 steps:

1. Fit the preresonance region below the 0-0 vibronic band with a single Lorentzian band, from

which the adiabatic transition energy E0, and homogeneous linewidth Γ are obtained. The range

for fit of the absorption spectrum can be specified by the AbsRange keyword in the %fit block.

2. Fix E0 and Γ, and optimize {∆m} fitting the entire spectral range and rR intensities.

3. Lift constraints on E0 and Γ, and reoptimize simultaneously all parameters.
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9.32.3.3 Example: Single-Mode Fit of Absorption and Fluorescence Spectra for 1-1Ag →
1-1B2u Transition in Tetracene

In this section we provide an example and discuss the most important aspects of joint fit of fluorescence and

absorption spectra. Figure 9.49 displays the experimental emission and absorption spectra corresponding to

1-1Ag → 1-1B2u transition in tetracene.

Figure 9.49: Deconvoluted absorption (red) and fluorescence (blue) spectra of tetracene in cyclo-
hexane upon the assumption of a single vibronically active mode. The black solid lines
represent experimental spectra.

Both spectra show pronounced effective vibrational progressions that are dominated by 3 and 5 peaks,

respectively. As can be shown on the basis of quantum chemical calculations this progression has essentially

multimode character. However, the experimental spectra can be well fitted under the assumption of a single

vibronically active mode. The input has the following structure:

#

# example009.inp

#

# Parameters to be varied:

# 1) adiabatic minima transition energy

# 2) homogeneous and inhomogeneous linewidths

# 3) normal mode frequency and corresponding dimensionless displacement of the

# excited-state origin

#

%sim

Model IMDHO

EnInput E0 # we assume adiabatic minima separation energies

end

%fit

Fit true # global flag to turn on the fit

AbsFit true # flag to include absorption spectrum into the fit
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FlFit true # flag to include fluorescence spectrum into the fit

WeightsAdjust true

AbsRange 19000.0, 28000.0 # spectral range for absorption

# which will be included into the fit

FlRange 17800.0, 22300.0 # spectral range for absorption

# which will be considered in the fit

AbsName "absexp.dat" # name of the file containing experimental

# absorption spectrum in a simple two-column

# ASCII format

FlName "flexp.dat" # name of the file with experimental fluorescence spectrum

ExpAbsScaleMode Rel # flags indicating that only relative shapes of the

ExpFlScaleMode Rel # absorption and fluorescence bands will be fitted.

CWAF 1.000 # important parameter to have a balanced relative quality of fit

# of fluorescence and absorption

NMaxFunc 10000 # maximum number of function evaluations in simplex

# algorithm

MWADRelTol= 0.0001 # Relative Tolerance of the Mean Weighted Absolute

# Difference (MWAD) function which specifies the

# convergence criterion

TMStep 0.5 # initial step for the transition dipole moments

# in the simplex fitting

E0SDStep 500.0 # initial step for the inhomogeneous linewidth (Sigma)

FREQGStep 100.00 # initial step for the vibrational frequencies

E0Step 1000.0 # initial step for the transition energies

SSStep 10.0 # initial step for the Stokes shift

GammaStep 100 # initial step for the homogeneous linewidth

SDNCStep 0.5 # initial step for the displacement parameter

end

$el_states

2

1 21100.00 100.00 100.00 1.0000 0.0000 0.0000

2 24000.00 100.00 1000.00 1.0000 0.0000 0.0000

$el_states_c

2

1 1 1 1 0 0 0

2 2 2 2 2 0 0
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$abs_bool

2

1 1

2 1

$fl_bool

2

1 1

2 0

$ss

2

1 100.000000

2 0.000000

$ss_c

2

1 1

2 0

$vib_freq_gs

1

1 1500.0

$vib_freq_gs_c

1

1 1

$sdnc

1 2

1 2

1 2.0000000 0.000000

$sdnc_c

1 2

1 2

1 1 0

The parameter CWAF=1.0 in the %fit block specifies the weight of absorption relative to the weight of

fluorescence in the difference function to be minimized. If this parameter was not specified the quality of

the fit would be biased towards the spectrum with a larger number of experimental points. In some typical

situations where the error in the measured experimental intensity is expected to be smaller for absorption

than for emission it is desirable to choose the value of CWAF to be more than 1.0.

In order to account for a broad featureless background signal in the absorption spectrum above 24000 cm−1,

the second band was included into the analysis and approximated with a Voigt lineshape which means also

that the corresponding frequency in the $vib freq gs block and displacement parameter in the $sdnc block

are fixed to zero in the fit. Thus, the $el states block contains an initial guess on the transition energies,

transition electric dipole moments and linewidth parameters for 2 states:
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$el_states

2

1 21100.00 100.00 100.00 1.0000 0.0000 0.0000

2 24000.00 100.00 1000.00 1.0000 0.0000 0.0000

The initial value of the adiabatic minima separation energy for the first state was approximated by the

energy corresponding to the first vibronic peak in the absorption spectrum (21100 cm−1). The transition

energies and linewidth parameters are varied independently as indicated in the $el states c block. Since

we allow to fit only bandshapes, but not the overall intensities of the spectra, only relative absolute values

of the transition electric dipole moments of two bands are important. Therefore it is reasonable to fix all

components of the transition moment for the first state and vary only Mx component for the second one:

$el_states_c

2

1 1 1 1 0 0 0

2 2 2 2 2 0 0

Since we assume the absorption by both states and emission only from the first one, it is necessary to include

Boolean arrays $abs bool and $fl bool which specify states which will be included in the treatment of the

absorption and fluorescence spectra, respectively:

$abs_bool

2

1 1 # 1 indicates that the corresponding state will be included in the calculation of

2 1 # absorption

$fl_bool

2

1 1

2 0 # 0 indicates that the corresponding state will be excluded from the calculation

# of emission spectrum

We need also to vary the value of vibrational frequency of the mode which determines separation of vibrational

peaks in the spectra. This is done via the constraint block $vib freq gs c:

$vib_freq_gs_c

1

1 1

Note that it is meaningless to include into the treatment the Stokes shift for the second state which give rise

to the background signal in the absorption since the corresponding emission is not present. Therefore λ for

the second state is fixed to zero as indicated in the $ss block and its constraint counterpart $ss c:
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$ss

2

1 100.000000 # initialization of the Stokes shift for the 1st electronic state

2 0.000000

$ss_c

2

1 1 # the Stokes shift for the 1st electronic state will be varied in the fit

2 0 # the Stokes shift for the 2nd electronic state will be fixed in the fit

The fit run of orca asa on file example009.inp will converge upon approximately 700 function evaluations (for

MWADRelTol=1e-4). The file example009.001.inp will contain the fitted effective values of the vibrational

frequency and dimensionless displacement: ω = 1404 cm−1, ∆ = 1.35. One can notice that the fit is rather

poor in the low- and high-energy edges of the absorption and fluorescence spectra, respectively (Figure 9.49).

The source of this discrepancy is the single-mode approximation which was employed here. The quality of the

fit can be significantly improved assuming several modes with non-zero displacement parameters. Note that

in such a case the proper guess on the number of active modes and corresponding dimensionless displacements

can be deduced from quantum chemical calculations.

9.32.4 Quantum-Chemically Assisted Simulations and Fits of Optical Bandshapes

and Resonance Raman Intensities

In this section we finally connect the spectra simulation algorithms to actual quantum chemical calculations

and outline a detailed approach for the analysis of absorption, fluorescence and resonance Raman spectra

within the IMDHO model. Our procedure becomes highly efficient and nearly automatic if analytical

excited state derivatives with respect to nuclear displacements are available. However, this availability is not

mandatory and hence, spectral predictions may as well be achieved by means of normal mode scan calculations

for high-level electronic structure methods for which analytic gradients have not been implemented.

9.32.4.1 Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and

Resonance Raman Spectra for 1-1Ag → 1-1Bu Transition in trans-1,3,5-Hexatriene

The following input file for an ORCA run invokes the calculation of the excited-state origin displacements

along all normal modes by means of energy and excited state gradient calculations at the ground-state

equilibrium geometry. The method is valid for the IMDHO model for which the excited-state energy gradient

along a given normal mode and corresponding origin shift are related in a very simple way.

#

# example010.inp

#

# TDDFT BHLYP Normal Mode Gradient Calculation

#

# The keyword NMGrad invokes the normal mode gradient calculation

#

! RKS BHandHLYP TightSCF SV(P) NMGrad
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%cis NRoots 1

triplets false

end

%rr

# the nuclear Hessian must have been calculated before - for example by a

# DFT calculation.

HessName= "hexatriene.hess"

states 1 # Perform energy-gradient calculations for the 1st

# excited state.

Tdnc 0.005 # Threshold for dimensionless displacements to be

# included in the input file for spectral simulations

# generated at the end of the program run.

# By default Tdnc= 0.005

ASAInput true # Generate the input file for spectra simulations

end

* xyz 0 1

C -0.003374 0.678229 0.00000

H -0.969173 1.203538 0.00000

C 1.190547 1.505313 0.00000

H 2.151896 0.972469 0.00000

C 1.189404 2.852603 0.00000

H 0.251463 3.423183 0.00000

H 2.122793 3.426578 0.00000

C 0.003374 -0.678229 0.00000

H 0.969172 -1.203538 0.00000

C -1.190547 -1.505313 0.00000

H -2.151897 -0.972469 0.00000

C -1.189404 -2.852603 0.00000

H -0.251463 -3.423183 0.00000

H -2.122793 -3.426578 0.00000

*

In the ORCA run the TDDFT excited state gradient calculations are performed on top of a TDDFT

calculation. Note, that the numbers of the excited-states which have to be included into analysis and input

file for spectral simulations must be specified after the States keyword in the %rr block. They should also

be consistent with the required number of roots in the %tddft block. The 1-1Bu excited state appears to

be the first root in the TDDFT calculation. Therefore, NRoots=1 in the %tddft block, and States=1 in

the %rr block. One should also provide the name of the file containing the nuclear Hessian matrix via the

HessName keyword in the %rr block. Here we used the .hess file obtained in a frequency calculation at the

BHLYP/SV(P) level of theory.

After the ORCA calculation you will find in your directory a file called example010.asa.inp that is

appropriate to be used together with the orca asa program as defined in the preceding sections.

#

# example010.asa.inp

#

# ASA input

#
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%sim

model IMDHO

method Heller

AbsRange 5000.0, 100000.0

NAbsPoints 0

FlRange 5000.0, 100000.0

NFlPoints 0

RRPRange 5000.0, 100000.0

NRRPPoints 0

RRSRange 0.0, 4000.0

NRRSPoints 4000

RRS_FWHM 10.0

AbsScaleMode Ext

FlScaleMode Rel

RamanOrder 0

EnInput E0

CAR 0.800

end

%fit

Fit false

AbsFit false

FlFit false

RRPFit fsalse

RRSFit false

method Simplex

WeightsAdjust true

AbsRange 0.0, 10000000.0

FlRange 0.0, 10000000.0

RRPRange 0.0, 10000000.0

RRSRange 0.0, 10000000.0

AbsName ""

FlName ""

ExpFlScaleMode Rel

ExpAbsScaleMode Rel

CWAR -1.000

CWAF -1.000

NMaxFunc 100

MWADRelTol= 1.000000e-004

SFRRPSimStep= 1.000000e+002

SFRRSSimStep 1.000000e+002

FREQGStep 1.000000e+001
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FREQEStep 1.000000e+001

E0Step 3.000000e+002

SSStep 2.000000e+001

TMStep 5.000000e-001

GammaStep 5.000000e+001

E0SDStep 5.000000e+001

SDNCStep 4.000000e-001

end

$el_states

1

1 42671.71 100.00 0.00 1.0725 3.3770 -0.0000

$vib_freq_gs

12

1 359.709864

2 456.925612

3 974.521651

4 1259.779018

5 1356.134238

6 1370.721341

7 1476.878592

8 1724.259894

9 1804.572974

10 3236.588264

11 3244.034359

12 3323.831066

$sdnc

12 1

1

1 -0.594359

2 0.369227

3 -0.132430

4 -0.727616

5 0.406841

6 -0.105324

7 0.177617

8 -0.090105

9 -1.412258

10 0.048788

11 0.021438

12 0.008887

This input file can be used to construct theoretical absorption and rR spectra. In order to compare

experimental and theoretical rR spectra, it is necessary to use in both cases excitation energies

that are approximately in resonance with the same vibrational transitions in the absorption

spectrum. Therefore, in the case of the absorption spectrum with resolved or partially re-

solved vibrational structure it is necessary to modify the transition energies in the %el states

such that they coincide with the experimentally observed 0-0 vibrational peaks. It is also de-

sirable to roughly adjust homogeneous and, possibly, inhomogeneous linewidth parameters such that the

experimental and calculated absorption spectra show similar slopes in the preresonance region (below the

0-0 transition). Then the assignment of experimental rR spectra can be done on the basis of comparison
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with the theoretical rR spectra calculated for the corresponding experimental excitation energies. For the

sake of consistency and simplicity it is better to use those excitation energies which fall into the preresonace

region and/or are in resonance with the 0-0 transition. In the case of diffuse absorption spectra (i.e.

those not showing resolved vibrational structure) it is also necessary to adjust the theoretical

transition energies and linewidth parameters such that experimental and calculated positions

of absorption maxima roughly coincide, and corresponding slopes below the maxima have a

similar behavior. According to above mentioned considerations one needs to modify the %el states block

in the file example010.asa.inp:

$el_states

1

1 39808.0 150.00 0.00 1.0725 3.3770 -0.0000

The calculated absorption spectrum obtained by providing AbsScaleMode= Rel, AbsRange= 39000, 49000

and NAbsPoints= 2000 is shown in Figure 9.50. Upon comparison with the experimental spectrum one can

notice that the BHLYP functional gives relatively small discrepancies with somewhat lower intensity in the

low-frequency edge and larger intensity on the high-energy side of the spectrum. Besides, there is a noticeable

mismatch in the separation between individual vibronic peaks which is due to overestimation of vibrational

frequencies by the BHLYP functional (typically by ≈ 10%).

You can arbitrarily vary various normal coordinate displacements in %sdnc block within 10–30% of their values

in order to observe modifications of the calculated spectrum. This will tell you how these parameters influence

the spectrum and probably it will be possible to obtain better initial guesses for the fit. In the present

example you will find that reduction of the absolute value of the displacement parameter corresponding

to the ninth mode by ≈ 10%, and reduction of vibrational frequencies by ≈ 10% can noticeably improve

the spectral envelope. Such a quick analysis suggests that experimentally observed peaks in the absorption

spectrum represent different vibrational transitions corresponding to a single electronically excited state

rather than to different electronic excitations. This conclusion will be confirmed upon establishing the fact

that the absorption and rR spectra can be successfully fitted based on the assumption of a single electronic

transition.

In order to calculate the rR spectrum for experimental excitation energies you need to specify its value

through RRSE keyword in %sim block as well as possibly to modify the parameters related to the spectral

range and linewidth of rR bands which are suitable for comparison with the experimental rR spectrum:

# excitation energies (cm**-1) for which rR spectra will be calculated:

RRSE 39808

# full width half maximum of Raman bands in rR spectra (cm**-1):

RRS_FWHM 20

RSRange 0, 4000 # spectral range for simulation of rR spectra (cm**-1)

NRRSPoints 4000 # number of points to simulate rR spectra (cm**-1)

# resonance Raman intensities will be calculated

# for all vibrational states with excitation number

# up to RamanOrder:

RamanOrder 3
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Figure 9.50: Experimental and calculated at the BHLYP/SV(P) and B3LYP/SV(P) levels of theory
absorption (left panel) and rR spectra (right panel) corresponding to 1-1Ag → 1-1Bu

transition in trans-1,3,5-hexatriene.

The calculated rR spectrum is shown in Figure 9.50. In the input we have invoked the calculation of rR

intensities for the transitions with up to 3 vibrational quanta in the final vibrational state (RamanOrder =

3). Make sure that the rR intensity pattern in the given spectral range does not change noticeably upon

further increase of this parameter. Typically, the larger are the normal coordinate displacements the greater

order of Raman scattering is required in the calculation to account for all the most intense transitions in the

rR spectrum. The inclusion of vibrational transitions beyond the fundamentals is a particular feature of the

orca asa program.

Comparison of the calculated and experimental rR spectra (Figure 9.50) mainly shows discrepancies in

the values of the Raman shifts that are mainly related to the low accuracy of the vibrational frequencies

obtained at the BHLYP level (typically overestimated by ≈ 10%). However, the intensity patterns of the

calculated and experimental rR spectra show very nice agreement with experiment that is already sufficient

to assign the experimental peaks to individual vibrational transitions. This can be done upon examination of

file example010.asa.o3.rrs.39808.stk which provides intensity, Raman shift, and specification for each

vibrational transition. It is actually one of the most consistent procedures that enables one to identify

different fundamental, overtone and combination bands in the experimentally observed rR spectrum. Such an

assignment is a necessary prerequisite for the fit. The current example is relatively straightforward since the

spectral region 1–1700 cm−1 is actually dominated by fundamental bands while the most intense overtone and

combination transitions occur at higher frequencies. However, in many cases even the low-frequency spectral

range is characterized by significant contributions from overtone and combination bands that sometimes are

even more intense than fundamental transitions! Thus, quantum chemical calculations can greatly facilitate
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the assignment of experimental rR bands.

After having performed the assignment it is advisable to discard those modes from the analysis that are

not involved in any of the experimentally observed fundamental, overtone, or combination rR bands with

noticeable intensities. In the present example these are the modes 6, 8, 10–12 from the input file given

above. For these modes it is implied that the fitted displacement parameters are zero. You will find that

the calculated displacement values are rather small indeed. Also it is advisable to change the ground-state

vibrational frequencies in the $vib freq gs block to their experimental values.

Below is the modified input file for the fit run:

#

# example010-01.asa.inp

#

# ASA input

#

%sim

model IMDHO

method Heller

end

%fit

Fit true

AbsFit true

RRSFit true

AbsExpName "hex-abs.dat"

ExpAbsScaleMode Rel

CWAR 5.0

NMaxFunc 1000

SDNCStep 0.5

end

$el_states

1

1 39808.0 150.00 0.00 -0.8533 -3.3690 -0.0000

$el_states_c

1

1 1 1 0 0 0 0

$vib_freq_gs

7

1 354.0

2 444.0

3 934.0

4 1192.0

5 1290.0

6 1403.0

7 1635.0
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$sdnc

7 1

1

1 -0.594359

2 0.369227

3 -0.132430

4 -0.727616

5 0.406841

6 0.177617

7 -1.412258

$sdnc_c

7 1

1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

$rrs_exp

1

1 1

Ex 39809.0

NTr 11

1

int 10.0 1.0

modes 1

quanta 1;

2

int 5.0 1.0

modes 2

quanta 1;

3

int 1.5 1.0

modes 3

quanta 1;

4

int 21.0 1.0

modes 4

quanta 1;

5

int 7.5 1.0

modes 5

quanta 1;

6

int 2.0 1.0

modes 6

quanta 1;

7

int 46.0 1.0

modes 7
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quanta 1;

8

int 6.8 1.0

modes 1, 7

quanta 1, 1;

9

int 4.0 1.0

modes 2, 7

quanta 1, 1;

10

int 2.0 1.0

modes 3, 7

quanta 1, 1;

11

int 17.0 1.0

modes 7

quanta 2;

In addition to the experimental intensities of fundamental bands the input file also contains the information

about some overtone and combination transitions. Note that it is not really necessary to include all of them

them into the fit, in particular if some of the rR bands are strongly overlapping with each other.

Fitted normal coordinate displacements of the excited-state origin show nice agreement with the published

values:

$sdnc

7 1

1

1 -0.638244

2 0.455355

3 -0.229126

4 -0.854357

5 0.501219

6 0.197679

7 -1.292997

NOTE

• It is not really important to employ the BHLYP/SV(P) method in the frequency calculations in order to

obtain the .hess file (this was merely done to be consistent with the TDDFT/BHLYP/SV(P) method

for the excited-state model parameters calculation). The frequency calculations can for example be

carried out at the BP86/TZVP or RI-SCS-MP2/TZVP level of theory. This will provide displacements

pattern very similar to that of the BHLYP/SV(P) method, but much more accurate vibrational

frequencies which will further facilitate the assignment of rR spectra (Figure 9.50). However, such a

procedure can be inconsistent if the two methods give noticeably different normal mode compositions

and/or vibrational frequencies. From our experience it can lead to significant overestimation of the

excited-state displacements for some low-frequency modes.
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• It is known that predicted dimensionless normal coordinate displacements critically depend on the

fraction of the “exact” Hartree-Fock exchange (EEX) included in hybrid functionals. In general no

universal amount of EEX exists that provides a uniformly good description for all systems and states.

Typically, for a given molecule either the BHLYP/TZVP (50% of EEX) or B3LYP/TZVP (20% of EEX)

methods yields simulated spectra that compare very well with those from experiment if vibrational

frequencies are appropriately scaled.

9.32.4.2 Important Notes about Proper Comparison of Experimental and Quantum

Chemically Calculated Resonance Raman Spectra

In order to compare experimental and theoretical rR spectra, it is necessary to use in both cases

excitation energies that are approximately in resonance with the same vibrational transitions

in the absorption spectrum. Therefore, in the case of diffuse absorption spectra (i.e. those not showing

resolved vibrational structure) one needs to adjust the transition energies and linewidth paramters in the

%el states block such that the envelopes of the experimental and theoretical spectra rouhgly coincide, and

then to employ experimental values of excitation energies to construct theoretical rR spectra. Typically

in the case of diffuse absorption spectra rR profiles are rather smooth. Therefore, even though excitation

energies are not in resonance with the same vibrational transition in the absorption spectrum, the rR spectra

are not expected to vary significantly in the case of such mismatch.

In the case of the absorption spectrum with resolved or partially resolved vibrational structure it is necessary

to modify the transition energies in the %el states block such that the calculated and experimentally

observed 0-0 vibrational peaks coincide, and modify linewidth parameters so that the low-energy slopes in

the calculated and experimental spectra have a similar behavior.

Consider a single-mode model system for which “experimental” and calculated absorption spectra are shown

in Figure 9.51.

Comaprison of the calculated and experimental spectra shows that some adjustment of the linewidth

parameters is neceassy before construction of theoretical rR spectra. One can directly compare calculated and

experimental rR spectra upon the excitation at 16200 cm−1 which is in resonance with the 0-0 vibronic band.

However, it is not consistent to use experimental values of the excitation energy in the calculation of rR

spectrum which is in resonance with one of the other vibronic bands since the separation between vibrational

peaks in the experimental and calculated spectra is different whereby positions of the peaks in both spectra

do not coincide. Instead one should use the excitaition energy which corresponds to the same

vibronic peak in the calculated absorption spectrum as in the experimental one. Alternatively,

one can adjust theoretical value of vibrational frequency such that positions of corresponding vibronic peaks

in the spectra coincide, and then use experimental values of excitation energies for the calculation of rR

spectra.

9.32.4.3 Example: Normal Mode Scan Calculations of Model Parameters for 1-1Ag → 1-1Bu

Transition in trans-1,3,5-Hexatriene

If excited state gradients are not available (which is the case for many of the electronic structure methods

supported by ORCA), you have to resort to a more laborious procedure – single point calculations at

geometries that are displaced along the various normal modes of the system. This roughly corresponds to
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Figure 9.51: Experimental and theoretical absorption spectra for a single-mode model system. The
calculated spectrum is adjusted such that the position of 0-0 peak coincide with the
experimental one.

taking numerical derivatives – however, once this extra effort is invested more information can be obtained

from the calculation than what would be possible from an analytic derivative calculation.

The present example illustrates the application of normal mode scan calculations for the evaluation of excited

state harmonic parameters that are necessary to simulate optical spectra within the IMDHO model. This

method can be applied with any method like CIS, CASSCF, MRCI or TD-DFT.

The reference wavefunctions for the multireference calculations reported below are of the state-averaged

CASSCF (SA-CASSCF) type. The complete active space CAS(6,6) includes all 6 valence shell π-orbitals.

The average is taken over the first four states which was found necessary in order to include the ground state

and the strongly allowed 1-1Bustate.

#

# example011.inp

#

# CASSCF normal mode scan calculations

#

# first do single point RHF calculation

! RHF TZVP TightSCF

* xyz 0 1

C -0.002759 0.680006 0.000000

H -0.966741 1.204366 0.000000

C 1.187413 1.500920 0.000000
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H 2.146702 0.969304 0.000000

C 1.187413 2.850514 0.000000

H 0.254386 3.420500 0.000000

H 2.116263 3.422544 0.000000

C 0.002759 -0.680006 0.000000

H 0.966741 -1.204366 0.000000

C -1.187413 -1.500920 0.000000

H -2.146702 -0.969304 0.000000

C -1.187413 -2.850514 0.000000

H -0.254386 -3.420500 0.000000

H -2.116263 -3.422544 0.000000

*

# perform SA-CASSCF calculation upon appropriate rotation of MOs

$new_job

! TZVP TightSCF

%scf

rotate {23,27} end

end

%casscf

nel 6

norb 6

mult 1

nroots 4

end

* xyz 0 1

C -0.002759 0.680006 0.000000

H -0.966741 1.204366 0.000000

C 1.187413 1.500920 0.000000

H 2.146702 0.969304 0.000000

C 1.187413 2.850514 0.000000

H 0.254386 3.420500 0.000000

H 2.116263 3.422544 0.000000

C 0.002759 -0.680006 0.000000

H 0.966741 -1.204366 0.000000

C -1.187413 -1.500920 0.000000

H -2.146702 -0.969304 0.000000

C -1.187413 -2.850514 0.000000

H -0.254386 -3.420500 0.000000

H -2.116263 -3.422544 0.000000

*

# do normal mode scan calculations

# to map CASSCF ground and excited-state PESs

$new_job

! TZVP TightSCF NMScan

%casscf

nel 6

norb 6

mult 1
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nroots 4

end

%rr

HessName "hexatriene_bp86.hess"

NMList 10,11,18,24,26,28,29,31,32

NSteps 6

FreqAlter true

EnStep 0.0001

State 3

end

* xyz 0 1

C -0.002759 0.680006 0.000000

H -0.966741 1.204366 0.000000

C 1.187413 1.500920 0.000000

H 2.146702 0.969304 0.000000

C 1.187413 2.850514 0.000000

H 0.254386 3.420500 0.000000

H 2.116263 3.422544 0.000000

C 0.002759 -0.680006 0.000000

H 0.966741 -1.204366 0.000000

C -1.187413 -1.500920 0.000000

H -2.146702 -0.969304 0.000000

C -1.187413 -2.850514 0.000000

H -0.254386 -3.420500 0.000000

H -2.116263 -3.422544 0.000000

*

The file containing the hessian matrix ("hexatriene bp86.hess") was obtained from the BP86/TZVP

frequency calculations. The keyword NMList provides the list of the normal modes to be scanned. These

should be only the totally symmetric vibrations, since only they can be significant for absorption and resonance

Raman spectra within the constraints of the IMDHO model. The FreqAlter flag indicates whether frequency

alterations are assumed in the post-scan potential surface fit. The Parameter EnStep is used to select the

appropriate step during the scan calculations. The value is chosen such that the average energy change (in

Eh) in both directions is not less than this parameter.
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9.33 More on the Excited State Dynamics module

ORCA has now a module designed to calculate properties related to excited states named ORCA ESD. It can

be used to predict absorption/emission spectra, transition rates and resonant Raman spectra, based on a

path integral approach to the dynamic process [235]. It has some of the functionalities of ORCA ASA and even

more, as it will be discussed. What we do here is NOT a conventional dynamics with trajectories along time

points, we rather solve the equation for the transition rates or intensities depending on the different cases

considered.

This formulation works because there is an analytic solution to the path integral of the Multidimensional

Harmonic Oscillator and the assumption of Harmonic nuclear movement is critical. In many cases that

approximation does hold and the results are in very good agreement with the experiment. The general usage

of the ORCA ESD module and some examples are already presented on Sec. 8.21 and it is recommended to

read that before going into the details here. We now will discuss the specifics and keywords related to of each

part of the module. A complete keyword list can be found at the end of this section.

9.33.1 Absorption and Emission Rates and Spectrum

9.33.1.1 General Aspects of the Theory

The idea behind calculating the absorption or emission rates starts with the equation from the quantization

of the electromagnetic field for the transition rates between and initial and a final state:

k(ω)if =
4ω3n2

3~c3
|〈Ψi|µ̂|Ψf 〉|2δ(Ei − Ef ± ~ω) (9.341)

with ~ω being the energy of the photon, µ̂ the dipole operator and n the refractive index of the solvent, as

suggested by Strickler and Berg [237].

One way to obtain k(ω) is to compute it in the frequency domain, by calculating the Franck-Condon Factors

between all initial and final states that satisfy the Dirac delta in Eq. (9.341), considering the thermally

accessible initial states with the appropriate weight,

kobs =

∫
k(ω)dω, k(ω) =

∑
if

Pi(T )kif (ω), (9.342)

where Pi(T ) = e
− εi
kBT /Z is the Boltzmann population of a given initial state at temperature T , εi is the total

vibrational energy of state i and Z is the vibrational partition function. However, this can lead to a very

large number of states to be included, particularly if there are low frequency modes. In this work we will

take the a different approach and switch to the time domain, by using the Fourier Transform representation

of the Dirac delta,

δ(ω) =
1

2π

∫ +∞

−∞
eiωtdt, (9.343)

so that the equation to solve, in atomic units, is:

k(ω) =
2ω3

3πc3Z

∑
if

e
− εi
kBT 〈Θi|~µe|Θ̄f 〉〈Θ̄f |~µe|Θi〉

∫
ei(Ei−Ef−ω)tdt,
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with ~µe being the “electronic transition dipole” and |Θ〉 the vibrational wavefunction of the initial or final

state.

After some extra steps, redefinition of the time variable and insertion of a resolution of identity, it can be

shown that this equation is ultimately simplified to a Discrete Fourier Transform (DFT) of a correlation

function χ(t) with a timestep ∆t, multiplied by a prefactor α [235]:

k(ω) = α

∫
Tr(~µee−iĤτ ~µee−iĤτ̄ )ei∆Ete−iωtdt

= α

∫
χ(t)e−iωtdt

= 2α Re

∫ ∞
0

χ(t)e−iωtdt

' 2α∆t Re DFT{χ(t)}, (9.344)

and this correlation function is then calculated using path integrals analytically at each time point t.

If one considers that the electronic part of the transition dipole varies with nuclear displacements and we

allow for it to depend on the normal coordinates (Q), such as:

~µe(Q) = ~µe0 +
∑
i

∂~µe

∂Qi

∣∣∣∣
Q=0

Qi + . . . , (9.345)

we can even include vibronic coupling or the so-called Herzberg-Teller (HT) effect. The Frank-Condon (FC)

approximation keeps only the coordinate-independent term. The correlation function for the HT cases can

then be derived recursively from the FC one and the calculation is done quite efficiently. It is important to

say the one must choose ONE set of coordinates in order to expand the transition dipole. In our formulation,

it is always that of the FINAL state and that has some implications discussed below.

Other important aspect of this theory is that, in order to solve the path integrals, one has to work in one set

of coordinates, the initial (Q) or the final state ones (Q̄, with the bar indicating final coordinates). As we

have a transition matrix element, one set of coordinates have to be transformed into the other and it is easy

to show that they are related by

Q = JQ̄ + K. (9.346)

That was first proposed by Duschinsky in the late 1930s [236] with the Duschinsky rotation matrix J and the

displacement vector K defined as

J = LT
x L̄x, K = LT

x (q̄0 − q0), (9.347)

with Lx being the matrix containing the normal modes, here described in Cartesian coordinates (x), and q0

begin mass weighted coordinates (qi =
√
mixi).

The program runs by first reading and obtaining the initial and final state geometries and Hessians, then

computes the Duschinsky rotation matrix and displacement vector, calculates the derivatives for the transition

dipoles and computes the correlation function. After that, the DFT is done and the rates are obtained

and printed when necessary. As the intensities observed experimentally are proportional to the rates, the
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spectrum is also calculated and printed on a BASENAME.spectrum file. If PRINTLEVEL HIGH is requested

under %ESD, the correlation function is also printed on a BASENAME.corrfunc file.

OBS: The units for the Emission spectra are rather arbitrary, but for Absorption they are the experimental

“molar absorptivity (ε)” in L mol−1cm−1 [235]. Be aware that these are dependent on the line width of the

curves.

9.33.1.2 Approximations to the excited state PES

As already mentioned in Sec. 8.21, in order to predict the rates we need at least a ground state (GS) and an

excited state (ES) geometry and Hessian. In ORCA, we have seven different ways to approximate this ES

PES: AHAS, VH, VG, HHBS, HHAS, UFBS and UFAS. Those can can be choosen by setting the HESSFLAG

under %ESD. If you actually optimize the ES geometry and input the Hessian, that will be called an Adiabatic

Hessian (AH) method an no keyword must be given on the input.

OBS: In the present version, these approximations are only available for Absorption, Fluorescence and

resonant Raman. It can not be used for estimating triplets.

The idea behind these approximations is to do a geometry update step (∆S = −gH−1 for Quasi-Newton

and ∆S = −g(H + S)−1 for Augmented Hessian) to obtain the ES structure and somehow approximate the

ES Hessian. The gradient (g) and Hessian (H) used on the step are on column Step of Table 9.20 below,

with a description of the final ES Hessian:

Table 9.20: Methods used to estimate the ES PES

Method Step ES Hessian

AHAS ES grad + GS hessian calculated on the ES geometry

VH ES grad + ES hessian at GS geometry calculated on the GS geometry

VG (default) ES grad + GS hessian equal to GS Hessian

HHBS
ES grad + Hybrid ES Hessian on GS

geometry
Hybrid Hessian on GS geometry

HHAS ES grad + GS hessian Hybrid Hessian on ES geometry

UFBS
ES grad + Updated frequencies ES

Hessian on GS geometry

Updated frequencies ES Hessian on GS

geometry

UFAS ES grad + GS hessian
Updated frequencies ES Hessian on ES

geometry

OBS: Always use the GS geometry on the input file, equal to the one in the GSHESSIAN! If you asked for

OPT FREQ at the input, a .xyz file is generated with the same geometry found on the .hess. If you picked

the geometry from the .hess file, remember that it is in atomic units, so you have to use BOHRS on the main

input.

After the calculation of the ES PES, a file named BASENAME.ES.hess is printed and can be used in

future calculations. If there was any updates on the GS Hessian, like transition dipole derivatives, a

BASENAME.GS.hess is also printed.

• The step can be controlled with the GEOMSTEP flag, with QN or AUGHESS options.
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• Currently all ES Hessians are calculated numerically, if you want to change the parameters related to

the frequency calculations, you can do that under %FREQ (Sec. 8.3). The numerical gradient settings

are under %NUMGRAD (Sec. 9.21.5).

• The ES hybrid Hessian is calculated in the same way as described in Sec. 9.21.2, except that the

“model” Hessian is the GS one.

• The ES Hessian with updated frequencies is recalculated from the same GS normal modes, after an

update on the frequencies, as Hup = Lω2
upL

T . With L being the normal modes and ωup the updated

frequencies, with negative sign being kept after the square.

• The frequencies are updated depending on a calculation of the energy after a given step. If the ES

modes are equal to the GS, then a step over a coordinate δqi that would result in an energy difference

δE is given by δqi = (− gi√
ωi

+

√
g2i
ωi

+ 2δEωi)/ωi. The default δE used is 10−4 Eh, in general above

the error of the methods. If the error in energy after the step is larger than a threshold given by

the UPDATEFREQERR flag (default 0.20 or 20%), the gradients are calculated and the frequency

recomputed. If not not, that mode and frequency are assumed to be the same.

• The Updated Frequencies method can greatly accelerate the calculation of the Hessian, for much fewer

gradient calculation are necessary, although you do not correct the modes. Also, the derivatives over

the modes are already computed simultaneously.

• The expected energy error δE can be changed using the UF DELE flag.

• The default method is the VG, but the AHAS is more trustworthy for unknown systems, although a

lot heavier (Sec. 8.21.1.3 and [235]).

• Always check the sum of K2
i printed on the output. If that number is too high (above 8 or so), it

means that the geometries are too displaced and the theory might not work on these cases (check for

different coordinate systems then, Sec. 9.33.1.5).

• Also check for RMSD between the geometries after a step. If the difference is too big, there might be

problems with the step.

9.33.1.3 Mixing methods

In principle, it is possible to use different methods to compute different parts needed for the ORCA ESD module.

You could, for instance use (TD)DFT analytical gradients for the ground/excited state geometries and

Hessians and a more elaborate method such as STEOM-CCSD to get the energies and transition dipoles.

If you want to do that, just input the Hessians and use the DELE flag for the energy difference between

the states - at their own geometry! - and TDIP x,y,z to input the transition dipole. If there is SOC and

the transition dipole is complex, use TDIP x.real, x.imag, y.real, y.imag, z.real, z.imag. The program will

automatically detect each case. If you don’t input these, they will be obtained by the module during the run,

so you can set the excited method you want and let the program figure out DELE and TDIP.

OBS: It is not advisable to mix different levels of theory during a geometry step though. If you obtained a

GS Hessian from DFT, doing a step based on a CASSCF ES numerical gradient might not lead to reasonable

results. The same would be problematic even for different DFT functionals.
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9.33.1.4 Removal of frequencies

If, after calculating an ES Hessian you end up with negative frequencies, the calculation of the correlation

function might run into trouble. The default for the module is to turn all negative frequencies positive,

printing a warning if any of them was lower than -300 cm−1. If that is the case, you are probably on a saddle

point and not even a minimum, so results should be taken with care,

You can also choose to completely remove the negative frequencies (and the corresponding from the GS), by

setting IFREQFLAG REMOVE or leave them as negative with IFREQFLAG LEAVE under %ESD.

Sometimes, low frequencies have displacements that are just too large (check on the K vector), or the

experimental low frequency modes are too anharmonic and you might want to remove them. It is also possible

to do that setting the TCUTFREQ flag (in cm−1), and all frequencies below the given threshold will be

removed.

9.33.1.5 Normal modes coordinate systems

When working with systems with weak bonds, such as hydrogen bonds and π stacking, or with biphenyls

and similar planar molecules it is common that there will be low frequency-high amplitude modes related to

the angular bending. It has been shown that, in some cases, the normal modes transformed from Cartesian

coordinates might be not sufficient to describe systems with these large amplitude motion [505]. In those, the

definition of normal modes in terms of some curvilinear set of coordinates such as the internal ones are more

suitable.

The first order transformation from Cartesian (x) to internal (s) coordinates is given by Wilson’s B matrix [506]

as

s = B(x− x0), (9.348)

and here we use Baker’s [507] delocalized internal coordinates as default. First, a redudant set is build

and an singular value decomposition of the G = BBT matrix is performed to obtain the non-redundant

set. The latter can be generated by B′ = U
T
B, where U are the eigenvectors correponding to non-zero

eigenvalues of G. Then an orthogonal set is contructed from B′′ = G′
−1/2

UTB. As the eigenvectors are not

conitnuous functions of the coordinates, in order to avoid using an arbitrary selection, we will follow the

work of Reimers [508] and set G−1/2UT = Ḡ−1/2ŪT , or use the same transformation for the initial an final

coordinates. Please note that this may lead to numbers larger than 1 on the Duschinsky rotation matrix, for

it is an approximation and the calculated rates may vary a little. The normal modes in internal coordinates

(Ls) are then obtained from those in Cartesian ones (Lx) as

Ls = B′′M
1/2

Lx, (9.349)

and the Duschinsky relation (9.346) still holds [505], with the displacement vector being simply

Ks = LTs (̄s− s). (9.350)

The options available for coordinate systems can be set under COORDSYS, and can be CARTESIAN,

INTERNAL (for Baker delocalized - default), WINT (for weighted internals following Swart and Bickelhaupt
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[509]), FCWL (force constant weighted following Lindh [510]) and FCWS (same as before, but using Swart’s

model Hessian).

OBS: Calculating in internal coordinates is usually better but not necessarily. If something goes wrong, you

may also want to try the Cartesian option.

9.33.1.6 Geometry rotation and Duschinsky matrices

The electronic transition should not to take place simultaneously with translations and rotations [511] of

the molecular structure. Before further calculations take place, the initial and final state structures are

superimposed to satisfy Eckart’s conditions by obtaining a rotation matrix B that ensures
∑
mi(BRi×R̄i) = 0

[512], with R being Cartesian coordinates. As the initial geometry is rotated, so must be the corresponding

normal modes Lx also. This can be turned of by setting the flag USEB FALSE.

By the default the Duschinsky rotation matrix is set to Identity, to take advantage of our much faster

algorithm. To turn that on, just set USEJ TRUE. You can check the “diagonality” of this matrix by looking

at the Diagonality Index (DI), here defined as
√∑

i J
2
ii/
∑
ij J2

ij . A DI=1 would be a perfectly diagonal

matrix. The amount of mixing between modes is rpresented by the Mixing Index, with is here is given by

〈|Jmax|〉, or the average value of the maximum Ji of each line. If DI=1, it means each normal coordinate from

the initial state is equal to a mode of the final state. When USEJ=TRUE, the largest components of the J

matrix are printed along with the K vector, so you can have a better idea of how the mixing is occuring.

9.33.1.7 Derivatives of the transition dipole

The derivatives of the transition dipoles with respect to the normal coordinates of the final state can be

obtained directly from the derivatives with respect to the Cartesian coordinates as

U(Q̄) = L̄TxM−1/2U(R̄), (9.351)

U being the matrix of the x,y and z components of the derivative, M a 3N × 3N matrix with the atomic

masses along the diagonal. Also, in case one already has the derivatives with respect to the initial state ,

those can be transformed into the derivatives with respect to the final state by using the Duschinsky relation,

assuming that ~µe0(Q̄) +
∑
i
∂~µe

∂Q̄i
Q̄i = ~µe0(Q) +

∑
i
∂~µe

∂Qi
Qi, so that

∂~µe

∂Q̄k
=
∑
j

Jjk
∂~µe

∂Qj
. (9.352)

By default, this transformation is NOT done, since Eq. 9.352 is an approximation. If you want to turn it on,

set CONVDER TRUE under %ESD.

OBS: Remember that, if you already have the Cartesian derivatives over the final state, like if you use AHAS

for an absorption spectrum, the conversion should be exact (although there might be numerical issues, always

use a larger GRAD for frequencies!).

Alternatively, these can be calculated numerically from displacements over each normal mode. In this

case, it is convenient to use the dimensionless normal coordinates qi = ω
1/2
i Qi which represent proportional
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displacements on the PES [513]. We use ∆q = 0.01 by default, but this can be changed setting the DER DELQ

flag.

• Again, DO NOT MIX different coordinates systems. If the derivatives were calculated over one

coordinate set and you decide to change it, it has to be recalculated. You can manually delete them

from the BASENAME.ES.hess file.

• For hybrid functionals, you can choose to use DFT for the gradient, energy and transition dipole, and

the the fast simplified TDA (Sec. 9.23.5) only for the derivatives by seting STDA TRUE under %ESD.

• A simple trick can be used to accelerate the computation of derivatives. If the first displacement gives

a transition dipole that is too close to the reference, then the derivative can be assumed to be small

and just the plus displacement may be taken to compute the derivative (with an usually small error).

If it is large enough, then the minus displacement is also done and central differences is used. This is

the default method and can be turned off by setting FASTDER to FALSE.

• The central differences option can be altogether turned off by setting CENTRALDIFF FALSE under

%ESD.

• If you are having problems, set a larger PRINTLEVEL to check the individual calculation of the

derivatives, you might be having some kind of root flipping during the displacement, or some other

issue.

9.33.1.8 The Fourier Transform step

After the calculation of the correlation function, it is necessary to do a Fourier Transform (FT) step. To do

that numerically, it is needed to correctly choose the grid in wich the time points will be computed, for that

affects how the results will be obtained in the frequency domain. We have developed a method to generate

an optimal set of parameters, depending on the final spectral resolution desired [235] and it will be used by

default. Even so, you can choose your own grid by setting the NPOINTS and MAXTIME (in atomic units!)

flags under %ESD. There are a few comments related to that:

• Because we solve the FT using a very efficient Cooley-Tukey algorithm, the NPOINTS should be

always multiple of two. You can put any number on the input, but the next larger multiple of two will

be calculated and set.

• The MAXTIME should be enough so that the correlation function goes to zero. If anything goes wrong,

please check the BASENAME.corrfunc file for that.

• The finer the spectral resolution chosen with SPECRES, the largest MAXTIME must be.

• If you have a larger MAXTIME, you also must increase NPOINTS, otherwise the grid will be too

sparse and many oscillations will be skipped.
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9.33.1.9 Spectrum options

The final spectrum is saved in a BASENAME.spectrum file, with the total spectrum, the FC and HT parts

discriminated, as explained in Sec. 8.21. He are some detailed about it:

• The range for which the spectrum is saved is given by default, but it can be set using SPECRANGE

flag under %ESD, as SPECRANGE 10000,70000.

• All of the INPUT units should always be in CM-1, but you can choose the OUTPUT units by setting

the UNIT flag to CM-1, NM or EV.

• In order to better converge the correlation function and approximate experimental spectra, a lineshape

function can be used instead of the delta. The default is to use a LOREZENTIAN lineshape, but

LINES can be set to DELTA, LORENTZ, GAUSS or VOIGT.

• The DELTA lineshape might lead to a correlation function that oscillates forever, so please take care

with that option.

• The default line widths are LINEW 50 and INLINEW 250.

• If you use a VOIGT lineshape, the gaussian width can be controlled separately using the INLINEW

flag. By default, it will be proportial to the Lorezntian to reach the same FWHM.

• The LINEW and INLINEW are NOT the full width half maximum (FWHM) of these curves. However

they are related to them by: FWHMlorentz = 2×LINEW and FWHMgauss = 2.355× INLINEW .

For the VOIGT curve, it is a little more complicated but in terms of the other FWHMs, it can be

aproximated as FWHMvoigt = 0.5346×FHWMlorentz+
√

(0.2166× FWHM2
lorentz + FWHM2

gauss).

• The resolution of the spectrum can be modified with the SPECRES flag. By default it is a fraction of

the LINEW. Please be aware that higher resolution (smaller SPECRES), mean a larger grid for the

correlation function and more time points to calculate on.

9.33.1.10 General

• The temperature is accounted for exactly on Absorption and Emission [235] and can be set using the

TEMP flag.

• PRINTLEVEL can be set to HIGH in order to print more details.

• The frequencies read from the Hessian files can be scaled by any number by setting the SCALING flag

under %ESD. The default is 1.0.

• If necessary, the transition dipole can also be scaled by setting the TDIPSCALING flag.

• If you just want to compute an ES PES and stop, set WRITEESHESS to TRUE and the correlation

function will be skipped.

• In order to make use of the fastest algorithm, set SAMEFREQ to TRUE and the DO method will

be used, assuming equal Hessians between initial and final states and maximizing the efficiency when

calculating the correlation function.
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• If you want to calculate phosphorescence rates, you MUST input the adiabatic energy difference DELE

manually (the energy difference between each state at its own geometry). And, of course, don’t forget

to set the SOC module to true.

9.33.2 Intersystem crossing rates

9.33.2.1 General Aspects of the Theory

Intersystem crossing (ISC) rates between a given initial state i and a final state f can be calculated from

Fermi’s Golden rule:

k(ω)if =
2π

~
|〈Ψf |ĤSO|Ψi〉|2δ(Ei − Ef ), (9.353)

which is quite similar to the Eq. 9.341 for Fluorescence, except for the frequency term. The same trick used

there can be applied here to swtich to the time domain. Then, we are left with a simple time integration,

which is not anymore difficult to solve than the equations above.

One can use all of the infrastructure already presented to compute these ISC rates, including Duschisnky

rotation, vibronic coupling effects, use of different coordinate systems and so on. Right now, its use is

optimized for CIS/TDDFT, as explained in Section 8.21.4.2, but it can be applied in general by combining

simpler methods to obtain the geometries and Hessians with more advanced methods to compute the SOC

matrix elements, when needed.

9.33.2.2 Tips and Tricks

• The DELE must be given when using ESD(ISC), it is not automatically computed.That is the energy

of the initial state minus the energy of the final state, each at its own geometry.

• A SOC matrix element calculated from any method can be given on the input using the SOCME Re,

Im flag, where these are the real and imaginary parts of that number.

• The SOCMEs from TD-DFT are not bad, maybe except for those between the ground singlet and the

triplets. In that case, a multireference calculation might be the preferred option.

• If the final state is higher in energy than then initial state, the DELE is a negative number. In that case,

there is barrier to go up when doing the ISC and the rates becomes more sensitive to the temperature.

• In contrast to Fluorescence, the ISC rates depend strongly on the inclusion of Duschisnky rotations,

please take care when using USEJ FALSE.

• The default LINES is GAUSS, and the default INLINEW of 250 cm−1 might be too large. One should

always investigate it by varying the width a bit. Other LINES can increase the error, please take care

when changing it.
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9.33.3 Resonant Raman Spectrum

9.33.3.1 General Aspects of the Theory

Raman intensities can be obtained in many different ways, depending on the experimental set up. As discussed

extensively by D. A. Long [242,243], the part of it that is “set up independent” is the Scattering Factor (or

Raman activity), given by:

S = 45a2 + 7γ

(
C2m2

amuV 2

)
, (9.354)

where the a is related to the isotropic part of the “transition polarizability” between an initial state and a

final state with a different vibrational quantum number 〈Ψf |α̂|Ψi〉 = αif :

a =
1

3
|(αxx + αyy + αzz)| (9.355)

and γ is also related to its off-diagonal elements:

γ =
1

2
[|(αxx − αyy)|2 + |(αyy − αzz)|2 + |(αzz − αxx)|2 + 6(|αxy|2 + |αyz|2 + |αxz|2)]. (9.356)

This transition polarizability itself can be computed using Kramers, Heisenberg and Dirac (KHD) formalism

and it can be shown that each of its Cartesian components can be calculated as a sum-over-states:

αifρσ =
1

~
∑
n6=i,f

( 〈Ψf |µρ|Ψn〉〈Ψn|µσ|Ψi〉
∆Eni − ωlaser + iγlt

+
〈Ψf |µρ|Ψn〉〈Ψn|µσ|Ψi〉
∆Eni + ωlaser + iγlt

)
(9.357)

In 9.357, the sum is over any number of electronic excited states n, ∆Ein is the energy difference between

the initial state and the excited, ωlaser is the laser energy and γlt is the lifetime broadening to avoid a zero

on the denominator. If we work with a laser for which the frequency is close to the excited state energy

difference, the first term is much larger than the second and can approximate alpha by

αifρσ '
1

~
∑
n6=i,f

( 〈Ψf |µρ|Ψn〉〈Ψn|µσ|Ψi〉
∆Eni − ωlaser + iγlt

)
. (9.358)

This equation can be solved using a path integral approach by switching to the integral form of 1/x:

1

x
=
i

~

∫ ∞
0

e−ixt/~dt (9.359)

So that the components of αif can be given by:

αifρσ '
∑
n6=i,f

i

~2

∫ ∞
0

〈Ψf |µρ|Ψn〉〈Ψn|µσ|Ψi〉e−it(∆Ein−ωlaser−iγlt)dt (9.360)

From here on, it is possible to show that the αifρσ can be calculated as an integral of a correlation function [242],

which is similar to the one previously discussed. In order to calculate that, a path integral scheme is

also used and a geometry and Hessian for the ES are needed. The ORCA ESD module predicts the ES

PES (if not inputed), computes the αif and then prints the Scattering factor on a spectrum named

BASENAME.spectrum.LASERE.
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OBS.: The actual Raman Intensity collected with any polarization at 90 degrees, the I(π/2; ‖s + ⊥s,⊥i [243]),

can be obtained by setting RRINTES to TRUE under %ESD.

OBS2.: In the current implementation, if a multistate calculation is requested, Eq. 9.358 is solved for each

state and all spectra are summed up afterwards.

9.33.3.2 Specific Keywords and Details

In order to solve Eq. 9.360, the same information as for Absorption/Emission is needed and to compute the

ES PES all of the above approximations are also valid. The main difference here is that a laser energy, given

by the LASERE flag, should be given. If it is not given, the default is to set it to the 0-0 energy difference

between the ground and the excited state. As mentioned before, more information can be found on Sec.

8.21.5.

• You can choose more than one laser energy by setting LASERE 1,2,3,4 and etc. If so, each spectrum

will be saved on a different BASENAME.spectrum.LASERE file.

• You can also choose more than one excited state to be accounted for with the flag STATES 1,2,3, etc.

and the final spectrum will be the sum of all of Scattering Factors given by the αif s. You can NOT

choose several states and laser energies currently.

• The automatic selection for the integral grid is also done based on the same ideas as mentioned before.

• The default lineshape for resonant Raman is VOIGT.

• The lineshape of the RR spectra will be taken from the RRSLINEW flag. In this case, LINEW and

INLINEW are used only in the calculation of the correlation function.

• Currently the only temperature for which this model works is at 0K.

• In terms of which vibrationally excited states to be considered, currently it goes up to Raman Order 2,

which means fundamentals, first overtones and combination bands (up to a total quantum number of

2). You can reduced that using RORDER flag.

• It is also possible to include HT effect here for weak transitions, but be aware the calculation is much

more costly. Due to technical reasons, the data is saved only on memory so, if you plan to go being

300 modes and do HT, there should be A LOT of memory available, about 8×NMODES4. Also,

you should expect a VERY long time for the computation of the correlation function. We are currently

working on ways to accelerate this particular case.

• As it is explained on the reference paper [242], the calculations using both Duschinsky rotation and

HT effect can be greatly accelerated setting cutoffs for the the derivatives and J matrix elements. The

RRTCUTDER is a ratio with respect to the transition dipole moment below which the derivatives will

be ignored and RRTCUTJ is a cutoff for J matrix elements. As the paper suggests, RRTCUTDER =

0.001 and RRTCUTJ = 0.01 are in general good numbers. We do recommend using these, but please

be aware of the specific needs of your system.
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9.33.4 Complete Keyword List for the ESD Module

%ESD #The booleans are the defaults

ESDFLAG ABS #Which calculation to make?

FLUOR (default)

PHOSP

RR

GSHESSIAN "BASENAME.hess" #The ground state Hessian

ESHESSIAN "BASENAME_S1.hess" #The excited state Hessian

TSHESSIAN "BASENAME_T.hess" #The triplet state Hessian

HESSFLAG AHAS #How to obtained the ES PES?

VH

VG (default)

HHBS

HHAS

UFBS

UFAS

STATES 1,2,3,4 #IROOTS to compute

DOHT FALSE #Do HT effect?

FASTDER TRUE #Use the fast derivatives algorithm?

DELQ 0.01 (default) #Dimensionless displacemente for derivatives

STDA FALSE #Use sTDA during derivatives?

USEJ FALSE #Consider Duschinsky rotations?

USEB TRUE #Rotate the initial state?

SAMEFREQ TRUE #Use DO method and J=1.

DELE 12000 #Custom energy difference

TDIP x,y,z #Custom transition dipole

x.re,x.im,y.re,y.im,z.re,z.im

LASERE 34000 #The laser energy for RR

GEOMSTEP AUGHESS (default) #Geometry step?

QN

COORDSYS CART #Coordinate system for the normal modes?

INT (default)

WINT

FCWL

FCWS

TCUTFREQ 100 #Cutoff for frequencies

IFREQFLAG POSITIVE (default) #What to do with negative frequencies?

LEAVE

REMOVE
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UF_DELE 1E-4 #Energy difference for updated freq.

UFFREQERR 0.2 #Tolerated percentual error

TEMP 298.15 (default) #Temperature to consider

UNIT CM-1 #Output units

NM

EV

CENTRALDIFF TRUE #Central differences?

CONVDER FALSE #Convert derivatives between state

SCALING 1.0 (default) #Scaling for frequencies

TDIPSCALING 1.0 (default) #Scaling for the transition dipole

LINES DELTA #The lineshape function

LORENTZ (default)

GAUSS

VOIGT (default for RR)

LINEW 50 (default)

INLINEW 250 (default)

RRSLINEW 10 (default)

RORDER 2 (default) #The Raman Order for RR

RRINTENS false #Calculate the intensities instead

RRTCUTDER 0 (default) #A cutoff for derivatives

RRTCUTJ 0 (default) #A cutoff for J matrix elements

WRITEESHESS FALSE #Make ES PES and leave

MAXTIME 12000 #Max time (atomic units!) for the FT

NPOINTS 131072 #Total number of points

SPECRANGE 10000,50000 #Spectral range

SPECRES 1.0 #Spectral resolution
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9.34 Ab initio Molecular Dynamics Simulations

Recently, it was decided to include an ab initio molecular dynamics (AIMD) module in ORCA.19 As a plethora

of different electron structure methods with analytical gradients is already implemented, all these methods

are now available also for MD simulations, offering a wide range of accuracy/performance trade-offs.

This MD module has a relatively short history inside of the ORCA package, and some features found in other

MD codes are still missing. In future releases, many new features and methods will (hopefully) be added to

this part of the program. However, we will do our best to keep a strict backward compatibility, such that the

sample inputs from this section will remain valid in all future releases.

For some more information as well as input examples for the ORCA MD module, please visit

https://brehm-research.de/orcamd

9.34.1 Changes in ORCA 4.2

• Added a Cartesian minimization command to the MD module, based on L-BFGS and simulated

annealing. Works for large systems (> 10 000) atoms and also with constraints. Offers a flag to only

optimize hydrogen atom positions (for crystal structure refinement). See minimize command.

• The MD module can now write trajectories in DCD file format (in addition to the already implemented

XYZ and PDB formats), see dump command.

• The thermostat is now able to apply temperature ramps during simulation runs.

• Added more flexibility to region definition (can now add/remove atoms to/from existing regions).

Renamed the define_region command to manage_region.

• Added two new constraint types which keeps centers of mass fixed or keep complete groups of atoms

rigid, see constraint command.

• Ability to store the GBW file every n-th step during MD runs (e.g. for plotting orbitals along the

trajectory), see dump command.

• Can now set limit for maximum displacement of any atom in a MD step, which can stabilize dynamics

with poor initial structures. Runs can be cleanly aborted by “touch EXIT”. See run command.

• Better handling/reporting of non-converged SCF during MD runs.

• Fixed an issue which slowed down molecular dynamics after many steps.

• Stefan Grimme’s xTB method can now be used in the MD module, allowing fast simulations of large

systems.

19Strictly speaking, these simulations are Born–Oppenheimer molecular dynamics simulations (BOMD), because they
approximately solve the time-independent Schrödinger equation to compute gradients and then move the atoms
according to these gradients.
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Changes in ORCA 4.1

• Molecular dynamics simulation can now use Cartesian, distance, angle, and dihedral angle constraints.

These are managed with the constraint command.

• The MD module now features cells of several geometries (cube, orthorhombic, parallelepiped, sphere,

ellipsoid), which can help to keep the system inside of a well-defined volume. The cells have repulsive

harmonic walls.

• The cells can be defined as elastic, such that their size adapts to the system. This enables to run

simulations under constant pressure.

• Trajectories can now be written in XYZ and PDB file format.

• A restart file is written in each simulation step. With this file, simulations can be restarted to seamlessly

continue (useful for batch runs or if the job crashed). Restart is handled via the restart command;

see below.

• Introduced regions (i. e., subsets of atoms), which can be individually defined. Regions can be used to

thermostat different parts of the system to different temperatures (e. g., cold solute in hot solvent), or

to write subset trajectories of selected atoms.

• The energy drift of the simulation is now displayed in every step (in units of Kelvin per atom). Large

energy drift can be caused by poor SCF convergence, or by a time step length chosen too large.

• Physical units in the MD input are now connected to their numeric values via underscore, such as

350 pm. A whitespace between value and unit is no longer acceptable. This slightly breaks backward

compatibility – sorry.

• Fixed a bug in the time integration of the equations of motion, which compromised energy conservation.

• Fixed crashes for semiempirics and if ECPs were employed. You can now run MD simulations with

methods such as PM3 and with ECPs.

9.34.2 Input Format

The molecular dynamics module is activated by specifying “MD” in the simple input line. The actual MD

input which describes the simulation follows in the “%md” section at some later position in the input file. The

contents of this section will subsequently be referred to as “MD input”.

! MD BLYP D3 def2-SVP

%md

timestep 0.5_fs # This is a comment

initvel 350_K

thermostat berendsen 350_K timecon 10.0_fs

dump position stride 1 filename "trajectory.xyz"

run 200

end

* xyz 0 1

O -4.54021 0.78439 0.09307

H -3.64059 0.38224 -0.01432
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H -4.63463 1.39665 -0.67880

*

Please note that the MD input is not processed by ORCA’s main parser, but by a dedicated parser in the

MD module. Therefore, the MD input is not required to obey the general ORCA syntax rules. The syntax

will be described in the following.

In contrast to general ORCA input, the MD input is not based on keywords, but on commands, which are

executed consecutively on a line-by-line basis starting at the top (like, e. g., in a shell script). This means

that identical commands with different arguments may be given, coming into effect when the interpreter

reaches the corresponding line. This enables to perform multiple simulations (e. g., pre-equilibration and

production run) within a single input file:

%md

timestep 1.0_fs

run 200

timestep 2.0_fs

run 500

end

Work is already under way to add variable definitions, loops, and conditional branching to the MD input.20

This will enable even larger flexibility (e. g., to run a simulation until a certain quantity has converged). The

MD input is written in the SANscript language (“Scientific Algorithm Notation Script”), which is under

development. A first glimpse can be found at

https://brehm-research.de/sanscript

As in standard ORCA input, comments in the MD input are initiated by a “#” sign and span to the end of

the current line. Commands can be started both at the beginning of a line and after a command. The only

place where a “#” is not treated as start of a comment is inside of a string literal (e. g., in file names).

%md

# Comment

timestep 0.5_fs # Comment

dump position filename "trajectory#1.xyz"

end

20Technically speaking, ORCA will then be a Turing-complete script interpreter, such that any computational problem
can be solved with ORCA :-)
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Some more MD input syntax rules:

• The MD input is generally not case-sensitive. The only exception are file names on platforms with

case-sensitive file systems (such as GNU Linux).

• Empty lines are allowed.

• Commands and options are separated by space or tabulator characters. Any combination of these

characters may be used as separator.

• Both DOS and UNIX line break style is acceptable.

Commands

As already noted above, the central item of the MD input is a command. Each input line contains (at most)

one command, and these commands are executed in the given order. A command typically takes one or more

arguments, which are given behind the command name, separated by whitespaces, tabulator characters, or

commas (optional). The order of the arguments for a command is fixed (see command list in section 9.34.3).

Commands may have optional arguments, which are always specified at the end of the argument list, after

the last non-optional argument. If there exist multiple optional arguments for a command, not all of them

need to be specified; however, they need to be specified in the correct order and without gaps:

%md

command arg1 arg2 arg3 # fine

command arg1, arg2, arg3 # fine

command arg1 arg2 arg3 optarg1 # fine

command arg1 arg2 arg3 optarg1 optarg2 # fine

command arg1 arg2 arg3 optarg2 # will not work

end

Apart from arguments and optional arguments, commands can also have modifiers. These can be considered

as “sub-commands”, which modify a given command, and may possess their own argument lists. Modifiers

generally follow after all non-optional and optional arguments, and they may not possess optional arguments

on their own. If a command has multiple modifiers, the order in which they are given is not important.

In the following input example, “mod1” and “mod2” are modifiers of “command”. “mod1” takes one argument,

“mod2” does not take arguments:

%md

command arg1 # fine

command arg1 optarg1 # fine

command arg1 mod1 modarg1 mod2 # fine

command arg1 mod2 # fine

command arg1 mod2 mod1 modarg1 # fine

command arg1 optarg1 mod1 modarg1 mod2 # fine

end
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To make this abstract definition a little more illustrative, please consider again one line from the input sample

at the beginning of this section:

%md

dump position stride 1 filename "trajectory.xyz"

end

Here, “dump” is the command, which takes one non-optional argument to specify which quantity shall

be dumped – in this case, “position”. The “dump” command has two modifiers, namely “stride” and

“filename”. The former takes one integer argument, the latter a string argument. Swapping the two modifiers

(together with their respective arguments, of course) would not change the behavior.

Separating Arguments

As shown above, the arguments which are passed to a command do not need to be separated by commas.

However, it is allowed (and recommended) to still use commas. First, it can increase the readability of the

input file. Secondly, there exist a few ambiguous cases in which commas (or parentheses) should be used to

clarify the intended meaning. One of these cases is the arithmetic minus operator. It can either be used as

binary operator (subtracting one number from another), or as unary operator (returning the negative of a

number). By default, the minus operator will be considered as binary operator (if possible).

Consider the case in which you want to pass two integer arguments “10” and “-10” to a command. Without

commas (or parentheses), the minus is mistreated as binary operator, and only one argument will be passed

to the command:

command 10 -10 # Pitfall: treated as "command (10 - 10)", i. e., "command 0"

command 10, -10 # Two arguments, as intended

command 10 (-10) # Also works

Physical Units

In many cases, it is required to specify quantities which bear a physical unit in an input file (e. g., temperature,

time step lengths, . . . ). For many quantities, there are different units in widespread use, which always leads

to some confusion (just consider the “kcal vs kJ“ case). ORCA handles this problem by defining default

units for each quantity and requiring that all quantities are given in their default unit. ORCA’s default

units are the atomic units, which are heavily used in the quantum chemistry community, but not so much in

the molecular dynamics community. As an ab initio molecular dynamics module exists in the small overlap

region of both communities, some “unit conflicts” might arise. To prevent those from the beginning, it is

allowed to specify units of personal choice within ORCA’s MD input.

Luckily, this is as simple and convenient as it sounds. The parser of the MD module checks if a unit is given

after a numeric constant, and automatically converts the constant to the internal default unit. If no explicit

unit is given, the default unit is assumed. Please note that the default units within the MD module are
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not necessarily atomic units (see table below). Units are connected to the preceding numerical value by an

underscore:

%md

timestep 1.0_fs

timestep 41.3_au # identical

timestep 1.0 # identical, as default time unit in MD module is fs

end

In the following, all units which are currently known to the MD module’s parser are listed, sorted by physical

quantities. The default unit for each quantity is printed in bold letters. Additive constant and factor are

applied to convert a unit into the default unit. The additive constant is applied before the factor. A “-” sign

means that the constant/factor is not applied. More units will be probably added in the future.

Unit Symbol Additive constant Factor

Length Units

Angstrom - -

A - -

Bohr - 0.5291

pm - 0.01

nm - 10.0

Time Units

fs - -

ps - 1000

au - 0.02419

Temperature Units

Kelvin - -

K - -

Celsius 273.15 -

C 273.15 -

Angle Units

Deg - -

Rad - 180/π

Restarting Simulations

Ab initio molecular dynamics simulation are computationally expensive, and will typically run for a long

time even in the case of medium-sized systems. Often, it is desirable to perform such a simulation as a

combination of multiple short runs (e. g., if the queuing system of the cluster imposes a maximum job time).

The ORCA MD module writes a restart file in each simulation step, which allows for the seamless continuation

of simulations. This restart file has the name “basename.mdrestart”, where basename is the project’s base

name. To load an existing restart file, use the restart command (see command list below).
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In the first run of a planned sequence of runs, no restart file exists yet. for this case, the restart command

offers the ifexists modifier. The restart file is only loaded if it exists. If not, the restart is simply skipped,

and no error is thrown. By using this modifier, you can have the restart command already in place in the

first run of a sequence (where no restart file exists in the beginning), and do not need to modify the input

after the first run has finished.

A similar case arises when considering the initialization of the velocities, which is performed by the initvel

command. In the first run, you usually want to initialize the velocities. However, in all following runs of the

sequence, the velocities are read from the restart file, and you do not want to overwrite them by random

velocities. To this aim, the initvel command can be used with the no_overwrite modifier. Velocities are

only randomly initialized if they have not been defined before. If they have been defined (either by an earlier

call to initvel or by a successful restart command), the initialization is simply skipped.

Concerning the dump command, it is good to know that trajectory files are appended (not overwritten)

by default. If you ever want to overwrite an existing trajectory file by a dump command, use the replace

modifier.

Please note that only the positions, velocities, and time step counters are restarted when executing a restart

command. All other properties (thermostats, regions, trajectory dumps, constraints, cells, etc.) are not

restarted. They should remain in the input file, as executed in the first run of a sequence.

In the end of this discussion, a short example is given. If the MD input file

%md

timestep 0.5_fs

restart ifexists

initvel 300_K no_overwrite

thermostat berendsen 300_K timecon 10.0_fs

dump position stride 1 filename "trajectory.xyz"

run 100

end

is subsequently executed ten times (without any modification), the resulting trajectory file will be exactly

identical to that obtained if the following input is executed once:

%md

timestep 0.5_fs

initvel 300_K

thermostat berendsen 300_K timecon 10.0_fs

dump position stride 1 filename "trajectory.xyz"

run 1000

end
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Regions

In the ORCA MD module, regions can be defined. This concept does not refer to regions in space, but

rather to subsets of atoms in the system. A region is nothing more than a list of atoms. Regions may overlap,

i. e., atoms can be part of more than one region at a time. The atoms which are part of a certain region

remain the same until the region is manually re-defined, i. e., regions are fixed and do not adapt to any

changes in the system. There exist a few pre-defined regions which have a name. User-defined regions, in

contrast, only carry an integer identifier. The following regions are pre-defined in any case:

• all: Contains all atoms of the system. This is the default if no region is specified in some command,

so by default, the command will always act on the whole system.

• active: This region contains all movable (“non-frozen”) atoms. By default, it is identical to the all

region. Atoms inside of this region are updated by the time integration in a molecular dynamics run,

displaced in a minimization, and are considered for computing the kinetic energy.

• inactive: This region contains all atoms which are not part of the active region. These atoms are

“frozen”; they are ignored by the time integration / minimization, and also not considered for the

computation of the kinetic energy. They simply remain on their initial positions. This is in principle

identical to applying Cartesian constraints to the atoms; however, it is much faster. As constraints have

to be solved iteratively (see below), Cartesian constraints become quite computationally demanding if

applied to thousands of atoms.

From these three pre-defined regions, only the active region can be manually modified. Changes in the

composition of the active region automatically modify the inactive region. The all region obviously

cannot be changed.

In case of a QM/MM simulation, the following four additional regions can be used:

• qm: This is the “quantum mechanics” region – it contains all atoms which are treated by the electron

structure method.

• mm: This is the “molecular mechanics” region – it contains all atoms which are treated by a force-field

approach. It exactly contains those atoms which are not part of the qm region.

• active_qm: Contains exactly those atoms which are part of both the qm and the active regions.

• active_mm: Contains exactly those atoms which are part of both the mm and the active regions.

These regions can not be modified in the MD input. The MD module just reads the region definitions from

the QM/MM module, but is not able to make any changes here.

Regions can be useful for many purposes. For example, a “realistic” wall of atoms can be built around

the system by defining the active region such that it only contains the non-wall atoms. The wall atoms

will then be frozen. Apart from that, trajectories of regions can be written to disk, only containing the

“interesting” part of a simulation. Furthermore, velocity initialization can be applied to regions, enabling to

start a simulation in which different sets of atoms possess different initial temperatures. Thermostats can be

attached to regions to keep different sets of atoms at different temperatures during the whole simulation.
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This allows for sophisticated simulation setups (cold solute in hot solvent, temperature gradient through the

system, etc).

Regions are defined or modified by the manage_region command. Many other commands take regions as

optional arguments. Please see the command list below.

9.34.3 Command List

In the following, an alphabetical list of all commands currently known to the MD module is given. The descrip-

tion of each command starts with a small box which contains the command’s name and a table of arguments

and modifiers. The last-but-one column in the table specifies the type of each argument. Possible types are “In-

teger”, “Real”, “String”, and “Keyword”. In the latter case, the last column contains a list of allowed keyword

values in { braces }. If the type is “Real” and is a physical quantity with unit, the quantity is given in the last

column in [square brackets]. Each such box is followed by a textual description of the corresponding command.

Command Overview

Command Page Description

cell 856 Defines and modifies cells

constraint 859 Manages constraints

dump 860 Controls trajectory output

initvel 862 Randomly initializes atom velocities

manage_region 862 Manages regions

minimize 863 Performs a Cartesian energy minimization

printlevel 865 Controls the output verbosity

randomize 865 Sets the random seed

restart 866 Restarts a simulation to seamlessly continue

run 866 Performs a molecular dynamics run

scflog 867 Controls the ORCA log file output

screendump 867 Prints current MD state to screen

thermostat 868 Manages thermostats

timestep 869 Sets the integrator time step ∆t
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cell

Mandatory Arguments: -

Optional Arguments: -

Modifiers: cube . . . . . . see text

rect . . . . . . see text

rhomb . . . . . . see text

sphere . . . . . . see text

ellipsoid . . . . . . see text

none - - -

spring k Real see text

elastic tavg Real [time]

cresponse Real see text

anisotropic - - -

pressure . . . . . . see text

fixed - - -

Defines a harmonic repulsive wall around the system. This helps to keep the molecules inside of a

well-defined volume, or to keep a constant pressure in the system. In the latter case, the cell can be

defined as elastic, such that it exerts a well-defined pressure (see below). Please note that ORCA does

not feature periodic boundary conditions, and therefore, all cells are non-periodic (just repulsive walls).

There are several cell geometries available (only one type of cell can be active at a time):

• cube: Defines a cubic cell. If two real values p1 and p2 are specified as coordinates, the cell

ranges from
(
p1, p1, p1

)
to
(
p2, p2, p2

)
. If only one real value p is supplied, the cell ranges from(

−p2 ,−
p
2 ,−

p
2

)
to
(
p
2 ,

p
2 ,

p
2

)
, i. e. it is centered at the origin with edge length p.

• rect: Defines an orthorhombic cell. Six real values x1, y1, z1, x2, y2, and z2 have to be specified

as coordinates (in this order). The cell will range from
(
x1, y1, z1

)
to
(
x2, y2, z2

)
.

• rhomb: Defines a parallelepiped-shaped cell (also termed as rhomboid sometimes). You have to

specify twelve real values in total. The first three define one corner point p of the cell, and the

remaining nine define three cell vectors v1, v2, and v3, each given as Cartesian vector components.

The cell is then defined as the set of points
{
p+ c1v1 + c2v2 + c3v3 | 0 ≤ c1, c2, c3 ≤ 1

}
The vectors

v1, v2, and v3 do not need to be orthogonal to each other, but they may not all lie within one

plane (cell volume would be zero).

• sphere: Defines a spherical cell. You need to specify four real values cx, cy, cz, and r. The cell

will then be defined as a sphere around the central point
(
cx, cy, cz

)
with radius r.

• ellipsoid: Defines an ellipsoid-shaped cell. As first three arguments, you have to specify three

real values cx, cy, cz, which define the center of the ellipsoid to be
(
cx, cy, cz

)
. As fourth argument,

a keyword has to follow, which may either be “xyz” or “vectors”. In the “xyz” case, three more

real values rx, ry, and rz have to be specified, which define the partial radii of the ellipsoid along

the X, Y, and Z coordinate axes. If instead “vectors” was given, nine more real values v1
x, v1

y,

v1
z , v

2
x, v2

y, v
2
z , v

3
x, v3

y, v
3
z have to follow after the keyword. These values define three vectors

v1 :=
(
v1
x, v

1
y, v

1
z

)
, v2 :=

(
v2
x, v

2
y, v

2
z

)
, and v3 :=

(
v3
x, v

3
y, v

3
z

)
, which are the principal axes of the

ellipsoid. These vectors have to be strictly orthogonal to each other. The length of each vector

defines the partial radius of the ellipsoid along the corresponding principal axis.
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All cell types define a harmonic potential Ecell (r) := k · r2 which acts on all atoms in the system

outside of the cell, where r is the closest distance from the atom’s center to the defined cell surface.

Atoms whose center is inside of the cell or directly on the cell surface do not experience any repulsive

force. Following from the definition, the force which acts on an atom outside of the cell is always

parallel to the normal vector of the cell surface at the point which is closest to the atom center. This is

trivial in case of cubic, rectangular, rhombic, and spherical cells, but not so trivial for ellipsoid-shaped cells.

The spring constant k in the above equation (i. e., the “steepness” of the wall) can be specified by the

“spring” modifier, which expects one real value as argument. The spring constant has to be specified

in the unit kJ mol−1 Å−2, other units cannot be specified here. The default value is 10 kJ mol−1 Å−2.

Larger spring constants reduce the penetration depth of atoms into the wall, but may require shorter

integration time steps to ensure energy conservation. If jumps in the total energy occur, try to use a

smaller spring constant (e. g., the default value).

The command “cell none” disables any previously defined cell.

If you want to perform simulations under constant pressure, you can define an elastic cell. Then, ORCA
accumulates the force which the cell exerts on the atoms in each time step, and divides this total force

by the cell surface area to obtain a pressure. As this momentarily pressure heavily fluctuated, a running

average is used to smooth this quantity. If the averaged pressure is larger than the external pressure

which was specified, the cell will slightly grow; if it was smaller, the cell will slightly shrink. In the

beginning of a simulation, the cell size will not vary until at least the running average history depth of

steps have been performed.

An elastic cell is enabled by using the “elastic” modifier after the cell geometry definition. Subsequently,

two real values tavg and cresponse are required. While tavg defines the length of the running average to

smooth the pressure (in units of physical time, not time steps), the cresponse constant controls how fast

the cell size will change at most. More specific, cresponse is the fraction of the cell volume growth per

time step if the ratio of averaged and external pressure would be infinite, and at the same time the

fraction of the cell volume reduction per step if the aforementioned ratio is zero. Put into mathematical

form, the cell volume change per time step is

Vnew :=


Vold ·

cresponse· 〈p〉pext
+1

cresponse+1 if 〈p〉pext
≤ 1,

Vold ·
(cresponse+1)· 〈p〉pext
〈p〉
pext

+cresponse

if 〈p〉pext
> 1,

where 〈p〉 represents the averaged pressure the system exerts on the walls, and pext is the specified

external pressure. Good starting points are tavg = 100 fs and cresponse = 0.001. Please note that larger

values of cresponse or smaller values of tavg may lead to uncontrolled fluctuations of the cell size. An

already defined fixed cell can be switched to elastic by the command “cell elastic . . . ” (the dots

represent the two real arguments).

By default, the size change of an elastic cell due to pressure is performed isotropically, i. e., the cell is

scaled as a whole, and exactly retains its aspect ratio. By specifying the “anisotropic” modifier after

switching on an elastic cell, the cell pressure is broken down into individual components, and the size of

the cell is allowed to change independently in the individual directions. This, of course, only makes sense

for the cell geometries rect, rhomb, and ellipsoid. An already defined isotropic cell can be switched
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to anisotropic by simply executing “cell anisotropic”.

In case of an elastic cell, the external pressure is defined by the modifier “pressure”, which expects

either one or three real values as arguments. If one argument is given, this is the isotropic external

pressure. If three arguments are supplied, these are the components of the pressure in X, Y, and Z

direction (in case of orthorhombic cells) or along the direction of the three specified vectors (in case of

parallelepiped-shaped and ellipsoid-shaped cells). This allows for anisotropic external pressure (probably

only useful for solid state computations). Both the pressure and the pressure components have to

specified in units of bar (= 105 N m−2), other units cannot be used. If this modifier is not used, the

default pressure will be set to 1.0 bar (isotropic) if an elastic cell is used. The external pressure of an

already defined cell can be changed by the command “cell pressure . . . ” (the dots represent the real

argument(s)).

As all cells are non-elastic by default, there is no keyword to explicitly request this at the time of cell

definition. However, possible applications might require to use an elastic cell during equilibration period,

and then “freeze” this cell at the final geometry for the production run. This can be achieved by using

the “cell fixed” command (without any additional arguments).

If the cell is elastic, there is a volume work term which contributes to the total energy of the system.

ORCA computes this term in every step and adds it to the potential energy. Without this contribution,

the conserved quantity would drift excessively in elastic cell runs.

To completely switch off a previously defined cell, simply use “cell none”.

Please note that cells are not automatically restarted by using the restart command.

Examples:

Cubic cell with edge length 10 Å centered around origin:

cell cube 10

Spherical cell with radius 5 Å centered around origin and 20 kJ mol−1 Å−2 wall steepness:

cell sphere 0, 0, 0, 5 spring 20

Elastic orthorhombic cell from
(
−2,−2, 0

)
to
(
12, 12, 10

)
, tavg = 100 fs, cresponse = 0.001:

cell rect -2, -2, 0, 12, 12, 10 elastic 100, 0.001

Ellipsoid-shaped cell centered on origin with partial radii 5, 10, 15 Å along the X, Y, Z axes:

cell ellipsoid 0, 0, 0 xyz 5, 10, 15

The commas are optional, but make sure to use them with negative numbers. By default, the minus operator

will act as binary operator (see discussion above).
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constraint

Mandatory Arguments: operation Keyword { add, remove, list }
type Keyword { cartesian, distance, angle,

dihedral, center, rigid }
atom(s) Integer -

Optional Arguments: -

Modifiers: target value(s) Real -

weights . . . . . . see text

all -

Manages constraints in the molecular dynamics simulation. Unlike restraints, constraints are geometric

relations which are strictly enforced at every time (i. e., they do not fluctuate around their target value).

All atoms involved in constraints have to be included in the active region. In principle, constraints also

work in Cartesian geometry optimizations with the minimize command, but the performance together

with L-BFGS may be poor (except for Cartesian constraints, which work flawlessly in L-BFGS). In these

cases, try to use the simulated annealing method instead.

The simplest possibility is to constrain the Cartesian position of an atom to some value. A zero-based

atom index is required. The command constraint add cartesian 3 would fix the fourth atom in

the simulation at its current position in space. If the desired position shall be explicitly given, it can

be specified via the target modifier, e. g., constraint add cartesian 3 target 5.0 1.0 1.0. To

determine which dimensions to fix, one of the xyz, xy, xz, yz, x, y, or z modifiers can be added. For

example, constraint add cartesian 3 x target 1.0 would constrain the x coordinate of atom 3 to

the absolute value 1.0, but would not influence movement along the y and z coordinate at all.

By using the distance keyword, distances between atoms can be fixed. The command constraint add

distance 3 5 would fix the distance between atom 3 and 5 to its current value. You need to specify

exactly two atom indices; multiple distance constraints are entered via multiple constraint commands.

Also here, a desired distance value can be given via the target modifier, such as constraint add

distance 3 5 target 350_pm.

Similarly, angles and dihedral angles between atoms can be fixed with the angle and dihedral keywords.

Angles are defined by three atom indices, and dihedral angles by four atom indices. Also here, target

values may be specified. Any combination of Cartesian, distance, angle, and dihedral constraints may

be used simultaneously, and may even be applied to the same group of atoms. A molecule can be

made completely rigid by constraining all its bonds, angles, and torsions. Please make sure that your

constraints are not over-determined, and do not contradict each other. Otherwise, they can’t be enforced

and the simulation will print warnings or crash.

A different and powerful class of constraints can be defined with the center argument. Directly after

the keyword, a list of integer atom numbers is expected. This list can be a combination of num-

bers and ranges, e. g., “1, 3, 5..11, 14”. The weighted average position of this subset of atoms

is then constrained to a fixed position in Cartesian space. By default, the weights are taken as the

atom masses, such that the center of mass of the selected atoms is kept fixed. This allows, e. g.,

to run a MD simulation of two molecules with fixed center of mass, such that their center of mass

distance remains constant. Custom weights for the definition of the center can be entered by using

the weights modifier after the atom list. It expects exactly the same number of real arguments as

the length of the specified atom list. The geometric center of a group of atoms can be held fixed
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by setting all weights to 1.0, for example “constraint add center 2, 5..7 weights 1.0 1.0 1.0

1.0”. If desired, a target for the center position can be given, which expects three real numbers for the

X, Y, and Z coordinate after the keyword. If no target is specified, the current center position is held fixed.

With the rigid type of constraints, complete groups of atoms can be kept rigid, i. e., keep all their

distances and angles relative to each other, but move as a whole. After the rigid keyword, a list of

atom numbers is expected. More than one group of atoms can be kept rigid at the same time – just

call the constraint add rigid command multiple times with different atom lists. Internally, the rigid

constraint is realized by defining the correct number of distance constraints. Such a large number of

distance constraints is hard to converge; therefore, warning messages that RATTLE did not converge

will not be shown if a rigid constraint is active. Almost planar (or even linear) groups of atoms are hard

to keep rigid by using only distance constraints. It might help do add a dummy atom outside of the

plane and include this into the constraint.

If an already defined constraint is defined again, it is overwritten, i. e., the old version of the constraint

is automatically deleted first.

Constraints are removed with the remove keyword. You can either remove single constraints, e. g.,

constraint remove distance 3 5, or groups of similar constraints. To remove all angle constraints,

use constraint remove angle all. To remove all restraints, enter constraint remove all.

The list argument prints all currently active constraints to the screen and log file. No additional

arguments can be specified.

Please note that each constraint decreases the number of the system’s degrees of freedom (DoF) by one.

This effect is included, e. g., in the temperature computation, where the DoF count enters.

It is computationally inefficient to define a large number of Cartesian constraints if a subset of atoms

simply shall be fixed. A more efficient approach is to define an active region which only contains the

atoms which shall be movable (see manage_region command). All atoms outside of the active region

will not be subject to time integration and therefore keep their positions. However, please note that

these atoms may not be involved in any other (distance, angle, dihedral) constraint.

dump

Mandatory Arguments: quantity Keyword { position, velocity, force, gbw }
Optional Arguments: -

Modifiers: format fmt Keyword { xyz, pdb, dcd }
stride n Integer -

filename fname String -

region region . . . . . .

replace -

none -

Specifies how to write the output trajectory of the simulation. The quantity argument can be one of the

keywords position, velocity, force, and gbw. While the velocities are written in Angstrom/fs, the

unit of the forces is Hartree/Angstrom. The following paragraphs only apply to the first three quantities.

Dumping GBW files works differently, and is described at the very end of this section.
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The stride modifier specifies to write only every n-th time step to the output file (default is n = 1,

i. e., every step). A stride value of zero only writes one frame to the trajectory at the time when

the dump command is called – no further frames will be written during the run. This can be help-

ful, e. g., to write an initial PDB snapshot for DCD trajectories, or to keep a single GBW file at some point.

The format modifier sets the format of the output file. Currently, only the xyz, pdb, and dcd formats are

implemented. Please note that the dcd format is not well-defined, and different programs use different

formats with this extension. Furthermore, dcd files do not store atom type information and are only valid

together with a PDB snapshot of the system (a single PDB snapshot can be written via “dump position

format pdb stride 0”). If not specified, ORCA tries to deduce the format from the file extension

of the specified file name. If also no file name is given, trajectories will be written in XYZ format by default.

The filename modifier gives the output file name. If not specified, the default file name will have the

form “proj-qty-rgn.ext”, where proj is the base name of the ORCA project, qty is one of postrj,

veltrj, or frctrj, rgn specifies the name or number of the region for which the dump is active, and

ext is the file extension selected by the format modifier.

If the trajectory file already exists at the beginning of a run command, new frames will be appended

to its end by default. If you want to overwrite the existing file instead, use the replace modifier. The

old existing file is erased only once after a dump with this modifier has been specified. If multiple run

commands follow after the dump definition, the trajectory will not be replaced before each of these runs,

only before the first one among them. To overwrite the file another time, simply re-define the dump

with the replace modifier. If the file does not yet exist at the beginning of a run, this modifier has no

effect. Appending frames to DCD trajectories is not possible (because they store the total frame count in

the header). Therefore, replace is automatically switched on if the format is DCD.

With the region modifier, the trajectory output can be restricted to a specific region (i. e., subset of

atoms). This modifier expects one argument, which is either the name of a pre-defined region or the

number of a user-defined region (see above). If not specified, the trajectory of the whole system will be

written. Multiple dump commands for multiple regions can be active at the same time, but each pair

of region and quantity (position/velocity/force) can have only one attached dump command at a time

(re-defining will overwrite the dump settings).

Use the none modifier to disable writing this quantity to an output file. The command “dump position

none” will disable writing of all position trajectories for all regions. To disable only the dump for a

specific region, use “dump position region r none”, where r is the name or number of the region.

The default is to write a position trajectory with stride 1 and format xyz to a file named “proj-postrj-

all.xyz”, where “proj” is the base name of the ORCA project. If you want to create no output trajectory

at all, use “dump position none” as described above.

The dump gbw command keeps a copy of the GBW file every n steps, which can be used for computing

properties along the MD trajectory, e. g., plotting orbitals. This does not yield a trajectory, as all the

GBW files are stored individually. The value of n is controlled by the stride modifier. The file names

are formed by appending the step number (six digits with leading zeros) followed by “.gbw” to the

filename argument. Therefore, this argument should not contain the “.gbw” extension by itself. If the

filename argument is not specified, the default will be “proj-step”, where “proj” is the base name of

the ORCA project. This will lead to files such as “proj-step000001.gbw”, etc. The format and region

modifiers can not be used for dump gbw.
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initvel

Mandatory Arguments: temp Real [temperature]

Optional Arguments: -

Modifiers: region region . . . . . .

no_overwrite -

Initializes the velocities of the atoms by random numbers based on a Maxwell–Boltzmann distribution,

such that the initial temperature matches temp (see also section 9.34.4.2). Please note that this overwrites

all velocities, so do not call this command when your system is already equilibrated (e. g., to change

temperature – use a thermostat instead).

The total linear momentum of the initial configuration is automatically removed, such that the system

will not start to drift away when the simulation begins. This only concerns the initial configuration.

Total linear momentum might build up during the simulation due to numeric effects.

With the region modifier, the initialization of velocities can be performed for a specific region (i. e.,

subset of atoms). This modifier expects one argument, which is either the name of a pre-defined region

or the number of a user-defined region (see above). If not specified, the command acts on the whole system.

The no_overwrite modifier only initializes the velocities if no atom velocities have been defined/read

before. This is useful in combination with the restart command: After reading an existing restart

file, the velocities are already known, and the initialization will be skipped if this modifier is used.

The following combination of commands in a MD input would initialize the velocities only upon first

execution, and restart the positions and velocities on all following executions of the same input:

restart ifexists

initvel 350_k no_overwrite

If neither the initvel command nor a restart command is not invoked before a run call, the atom

velocities will be initialized to zero before starting the run.

manage_region

Mandatory Arguments: identifier Keyword/Integer . . .

operation Keyword { define, addatoms,

removeatoms }
atomlist Integer(s) -

Optional Arguments: -

Modifiers: element elem String -

Defines or modifies regions. Regions are just subsets of atoms from the system (see section above).

As written above in a section on page 854, there exist several pre-defined regions which are identified

by names. The only such pre-defined region which can be re-defined by the user is the active region.

All atoms in this region are subject to time integration in molecular dynamics and displacement in

minimization runs. All other atoms are simply ignored and remain on their initial positions. Please note

that the active region may never be empty.



864 9 Detailed Documentation

To re-define the active region, use the command “manage_region active define 1 5 7 . . . ”. The

integer arguments after active are the numbers of the atoms to be contained in the region, in the order

given in the ORCA input file. Atom numbers are generally zero-based in ORCA, i. e., counting starts

with 0.

Apart from that, user-defined regions are supported. These are identified with an integer number

instead of a name. The integer numbers do not need to be sequential, i. e., it is fine to define region

2 without defining region 1. To give an example, the command “manage_region 1 define 17 18 19”

defines region 1, and adds atoms 17, 18, and 19 to this newly defined region. Using define without

an atom list, such as in “manage_region 1 define”, deletes the user-defined region, as it will be

empty then. Atoms can be added to or removed from previously defined regions (including the active

region) with the addatoms and removeatoms operations. The atom numbers specified after the operation

name are added to or removed from the region. For example, “manage_region active removeatoms 15

16 17” will remove atoms 15 to 17 from the active region (and add them to the inactive region instead).

If you want to specify a range of atoms, you can use the syntax “a..b” to include all atom numbers

from a to b. If you want only, e. g., every third atom in a range, you can use “a..b..i” to add the range

from a to b with increment i. As an example, “2..10..3” will expand to the list 2, 5, 8. You can mix

atom numbers and ranges, as shown in the following two examples (as always, the commas are optional):

manage_region active define 1, 4, 5..11, 14, 17..30..2

manage_region active removeatoms 4, 15..17

Instead of an atom list, the element modifier can be used, followed by a string which represents an

element label. This will have the same effect as specifying an atom list with all atoms of this element type

instead. Don’t forget the double quotes around the element label string. For example, manage_region

active removeatoms element "H" removes all hydrogen atoms from the active region.

minimize

Mandatory Arguments: -

Optional Arguments: method Keyword { Combined, LBFGS, Anneal }
Modifiers: Steps n Integer -

MaxGrad thres Real [kJ mol−1 Å−1]

RMSGrad thres Real [kJ mol−1 Å−1]

TempConv thres Real [temperature]

Accel value Real -

Damp value Real -

StepLimit value Real [length]

History n Integer -

Noise value Real [length]

OnlyH -

Performs a Cartesian energy minimization of the system. For molecules, this is less efficient than ORCA’s

built-in geometry optimization in internal coordinates (i. e., requires more steps to converge). However,

the algorithms employed here also work with large atom counts (e. g., 50 000) as sometimes encountered
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in QM/MM simulations, which is absolutely out of scope of ORCA’s primary optimization module.

Furthermore, the minimization also works under all types of constraints (which some limitations in the

case of L-BFGS) that have been set with the constraint command, and also includes the effect of the

repulsive simulation cell if activated. Only atoms contained in the active region are displaced, while all

other atoms are kept at their positions.

The simplest way of performing a minimization is simply calling the minimize command without argu-

ments. This defaults to the L-BFGS method, which is fairly robust and efficient. If the minimization

seems unstable, try to reduce the history or steplimit parameters. L-BFGS may sometimes show

poor performance with constraints other than Cartesian type. Apart from that, there is also a simulated

annealing method implemented, which can be selected by specifying anneal as the first argument. In

contrast to L-BFGS, the simulated annealing method works equally well with all types of constraints.

There is also a combined method, which is a combination of some L-BFGS steps in the beginning,

followed by a simulated annealing run until the temperature falls below a threshold, and another final

L-BFGS run until the convergence criteria are reached.

With the steps modifier, the maximum number of minimization steps can be specified. If this number

of steps has been performed, the minimization finishes, no matter if the convergence criteria are fulfilled

or not. The default value is 500.

The maxgrad and rmsgrad modifiers control the convergence thresholds for the largest gradient on some

atom and the root mean square average of the gradients. The default values are currently set to 5.0 and

1.0 kJ mol−1 Å−1, respectively, which is about the same criterion as the default setting in the primary

ORCA geometry optimization.

If the tempconv modifier is given, a simulated annealing run finished after the temperature was

monotonously decreasing within 5 successive steps, and dropped below the specified value. Note

that the simulated annealing run will finish if either this condition is reached, or the gradient thresholds

are observed. It is not required to fulfill both criteria.

The accel modifier specifies the acceleration factor for simulated annealing runs (has no effect on

L-BFGS). As long as the angle between velocity vector and gradient vector of some atom is below 90

degrees, the gradient is multiplied by this factor and the velocity is multiplied by a fraction of this factor.

This helps to enforce a faster movement in gradient direction. The default value is 4.0. If this feature is

not desired, use accel 1.0 to switch it off (1.0 means “no artificial acceleration”).

The damp modifier is the damping factor for simulated annealing runs (has no effect on L-BFGS). Atom

velocities are multiplied by this factor in every integration step. The default value is 0.98. Smaller values

will make the algorithm more stable and less prone to oscillations and overshoots, but will also require

significantly more steps to converge. Don’t use values ≥ 1, as then it won’t be an “annealing” anymore

:-)

The steplimit modifier specifies the maximum displacement of any atom (in length units) that can

happen in one step of a minimization run. This can help to avoid large, unreliable steps which could lead

to abrupt jumps in geometry and very high potential energies. This modifier concerns both L-BFGS and

simulated annealing runs. Negative values disable the step limit. The step limit is disabled by default. If

you need to switch it on, try something in the order of 0.1 Å.
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The history modifier controls the depth of gradient and position vector history that is used in the

L-BFGS method to approximate the inverse Hessian. The default value is 20. Smaller values can help to

stabilize the algorithm.

With the noise modifier, small random numbers can be added to the atom positions before the min-

imization starts. This can help to escape local maxima and saddle points in the minimization. For

example, a minimization of an initially linear water molecule would not be able to leave this maximum

– but with some random “noise”, it will be possible. The modifier expects one real argument which

specifies the maximum atom displacement in length units (something like 0.01 Å will be reasonable).

This feature is switched off by default.

If the onlyh modifier is given, all non-hydrogen atoms are removed from the active region before the

minimization starts. After the minimization has finished, the original active region is restored. This is

helpful if only hydrogen positions shall be optimized, e. g., to refine experimental crystal structures.

printlevel

Mandatory Arguments: value Keyword { low, medium, high, debug }
Optional Arguments: -

Modifiers: -

Controls the amount of information which is printed to the screen during the simulation. debug should

be used only in rare cases, because it might slow the simulation down heavily.

The default value is medium.

randomize

Mandatory Arguments: -

Optional Arguments: seed Integer -

Modifiers: -

There are a few algorithms in the ORCA MD module which rely on random numbers, e. g., the initializa-

tion of atom velocities with the initvel command. These random numbers are so-called “pseudo-random

numbers”, produced by a deterministic generator. This generator has a state, which is simply an integer

number. If initialized to the same state, the generator will always create the same sequence of “random”

numbers. This sounds like a deficiency at first thought, but is a very important feature for scientific

reproducibility and for debugging purposes. If you start the same MD input file with “random” velocity

initialization a couple of times, the trajectory will be exactly identical in all runs.

However, there are cases in which this behavior is not desired, e. g., if you want to average a property over

multiple trajectories of the same system. In these cases, call the randomize command in the beginning

of the input. If no argument is given, the random number generator is initialized with the current system

time as a seed. MD runs started at different times will have different random velocities in the beginning.

If you want more control over this process, you can also specify a positive integer number as argument,

which is used as initial random seed. Simulations started with the same seed argument will have identical
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initial random velocities (if all other system parameters such as atom count, atom types, . . . remain

identical).

Without a call to randomize, a seed of 1 is always used.

restart

Mandatory Arguments: -

Optional Arguments: fname String -

Modifiers: ifexists -

Reads a restart file to continue a previous molecular dynamics run. Such a restart file is written after every

simulation step, such that a crashed simulation may easily be recovered. The file name of the restart file

may be given via fname; otherwise, it is deduced from the project’s base name as <basename>.mdrestart.

If the ifexists modifier is specified, a restart is only performed if the restart file exists. The error

and abort that would normally occur in case of a non-existent restart file are suppressed by this flag.

This is useful in the first of a series of batch runs, where the restart file does not yet exist in the beginning.

Please note that the following quantities are stored to/loaded from restart files:

• Atom Positions

• Atom Velocities

• Simulation step number

• Elapsed physical time

All other quantities (timestep, regions, thermostat, constraints, cells, etc.) are not restarted and need to

be set in the input file.

run

Mandatory Arguments: n Integer -

Optional Arguments: -

Modifiers: steplimit value Real [length]

Performs a molecular dynamics run over n time steps with the current settings, applying the velocity

Verlet algorithm to solve the equations of motion (see section 9.34.4.1). You might want to call commands

like timestep, initvel, thermostat, and dump before. Please note that only atoms within the active

region will be subject to time integration. All other atoms will be skipped, and will therefore retain

their initial positions.

The steplimit modifier can be used to limit the maximum displacement of any atom in a MD time

integration step. In addition to the displacement, also the velocities will be limited to a maximum of

value·∆t. This can help to stabilize the dynamics if the initial geometry is poor (close atoms, etc.). The

keyword expects one real argument in distance units. A reasonable choice would be 0.1 Å.
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If no call to initvel occurred before this command, the atom velocities are initialized to zero. If no call

to timestep occurred before this command, a default time step of 0.5 fs is set.

You can cleanly end a MD run by creating an empty file with the name “EXIT” (note the all-uppercase

letters on case-sensitive file systems). On Unix operating systems such as GNU Linux, this can easily be

achieved by the command “touch EXIT”. ORCA will detect the file, abort the MD run, and delete the

file. You will still get the remaining output (such as the timing statistics), and you don’t have to delete

all the remaining “.tmp” files, which both would not be the case if you would have killed the process

instead.

scflog

Mandatory Arguments: value Keyword { discard, last, append, each }
Optional Arguments: -

Modifiers: -

Controls how/if the detailed output from the electron structure calculation (i. e., integrals, scf, gradient,

. . . ) will be written to log files. discard completely discards the output. last only keeps the last output

for each program call (useful to read error message if simulation aborts). append redirects all the output

into one single log file (“basename.scf.log”, “basename.int.log”, “basename.grad.log”, . . . ), appending

each step at the end of the file. each writes the output for each step and each program to different log

files, which have the step number in their file names.

To print the detailed output of the electron structure calculation to the screen instead, see the printlevel

command.

The default value is append. Note that this can lead to large log files in long runs.

screendump

Mandatory Arguments: -

Optional Arguments: -

Modifiers: -

Prints the current state of the MD module (atom positions, velocities, potential and kinetic energy, cell

properties, etc.) to the screen and log file in a well-defined and “grepable” format. This is mostly useful

for unit testing, e. g., to verify if the system state after a MD run equals the state obtained from some

other ORCA binary distribution.
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thermostat

Mandatory Arguments: type Keyword { berendsen, none }
Optional Arguments: temperature Real [temperature]

Modifiers: timecon dt Real [time]

ramp target temp Real [temperature]

region region . . . . . .

massive -

Changes the atom thermostat settings for subsequent simulation runs. type sets the thermostat type.

Currently, only the Berendsen thermostat is implemented. More sophisticated thermostat types will be

implemented soon. Use none as type to disable the thermostat.

The optional temperature argument sets the target temperature to which the system is thermostated.

If this argument is omitted, the temperature from the last call to the initvel command is used (if no

such call was invoked before, the simulation is aborted).

The timecon modifier sets the coupling strength of the thermostat (large time constants correspond to

weak coupling). The default value is 10 fs, which is a relatively strong coupling. Values in the range of

10 . . . 100 fs are reasonable (see also section 9.34.4.3).

If the ramp modifier is used, a temperature ramp can be applied during a MD run. The final temperature

at the end of the ramp has to be specified directly after the modifier. The initial temperature at the

beginning of the ramp is taken from the temperature argument (or from the last initvel command if

this argument is missing). The temperature ramp is applied only to the run command which first follows

the ramp definition. The slope of the ramp is chosen such that the final temperature is reached at the

end of the run. Any subsequent run command will simply use the final temperature for thermostating.

To apply another temperature ramp, you need to explicitly define it again.

The massive modifier activates massive thermostating, which means that each degree of freedom is

assigned to an independent thermostat. This is useful for pre-equilibration runs (helps to reach energy

equipartition) and should not be used during production runs, as it heavily distorts the dynamics.

With the region modifier, the thermostat can be attached to a specific region (i. e., subset of atoms).

This modifier expects one argument, which is either the name of a pre-defined region or the number of

a user-defined region (see above). If not specified, the thermostat acts on the whole system. Multiple

thermostats for multiple regions can be active at the same time, but each region can have only one

attached thermostat at a time (re-defining will overwrite the thermostat settings).

The command “thermostat none” will remove all thermostats from all regions. If you want to disable a

thermostat for a specific region only, use “thermostat none region r”, where r is the name or number

of the region.

Please note that a Berendsen thermostat will show no effect (or unexpected effects) if the system’s

temperature is close to 0 K, as it works by multiplying the velocities with a factor.
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timestep

Mandatory Arguments: dt Real [time]

Optional Arguments: -

Modifiers: -

Sets the simulation time step ∆t used to integrate the equations of motion for all following runs to dt. If

your system contains hydrogen atoms, a time step not above 0.5 fs is recommended. If only heavier atoms

are present, a larger time step may be chosen. A good estimate for a time step that still allows for an

accurate simulation is ∆t =
√
m ·0.5 fs, where m is the mass of the lightest atom in the system (in a.m.u.).

If this command is not invoked before a run call, a default time step of 0.5 fs will be set before starting

the run.
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9.34.4 Scientific Background

In this section, some of the methods and algorithms used within ORCA’s MD module are described in some

more depth, with a focus on the scientific background.

9.34.4.1 Time Integration and Equations of Motion

The central concept of molecular dynamics simulations is to solve Newton’s equations of motion (at least as

long as the atom cores are treated classically). These read

ẍi (t) =
Fi

(
~x (t)

)
mi

, i = 1 . . . N, (9.361)

where xi (t) denotes the position of the i-th degree of freedom at time t, m the corresponding mass, and Fi

the force acting upon this degree of freedom. As the force may depend on all positions, this is a coupled

system of N ordinary differential equations (ODEs). In the general case, it is not possible to obtain an

analytical solution of this system, and therefore numerical solution methods are applied. These are almost

always based on discretizing the time variable and approximately solving the system by taking finite time

steps.

Of all different methods to numerically solve coupled systems of ODEs, the symplectic integration schemes

for Hamiltonian systems attained special attention in the field of molecular dynamics. They possess a very

good conservation of energy. In contrast to many other methods, they show a reasonable behavior when

investigating the long-term evolution of chaotic Hamiltonian systems (like, e. g., MD simulations). Three

popular such symplectic integration schemes are the Leapfrog algorithm, the Verlet method, and the Velocity

Verlet integrator. Despite their different names, they are very similar. It can be easily seen that the Verlet

and Velocity Verlet methods are algebraically equivalent (by eliminating the velocities from the Velocity

Verlet algorithm), and it can be shown that, eventually, all three methods are identical.21 All three methods

are explicit integration methods with a global error of order 2, and therefore one order better than the

semi-implicit Euler method, which is also a symplectic integration scheme. As the Velocity Verlet algorithm

is the only of these three methods which yields velocities and positions at the same point in time, many

popular molecular dynamics packages (CP2k, CPMD, LAMMPS) use this scheme. For the same reasons, the

ORCA MD module uses the Velocity Verlet algorithm as time integration method.

The general equations of the Velocity Verlet scheme read

~x (t+ ∆t) = ~x (t) + ~v (t) ∆t+
1

2
~a (t) ∆t2, (9.362)

~v (t+ ∆t) = ~v (r) +
~a (t) + ~a (t+ ∆t)

2
∆t. (9.363)

By inserting

~ai (t) =
~Fi (t)

mi
, i = 1 . . . N, (9.364)

21Hairer, Lubich, Wanner, “Geometric Numerical Integration”, Springer 2006.
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one arrives at the two-step method

~xi (t+ ∆t) = ~xi (t) + ~vi (t) ∆t+
~Fi (t)

2mi
∆t2, i = 1 . . . N, (9.365)

~vi (t+ ∆t) = ~vi (r) +
~Fi (t) + ~Fi (t+ ∆t)

2mi
∆t, i = 1 . . . N, (9.366)

which is implemented in ORCA’s MD module.

9.34.4.2 Velocity Initialization

In the beginning of a MD simulation, it is often the case that only the initial positions of the atoms are

known, but not the velocities. As MD simulations are performed at some finite temperature, it is a good

idea to initialize the velocities in a way such that the desired simulation temperature is already present in

the beginning. In statistical mechanics, it is often assumed that the velocity distribution of atoms is given

by a Maxwell–Boltzmann distribution (which is strictly only the case in idealized gases). Therefore, it is

a reasonable choice to initialize the atom’s velocities according to the Maxwell–Boltzmann equation in the

beginning of a MD simulation. The goal is to find an initial velocity distribution in which each degree of

freedom possesses a similar amount of energy, such that the equipartition theorem is approximately fulfilled.

The scalar Maxwell–Boltzmann velocity distribution (leaving out the normalization factor) at temperature T

is given by

f (v) = v2 exp
(
− mv2

2kBT

)
. (9.367)

To initialize the particle’s velocities such that this distribution function is fulfilled, one starts with a series of

normal-distributed random numbers with mean 0 and variance 1, denoted by N (0, 1). The cartesian velocity

components for each atom are then computed by

vi,α :=

√
kBT

mi
N (0, 1) , α ∈ {x, y, z}, i = 1 . . . N. (9.368)

As the C++98 standard does not offer a platform-independent way of obtaining normal-distributed random

numbers, these are internally computed from uniformly distributed random numbers by applying the Box–

Muller transform: Assuming that u1 and u2 are two uniformly distributed random numbers from the interval

[0, 1], the equations

z1 :=
√
−2 log (u1) cos (2πu2) , (9.369)

z2 :=
√
−2 log (u1) sin (2πu2) (9.370)

yield two new random numbers z1 and z2 which obey a normal distribution with mean 0 and variance 1.

After the velocities have been initialized, the total linear momentum of the system will probably have some

finite value other than zero. As the linear momentum is (approximately) conserved within a molecular

dynamics simulation, this would result in the system drifting away into one direction during the course of the



9.34 Ab initio Molecular Dynamics Simulations 873

simulation, which is probably not desired. Therefore, the total momentum is explicitly set to zero after the

Maxwell–Boltzmann initialization:

~Ptot :=
N∑
i=1

mi~vi,old, (9.371)

~vi,new := ~vi,old −
~Ptot

miN
, i = 1 . . . N. (9.372)

This, of course, might change the initial temperature. Therefore, a final step is performed, in which all

velocity vectors are multiplied with a factor that is determined such that the initial temperature exactly

matches the target value.

9.34.4.3 Thermostats

After the initial velocities have been initialized to some finite temperature, it might be assumed that one

can simply start the time integration of the dynamical system (equivalent to the NVE ensemble), and the

starting temperature would be approximately preserved. In a real system, however, there are (at least) two

reasons why the temperature will strongly deviate from the initial value already after a few steps. First, the

initial velocity distribution only considers the kinetic energy of the particles, but some amount of energy

will be exchanged with the potential energy contribution (e. g., bond stretching) immediately, altering the

temperature. Secondly, the numerical errors introduced due to the finite time step (and in case of ab initio

MD, also due to the approximate forces) will lead to a drift in energy and therefore in temperature. To

counter these effects, it is often desirable to have a temperature control during the course of the simulation

(which then runs in the NVT ensemble), which is called a thermostat.

There exist many different kinds of thermostats, ranging from simple expressions up to highly complex

dynamical systems on their own. But all of them share a common issue: If the thermostat is coupled only

weakly to the system, the temperature will change anyway. However, if the thermostat is coupled more

strongly to the system (i. e., intervenes stronger), then the dynamics of the simulation will change, no longer

resembling the undisturbed original dynamics which one wants to investigate. Therefore, it is always a

tradeoff between temperature stability and disturbed dynamics to decide how strong a thermostat should be

coupled to the system.

At the moment, only the simple Berendsen thermostat is implemented in the ORCA MD module. More

thermostats (e. g., the widely used Nosé–Hoover thermostat) will follow in a future release.

Berendsen Thermostat

The Berendsen thermostat is similar to the simple velocity rescaling scheme, but enhanced by a time constant

τ to control the coupling strength. Let T0 be the desired target temperature and T the current temperature

of the system. Then the temperature gradient caused by the thermostat can be expressed as

dT

dt
=
T0 − T
τ

. (9.373)



874 9 Detailed Documentation

Considering the fact that discrete time steps ∆t are used, the correction factor for the velocities in each time

step is determined by

f :=

√
1 +

∆t (T0 − T )

Tτ
(9.374)

The new velocities are then easily obtained as

~vi,new := f · ~vi,old, i = 1 . . . N. (9.375)

Let’s consider some special cases. If τ = ∆t, the whole temperature deviation from T0 is corrected immediately,

such that the temperature is always exactly kept at the target value. This is identical to simple velocity

rescaling (without any time constant), which is known to work poorly for most systems (a single harmonic

oscillator would, e. g., simply explode). With a larger time constant τ > ∆T , the coupling strength is reduced,

leading to reasonable results. Typically, a value of τ in the range of 20 . . . 200 ·∆T will be applied. For

τ →∞, the coupling strength goes to zero, such that the thermostat is no longer active. Values of τ < ∆T

are not allowed.

From the formula, it becomes clear that a Berendsen thermostat will have no effect if the system has a

temperature of 0 K (or in the “massive” case: if the considered degree of freedom has 0 K), because it is based

on multiplying the velocities by a factor to modify the temperature. Therefore, this type of thermostat can’t

be used to heat a system up starting from 0 K.
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9.34.4.4 Constraints

Unlike restraints, constraints are geometric relations which are strictly enforced at every time (i. e., they do not

fluctuate around their target value). Many molecular dynamics techniques make use of geometric constraints

(e. g., to keep water molecules rigid, or to fix some reaction coordinate). Standard BOMD describes the nuclei

as point charges in space, such that the motion of the atoms is governed by the laws of classical mechanics.

Systems in classical mechanics can be described by the Lagrange formalism, which contains a well established

sub-formalism for holonomic constraints, namely the method of Lagrange multipliers.

However, molecular dynamics discretizes time to solve the equations of motions with finite time steps, often

using a Verlet integrator. With discretized time, it is slightly more involved to enforce and keep exact

constraints. Within the last decades, algorithms have been developed to do so. One famous among them

is the SHAKE algorithm. However, it comes with the disadvantage of only enforcing the constraints in

the positions, not in the velocities. This may lead to problems such as artificially high temperature values

due to “hidden” velocities along the constrained directions. An extension of SHAKE which also enforces

the constraints for the velocities is the RATTLE algorithm, which is implemented in the AIMD module of

ORCA.

The RATTLE scheme is a generalization of the Velocity Verlet integrator to allow for constraints. This

means that RATTLE is not applied in addition to the Velocity Verlet integrator, but replaces it. In case of

no active constraints, both methods are identical. A system of coupled constraints cannot be solved exactly

in one step, and RATTLE uses an iterative approach to enforce all constraints simultaneously. This is often

a matter of concern with respect to performance. However, in AIMD, the energy and gradient calculations

typically take seconds or even minutes per step, such that the additional computation time for iteratively

solving the constraints can be totally neglected.

As an iterative procedure, RATTLE is not able to give exact solutions, but only converged up to a given

tolerance. In the ORCA MD module, the tolerance is currently set to 10−2 pm for distances, and 10−4 degree

for angles and dihedral angles. This tolerance is typically reached within a few dozen iterations. In some cases,

it might happen that the RATTLE iterations do not converge to the required tolerance. This is typically the

case if the set of constraints is over-determined or contradictory.

The mathematical and technical details of RATTLE are not described here, they can be found in the literature.

The general concept of RATTLE was suggested by Andersen. [514] The original article only covered distance

constraints. A follow-up work describes how to handle any holonomic constraints, in particular how to

constrain angles and dihedral angles. [515] The Wilson vectors (i. e., derivatives of angles and dihedral angles

with respect to Cartesian atom positions) are taken from Wilson’s original work. [516]

9.35 Implicit Solvation Models

Implicit solvation models play an important role in quantum chemistry. Without resorting to placing multiple

solvation shells of solvent molecules implicit solvent models are able to mimic the effect of a specific solvent

on the solute.

The implicit solvent models implemented in ORCA are

• C-PCM [517] : The Conductor-like Continuum Polarization Model
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• SMD [518] : The Solvation Model based on Density

The keywords to control these solvent models have been kept very similar to each other, so it is easy to switch

between the two.

9.35.1 The Conductor-like Polarizable Continuum Model (C-PCM)

The conductor-like polarizable continuum model (C-PCM) is an implementation of the conductor-like apparent

surface charge methods. In these models the solute is placed in a cavity of roughly molecular shape. The

solvent reaction field is described by apparent polarization charges on the cavity surface, which are in turn

determined by the solute. These charges can be treated as punctual (point charges) or be modelled as

spherical Gaussians [519]. The cavity in ORCA is constructed differently depending on how the charges are

treated. In the case of using point charges, the cavity is generated through the GEPOL [520–522] algorithm,

either as solvent-excluding surface (SES), or solvent-accessible surface (SAS). When gaussian charges are

considered, the user can choose between a scaled vdW surface or the GEPOL SES, and the charge positions

are determined following a Lebedev quadrature approach. This scheme is known as Gaussian Charge Scheme

and more details on how to use it are given in Section 9.35.1.1.

The ORCA C-PCM implementation closely follows the C-PCM [517] paper. The molecular Hamiltonian is

perturbed by the solvent:

Ĥ = Ĥ0 + V̂ (9.376)

where Ĥ0 is the Hamiltonian of the isolated molecule, whereas V̂ describes the solute – solvent interactions.

The SCF procedure leads to the variational minimization of the free energy of the solute, G:

G =
〈

Ψ
∣∣∣Ĥ0

∣∣∣Ψ〉+
1

2

〈
Ψ
∣∣∣V̂ ∣∣∣Ψ〉 (9.377)

Using the conductor-like boundary condition the electrostatic potential can be determined by

V (~r) +
tesserae∑

i

Vqi(~r) = 0 (9.378)

where V and Vqi are the electrostatic potential due to the solute and to the polarization charges and ~r is a

point on the cavity surface. The vector of polarization charge can then be determined by

AQ = −V (9.379)

where the vector V contains the electrostatic potential due to the solute on the tesserae. The elements of

the matrix A have a different functional form depending on how the charges are treated. If we use point

charges:

Aii = 1.07

√
4π

Si
(9.380)

Aij =
1

rij
(9.381)

in which Si is the area of tessera i, and rij = |~ri − ~rj |. When gaussian charges are considered:
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Aii =
ζi
√

2/π

Fi
(9.382)

Aij =
erf (ζijrij)

rij
(9.383)

Here, ζi is the exponent of the Gaussian charge i (i belongs to sphere I). This quantity is calculated as

ζi = ζ/(RI
√
wi), where RI is the radius of sphere I, wi is the weight of the Lebedev point i, and ζ is a width

parameter optimized for each particular Lebedev grid [519]. On the other hand, ζij = ζiζj/
√
ζ2
i + ζ2

j . The

function Fi, known as switching function, measures the contribution of the Gaussian charge i to the solvation

energy. This function is calculated as

Fi =
atoms∏
J,i/∈J

g(~ri, ~RJ) (9.384)

where g(~ri, ~RJ) is the elementary switching function. In ORCA we use the improved Switching/Gaussian

(ISWIG) function for g(~ri, ~RJ) proposed in ref [523]:

g(~ri, ~RJ) = 1− 1

2
{erf [ζi (RJ − riJ)] + erf [ζi (RJ + riJ)]} (9.385)

If g(~ri, ~RJ) < 10−8 the value of g is set equal to 0.

If we consider a solvent with a dielectric constant ε, eq. 9.379 reads as

AQ = −f(ε)V (9.386)

where f(ε) = (ε− 1)/(ε+ x) is a scaling function, and x is in the range 0-2. In C-PCM x is equal to 0.

The free energy of solvation can be approximately calculated as [524]

∆GS = (E + ∆GCD)− E0 (9.387)

where E0 is the total energy of the molecule in vacuum and ∆GCD is the nonelectrostatic contribution

(dispersion and cavity formation terms). It can be calculated as [524]

∆GCD = 1.321 + 0.0067639A (9.388)

where A is the cavity surface area.

The C-PCM model can be used via

! CPCM(solvent)

where solvent can be one of
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Solvent Name Dielectric Constant Refractive Index

Water 80.4 1.33

Acetone 20.7 1.359

Acetonitrile 36.6 1.344

Ammonia 22.4 1.33

Benzene 2.28 1.501

CCl4 2.24 1.466

CH2Cl2 9.08 1.424

Chloroform 4.9 1.45

Cyclohexane 2.02 1.425

DMF 38.3 1.430

DMSO 47.2 1.479

Ethanol 24.3 1.361

Hexane 1.89 1.375

Methanol 32.63 1.329

Octanol 10.3 1.421

Pyridine 12.5 1.510

THF 7.25 1.407

Toluene 2.4 1.497

The parameters can be more accurately defined using the %cpcm block input. The available options are as

follows

%cpcm epsilon 80.0 # Dielectric constant

refrac 1.0 # Refractive index

rsolv 1.3 # Solvent probe radius

rmin 0.5 # Minimal GEPOL sphere radius

pmin 0.1 # Minimal distance between two surface points

fepstype cpcm # Epsilon function type: cpcm, cosmo

xfeps 0.0 # X parameter for the feps scaling function

surfacetype gepol_ses # GEPOL surface: gepol_ses, gepol_sas

gepol_ses_gaussian, vdw_gaussian

ndiv 5 # Maximum depth for recursive sphere generation

num_leb 302 # Lebedev points for the Gaussian charge scheme

radius[N] 1.3 # Atomic radius for atomic number N in Angstrom

AtomRadii(N,1.4) # Atomic radius for the Nth atom in Angstrom

scale_gauss 1.2 # Scaling factor for the atomic radii in the

gaussian charge scheme

end

9.35.1.1 Use of the Gaussian Charge Scheme

The Gaussian charge scheme avoids the Coulomb singularity present in conventional point charge surface

element models. This approach results in a smooth solvation potential and, more importantly, on smooth

derivatives of this quantity with respect to external perturbations. Then, it is highly recommended to
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adopt this approach as the default strategy to discretize the solute cavity surface within the C-PCM. The

Gaussian charge scheme can be used with two types of solute cavity surfaces: (1) a scaled vdW surface, (2) a

solvent-excluded surface (SES). To assign the radii for the different atoms we follow the scheme proposed in

ref [523]. That is, we use Bondi radii [525] for all elements, except for hydrogen where we adopt 1.1 Å. For 16

of the main-group elements in the periodic table, where Bondi’s radii are not defined, we adopt the radii

proposed in ref [526] by Mantina et al. This is the case for elements: Be, B, Al, Ca, Ge, Rb, Sr, Sb, Cs, Ba,

Bi, Po, At, Rn, Fr, Ra. For the elements that are not covered neither by Bondi nor by Mantina, we consider

a radius of 2 Å.

• Scaled vdW cavity

To use the Gaussian charge scheme with a scaled vdW cavity, we add the following tag in the %cpcm block in

the input file:

%cpcm

surfacetype vdw_gaussian

end

In this case, the radius RI of atom I for the scaled vdW cavity is calculated as

RI = fscalR
vdW
I (9.389)

where RvdW
I is the vdW radius of atom I and fscal is a scaling factor. This parameter is by default equal

to 1.2, as suggested in ref [523]. However, the user can modify its value through the scale gauss tag in

the %cpcm block in the input file. By default, a set of 110 Gaussian charges are placed on the surface of

each scaled vdW sphere. The number of Lebedev points can be changed through the num leb tag. This

parameter can adopt the following values: 110, 194, 302, 434, 590, 770. Analytical gradients are available for

this solvation method. In the case of the SCF Hessian, one can compute it numerically.

• Solvent-excluded surface

The GEPOL-generated SES can also be used together with the Gaussian charge scheme. In this case, the

Gaussian charges are not only placed on the surface of the atomic spheres but also on the surface of the new

spheres generated through the GEPOL algorithm. In this approach, we can also scale the radii of the atomic

spheres through the parameter scale gauss. For instance, to use this approach withouth scaling the atomic

radii we should modify the ORCA input file as follows

%cpcm

surfacetype gepol_ses_gaussian

scale_gauss 1.0

end

The analytical gradient is available for this strategy although the SCF Hessian should be computed numeri-

cally.
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9.35.2 The Conductor-like Screening Solvation Model (COSMO)

The COSMO solvation model has been removed from ORCA v4.0.0 !!!

Please use the C-PCM solvation model in combination with the COSMO epsilon function if required!

As a short form to use the C-PCM model with the COSMO epsilon function, you can specify the solvent via

!CPCMC(solvent).

9.35.3 The SMD Solvation Model

The SMD solvation model has been proposed by the Cramer and Truhlar groups [518], and is based on the

quantum mechanical charge density of a solute molecule interacting with a continuum description of the

solvent. In the model the full solute electron density is used without defining partial atomic charges and

the solvent is not represented explicitly but rather as a dielectric medium with the surface tension at the

solute–solvent boundary. SMD is a universal solvation model, in the sense that it is applicable to any charged

or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. In particular,

these descriptors are the dielectric constant, refractive index, bulk surface tension, and acidity and basicity

parameters. Neglecting the concentration contribution, the model separates the observable solvation free

energy into two main components,

∆GS = ∆GENP + ∆GCDS. (9.390)

In ORCA, the first component is the bulk electrostatic contribution arising from a self-consistent reaction

field treatment that involves the electrostatic interaction using the Conductor-like Polarizable Continuum

Model (C-PCM). However, the radii are set to “intrinsic atomic Coulomb radii”. The second component,

called the cavity-dispersion solvent-structure (CDS) term, is the contribution resulting from short-range

interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum

of terms that are proportional (with geometry-dependent proportionality constants called atomic surface

tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The CDS contribution

to the free energy of solvation is given by

∆GCDS =
atoms∑
k

σkAk(R, RZk + rs) + σ[M]
atoms∑
k

Ak(R, RZk + rs), (9.391)

where σk and σ[M] are the atomic surface tension of atom k and the molecular surface tension, respectively,

and Ak is the solvent accessible surface area (SASA). The SASA depends on the geometry R, the set RZk of

all atomic van der Waals radii, and the solvent radius rs, which is added to each of the atomic van der Waals

radii. In the program Bondi radii are used for CDS contribution.

More details can be found in the original paper of Marenich et al. [518], which should be cited in publications

using results of SMD calculations.

SMD can be employed in single point calculations and geometry optimizations, using single-determinant SCF

(HF and DFT) and CASSCF methods. In post-SCF methods the result is corrected in the reference wave

function. To use SMD the user must simply specify smd true in the %cpcm block and provide the name of

the solvent. This automatically sets a number of default SMD parameters (see the table below for a list
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of parametrized solvents included in the SMD library). If required, the user can also manually specify the

solvent descriptors used in an SMD calculation.

!CPCM(water)

%cpcm smd true # turn on SMD

SMDsolvent "water" # specify the name of solvent from the list

soln # index of refraction at optical frequencies at 293 K

soln25 # index of refraction at optical frequencies at 298 K

sola # Abraham’s hydrogen bond acidity

solb # Abraham’s hydrogen bond basicity

solg # relative macroscopic surface tension

solc # aromaticity, fraction of non-hydrogenic solvent atoms

# that are aromatic carbon atoms

solh # electronegative halogenicity, fraction of non-hydrogenic

# solvent atoms that are F, Cl, or Br

end

Before SCF start, the program prints the SMD information.

------------------------------------------------------------------------------

CPCM SOLVATION MODEL

------------------------------------------------------------------------------

CPCM parameters:

Epsilon ... 80.4000

Refrac ... 1.3300

Rsolv ... 1.3000

Surface type ... GEPOL SES

Epsilon function type ... CPCM

Solvent: ... WATER

SMD-CDS solvent descriptors:

Soln ... 1.3328

Soln25 ... 1.3323

Sola ... 0.0000

Solb ... 0.0000

Solg ... 0.0000

Solc ... 0.0000

Solh ... 0.0000

Radii:

Radius for N used is 3.5716 Bohr (= 1.8900 Ang.)

Calculating surface ... done! ( 0.0s)

GEPOL surface points ... 98

GEPOL Volume ... 279.2288

GEPOL Surface-area ... 211.1858

Calculating surface distance matrix ... done! ( 0.0s)

Performing Cholesky decomposition & store ... done! ( 0.0s)

Overall time for CPCM initialization ... 0.0s

After the SCF is converged, the output file shows the SMD contribution to the total energy.
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*****************************************************

* SUCCESS *

* SCF CONVERGED AFTER 14 CYCLES *

*****************************************************

Old exchange energy = -22.029826261 Eh

New exchange energy = -22.029833040 Eh

Exchange energy change after final integration = -0.000006779 Eh

Total energy after final integration = -1664.968094721 Eh

Final COS-X integration done in = 258.813 sec

1.76169954764045 -2.99192151761839 5.55983672704991

1.969904463244464E-003 0.167822602012468 1.173801645083608E-002

Total Energy after outlying charge correction = -1664.968881930 Eh

SMD CDS free energy correction energy : -1.58900 Kcal/mol

Total Energy after SMD CDS correction = -1664.970626953 Eh

----------------

TOTAL SCF ENERGY

----------------

Total Energy : -1664.97062695 Eh -45306.15408 eV

CPCM(ediel) : -0.00985444 Eh -0.26815 eV

SMD CDS (Gcds) : -0.00253223 Eh -0.06891 eV

At present there are 179 solvents in the SMD library:

solvent short name solvent short name

1 1,1,1-TRICHLOROETHANE 91 CYCLOPENTANE

2 1,1,2-TRICHLOROETHANE 92 CYCLOPENTANOL

3 1,2,4-TRIMETHYLBENZENE 93 CYCLOPENTANONE

4 1,2-DIBROMOETHANE 94 DECALIN (CIS/TRANS MIXTURE)

5 1,2-DICHLOROETHANE 95 CIS-DECALIN

6 1,2-ETHANEDIOL 96 N-DECANE

7 1,4-DIOXANE 97 DIBROMOMETHANE

8 1-BROMO-2-METHYLPROPANE 98 DIBUTYLETHER

9 1-BROMOOCTANE 99 O-DICHLOROBENZENE

10 1-BROMOPENTANE 100 E-1,2-DICHLOROETHENE

11 1-BROMOPROPANE 101 Z-1,2-DICHLOROETHENE

12 1-BUTANOL 102 DICHLOROMETHANE

13 1-CHLOROHEXANE 103 DIETHYL ETHER

14 1-CHLOROPENTANE 104 DIETHYL SULFIDE

15 1-CHLOROPROPANE 105 DIETHYLAMINE

16 1-DECANOL 106 DIIODOMETHANE

17 1-FLUOROOCTANE 107 DIISOPROPYL ETHER

18 1-HEPTANOL 108 CIS-1,2-DIMETHYLCYCLOHEXANE

19 1-HEXANOL 109 DIMETHYL DISULFIDE

20 1-HEXENE 110 N,N-DIMETHYLACETAMIDE

21 1-HEXYNE 111 N,N-DIMETHYLFORMAMIDE DMF

22 1-IODOBUTANE 112 DIMETHYLSULFOXIDE DMSO

23 1-IODOHEXADECANE 113 DIPHENYLETHER

24 1-IODOPENTANE 114 DIPROPYLAMINE

25 1-IODOPROPANE 115 N-DODECANE

26 1-NITROPROPANE 116 ETHANETHIOL

27 1-NONANOL 117 ETHANOL

28 1-OCTANOL 118 ETHYL ETHANOATE

29 1-PENTANOL 119 ETHYL METHANOATE

30 1-PENTENE 120 ETHYL PHENYL ETHER

31 1-PROPANOL 121 ETHYLBENZENE

32 2,2,2-TRIFLUOROETHANOL 122 FLUOROBENZENE

33 2,2,4-TRIMETHYLPENTANE 123 FORMAMIDE

34 2,4-DIMETHYLPENTANE 124 FORMIC ACID

35 2,4-DIMETHYLPYRIDINE 125 N-HEPTANE

36 2,6-DIMETHYLPYRIDINE 126 N-HEXADECANE

37 2-BROMOPROPANE 127 N-HEXANE

38 2-BUTANOL 128 HEXANOIC ACID
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39 2-CHLOROBUTANE 129 IODOBENZENE

40 2-HEPTANONE 130 IODOETHANE

41 2-HEXANONE 131 IODOMETHANE

42 2-METHOXYETHANOL 132 ISOPROPYLBENZENE

43 2-METHYL-1-PROPANOL 133 P-ISOPROPYLTOLUENE

44 2-METHYL-2-PROPANOL 134 MESITYLENE

45 2-METHYLPENTANE 135 METHANOL

46 2-METHYLPYRIDINE 136 METHYL BENZOATE

47 2-NITROPROPANE 137 METHYL BUTANOATE

48 2-OCTANONE 138 METHYL ETHANOATE

49 2-PENTANONE 139 METHYL METHANOATE

50 2-PROPANOL 140 METHYL PROPANOATE

51 2-PROPEN-1-OL 141 N-METHYLANILINE

52 E-2-PENTENE 142 METHYLCYCLOHEXANE

53 3-METHYLPYRIDINE 143 N-METHYLFORMAMIDE (E/Z MIXTURE)

54 3-PENTANONE 144 NITROBENZENE PhNO2

55 4-HEPTANONE 145 NITROETHANE

56 4-METHYL-2-PENTANONE 146 NITROMETHANE MeNO2

57 4-METHYLPYRIDINE 147 O-NITROTOLUENE

58 5-NONANONE 148 N-NONANE

59 ACETIC ACID 149 N-OCTANE

60 ACETONE 150 N-PENTADECANE

61 ACETONITRILE MeCN 151 PENTANAL

62 ACETOPHENONE 152 N-PENTANE

63 ANILINE 153 PENTANOIC ACID

64 ANISOLE 154 PENTYL ETHANOATE

65 BENZALDEHYDE 155 PENTYLAMINE

66 BENZENE 156 PERFLUOROBENZENE

67 BENZONITRILE 157 PROPANAL

68 BENZYL ALCOHOL 158 PROPANOIC ACID

69 BROMOBENZENE 159 PROPANONITRILE

70 BROMOETHANE 160 PROPYL ETHANOATE

71 BROMOFORM 161 PROPYLAMINE

72 BUTANAL 162 PYRIDINE

73 BUTANOIC ACID 163 TETRACHLOROETHENE

74 BUTANONE 164 TETRAHYDROFURAN THF

75 BUTANONITRILE 165 TETRAHYDROTHIOPHENE-S,S-DIOXIDE

76 BUTYL ETHANOATE 166 TETRALIN

77 BUTYLAMINE 167 THIOPHENE

78 N-BUTYLBENZENE 168 THIOPHENOL

79 SEC-BUTYLBENZENE 169 TOLUENE

80 TERT-BUTYLBENZENE 170 TRANS-DECALIN

81 CARBON DISULFIDE 171 TRIBUTYLPHOSPHATE

82 CARBON TETRACHLORIDE CCl4 172 TRICHLOROETHENE

83 CHLOROBENZENE 173 TRIETHYLAMINE

84 CHLOROFORM 174 N-UNDECANE

85 A-CHLOROTOLUENE 175 WATER

86 O-CHLOROTOLUENE 176 XYLENE (MIXTURE)

87 M-CRESOL 177 M-XYLENE

88 O-CRESOL 178 O-XYLENE

89 CYCLOHEXANE 179 P-XYLENE

90 CYCLOHEXANONE

9.36 Calculation of Properties

9.36.1 Electric Properties

For the calculation of first order (electric dipole and quadrupole moments) and second order (polarizabilities)

electric properties, the %elprop module was implemented. The second order properties can be calculated

through the solution of the CP-SCF equations. Details are shown below:

%elprop

Dipole true

Quadrupole true

Polar 1 # analytic calculation
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2 # numeric differentiation of dipole

# moments

3 # fully numeric second derivatives

Solver CG # CG(conjugate gradient)

# other options: DIIS or POPLE(default)

MaxDIIS 5 # max. dimension of DIIS method

Shift 0.2 # level shift used in DIIS solver

Tol 1e-8 # Convergence of the CP-SCF equations

# (norm of the residual)

MaxIter 64 # max. number of iterations in CPSCF

PrintLevel 2

EField 1e-4 # electric field step (a.u.) used in the

# numeric calculation of the polarizabilities

Origin 1 # Center of mass

2 # Center of nuclear charge

end

The most efficient and accurate way to calculate the polarizability analytically is to use the coupled-perturbed

SCF method. The most time consuming and least accurate way is the numerical second derivative of the

total energy. Note that the numerical differentiation requires: (a) tightly or even very tightly converged SCF

calculations and (b) carefully chosen field increments. If the field increment is too large then the truncation

error will be large and the values will be unreliable. On the other hand, if the field increment is too small the

numerical error associated with the finite difference differentiation will get unacceptably large up to the point

where the whole calculation becomes useless.

9.36.2 The Spin-Orbit Coupling Operator

Several variants of spin-orbit coupling operators can be used for property calculations [527]. They are based

on effective potential and mean-field approaches, and have various parameters that can be selected via the

%rel block. Note that the SOMF operator depends on the density matrix, so the operator itself can differ for

example between a CASSCF and an MRCI calculation.

%rel

# ---------------------------------------------------

# SPIN ORBIT COUPLING OPERATORS

# ---------------------------------------------------

SOCType 0 # none

1 # effective nuclear charge

2 # mean-field with atomic densities read from

# disk; similar to SOCType=4

3 # mean-field/effective potential (default)

4 # mean-field with atomic densities generated

# on the fly; see bellow
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# ---------------------------------------------------

# Flags for construction of potential; operative

# only for SOCType 3.

# ---------------------------------------------------

SOCFlags 1,2,3,0 # (default)

# Flag 1 = 0 - do not include 1-electron terms

# = 1 - do include 1-electron terms

# Flag 2 = 0 - do not include Coulomb terms

# = 1 - compute Coulomb terms fully numeric

# = 2 - compute Coulomb term seminumeric

# = 3 - compute Coulomb term with RI approx

# = 4 - compute Coulomb term exactly

# Flag 3 = 0 - do not include exchange terms

# = 1 - do include local X-alpha exchange

# the X-Alpha parameter can be chosen via

# % rel Xalpha 0.7 (default)

# = 2 - same as 1 but with sign reversed

# = 3 - exchange via one-center exact

# integrals including the spin-other

# orbit interaction

# = 4 - all exchange terms full analytic

# (this is expensive)

# Flag 4 = 0 - do not include DFT local correlation

# terms

# = 1 - do include local DFT correlation (here

# this is done with VWN5)

#

SOCMaxCenter 4 # max. number of centers to include in

# the integrals (not fully consistently

# implemented yet; better leave equal to 4)

# Simple input equivalents that are described in [527]:

# SOMF(1X) = SOCType 3, SOCFlags 1,2,3,0 and SOCMaxCenter 4

# RI-SOMF(1X) = SOCType 3, SOCFlags 1,3,3,0 and SOCMaxCenter 4

# VEFF-SOC = SOCType 3, SOCFlags 1,3,1,1 and SOCMaxCenter 4

# VEFF(-2X)-SOC = SOCType 3, SOCFlags 1,3,2,1 and SOCMaxCenter 4

# AMFI = SOCType 3, SOCFlags 1,4,3,0 and SOCMaxCenter 1

# AMFI-A = SOCType 4, SOCFlags 1,4,3,0 and SOCMaxCenter 1

# (AMFI-like approach that uses pre-calculated

# atomic densities as described in [432];

# this can be combined with the SOCOff option to

# exclude contributions from specific atoms)

# NOTE: If you choose the RI option you need to specify an auxiliary basis set

# even if the underlying SCF calculation does not make use of any form

# of RI!

# -----------------------------------------------
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# For the effective nuclear charge SOC operator

# the nuclear charges can be adjusted.

# -----------------------------------------------

Zeff[26] 0.0 # set the effective nuclear charge

# of iron (Z = 26) to zero

# -----------------------------------------------

# Neglecting SOC contributions from particular

# atoms

# -----------------------------------------------

SOCOff 0,5 # turn off the SOC for atoms 0 and 5

# this makes sense if the SOC operator

# has only one center contributions

# (e.g. effective nuclear charge)

The Breit-Pauli spin-orbit coupling operator is given by:

ĤSOC = Ĥ
(1)
SOC + Ĥ

(2)
SOC (9.392)

with the one- and two-electron contributions

Ĥ
(1)
SOC =

α2

2

∑
i

∑
A

ZA
(ri −RA × pi)

|ri −RA|3
ŝi ≡

α2

2

∑
i

∑
A

ZAr
−3
iA l̂iAŝi (9.393)

Ĥ
(2)
SOC = −α

2

2

∑
i

∑
j 6=i

(ri − rj × pi)

|ri − rj |3
(̂si + 2ŝj) (9.394)

≡ −α
2

2

∑
i

∑
j 6=i

l̂ijr
−3
ij (̂si + 2ŝj) (9.395)

This operator would be hard to handle exactly; therefore it is common to introduce mean field and/or effective

potential approaches in which the operator is written as an effective one-electron operator:

ĤSOC
∼=
∑
i

ĥ
(eff)
i ŝi (9.396)

The simplest approximation is to simply use the the one-electron part and regard the nuclear charges as

adjustable parameters. Reducing their values from the exact nuclear charge is supposed to account in

an average way for the screening of the nuclear charge by the electrons. In our code we use the effective

nuclear charges of Koseki et al. This approximation introduces errors which are usually smaller than 10%

but sometimes are larger and may approach 20% in some cases. The approximation is best for first row

main group elements and the first transition row (2p and 3d elements). For heavier elements it becomes

unreliable.
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A much better approximation is to take the two-electron terms into account precisely. Without going into

details here – the situation is as in Hartree-Fock (or density functional) theory and one gets Coulomb,

exchange and correlation terms. The correlation terms (evaluated in a local DFT fashion) are negligible and

can be safely neglected. They are optionally included and are not expensive computationally. The Coulomb

terms is (after the one-electron term) the second largest contribution and is expensive to evaluate exactly.

The situation is such that in the Coulomb-part the spin-other orbit interaction (the second term in the

two-electron part) does not contribute and one only has to deal with the spin-own-orbit contribution. The

exact evaluation is usually too expensive to evaluate. The RI and seminumeric approximation are much

more efficient and introduce only minimal errors (on the order of usually not more than 1 ppm in g-tensor

calculations for example) and are therefore recommended. The RI approximation is computationally more

efficient. Please note that you have to specify an auxiliary basis set to take advantage of the RI approximation,

even if the preceding SCF calculation does not make use of any form of RI. The one-center approximation to

the Coulomb term introduces much larger errors. The fully numeric method is both slower and less accurate

and is not recommended.

The exchange term has contributions from both the spin-own-orbit and spin-other-orbit interaction. These

are taken both into account in the mean-field approximation which is accessed by Flag 3 = 3. Here a

one-center approximation is much better than for the Coulomb term since both the integrals and the density

matrix elements are short ranged. Together with the Coulomb term this gives a very accurate SOC operator

which is recommended. The DFT-Veff operator suffers from not treating the spin-other-orbit part in the

exchange which gives significant errors (also, local DFT underestimates the exchange contributions from the

spin-same-orbit interaction by some 10% relative to HF but this is not a major source of error). However, it

is interesting to observe that in the precise analytical evaluation of the SOMF operator, the spin-other-orbit

interaction is exactly -2 times the spin-own-orbit interation. Thus, in the DFT framework one gets a much

better SOC operator if the sign of the DFT exchange term is simply reversed! This is accessed by Flag 3 =

2.

Altogether the new SOC operators are a significant step forward and are also more accurate than those used

in other programs which either neglect some contributions or make more approximations. For compatibility

reasons the default is still the old effective nuclear charge model and therefore the SOC operator actually

wanted should be directly specified.

9.36.2.1 Exclusion of Atomic Centers

In ORCA it is possible to change the spin-orbit coupling operator in order to exclude contributions from

user-defined atoms. This approach can be useful, for example, in quantifying the contribution of the ligands

to the zero-field splitting (ZFS); for an application of this method see Ref. [528].

This is illustrated for the calculation of the SOC contribution to the ZFS of the triplet oxygen molecule.

Using the input below we start by a normal calculation of the ZFS, including both oxygen atoms. Note that

we use here the effective nuclear charge operator. This is required as not all implemented SOC operators are

compatible with the decomposition in terms of individual centers contributions.
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! def2-TZVP def2-TZVP/c

%casscf nel 8

norb 6

mult 3,1

nroots 1,3

rel dosoc true

end

end

%rel

SOCType 1

end

*xyz 0 3

O 0 0 0

O 0 0 1.207

*

The calculated value of the D parameter is approximately 2.574 cm−1. In a second calculation we exclude

the contribution from the first oxygen atom. For this we change the %rel block to the one below.

%rel

SOCType 1

SOCOff 0

end

Now the D parameter is calculated to be approximately 0.643 cm−1, a result that deviates quite significantly

from half of the value calculated previously, implying that non-additive effects are important. In addition to

the effective nuclear charge operator, the AMFI-A operator described previously can be used. Given that

this is based on precalculated atomic densities, it might be preferred for heavier elements where the effective

nuclear charge operator becomes unreliable. The method is not limited to CASSCF calculations as described

above, and can be used in DFT, MRCI and ROCIS calculations.

9.36.3 The EPR/NMR Module

Starting from release 2.4.30 the module orca eprnmr replaces the earlier separate modules for calculating

g-tensors and hyperfine couplings (orca dftg and orca hf). The individual flags are given below.

%eprnmr

# Calculate the g-tensor using CP-KS theory

gtensor true
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# Calculate the D-tensor

DTensor so # spin orbit part

ss # spin-spin part

ssandso # both parts

DSOC qro # quasi-restricted method; must be done with the keyword !uno

pk # Pederson-Khanna method.

# NOTE: both approximations are only valid for

# pure functionals (no HF exchange)

cp # coupled-perturbed method (default)

cvw # van Wüllen method

DSS direct # directly use the canonical orbitals for the spin density

uno # use spin density from UNOs

PrintLevel n # Amount of output (default 2)

# For the solution of the CP-SCF equations:

Solver Pople # Pople solver (default)

CG # conjugate gradient

DIIS # DIIS type solver

MaxIter 64 # maximum number of iterations

MaxDIIS 10 # max. number of DIIS vectors (only DIIS)

Tol 1e-6 # convergence tolerance

LevelShift 0.05 # level shift for DIIS (ignored otherwise)

Ori CenterOfElCharge # Center of electronic charge (default)

CenterOfNucCharge # Center of nuclear charge

CenterOfSpinDens # Center of spin density

CenterOfMass # Center of mass

GIAO # use the GIAO formalism (recommended for NMR shielding)

N # number of the atom to put the origin

X,Y,Z # explicit position of the origin in coordinate input units

# (Angstrom by default)

# Calculate the NMR chemical shielding tensor

NMRShielding 1 # for chosen nuclei - specified with the Nuclei keyword

2 # for all nuclei - equivalent to the ’NMR’ simple input keyword

# treatment of 1-electron integrals in the RHS of the CPSCF equations

giao_1el = giao_1e_analytic # analytical, default

giao_1e_numeric # numerical - for testing only

# treatment of 2-electron integrals in the RHS of the CPSCF equations

# various options for combination of approximations in Coulomb (J) and

# exact (HF) exchange (K) part. RIJK is default, all others should

# be used with caution.
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giao_2el = giao_2el_rijk # RIJK approximation (default)

giao_2el_same_as_scf # use same scheme as in SCF

giao_2el_analytic # fully analytical, for testing only

giao_2el_rijonx # RIJ approximation with analytical K

giao_2el_cosjonx # COSJ approximation with analytical K

giao_2el_rijcosx # RIJ approximation with COSX approximation

giao_2el_cosjx # COSJ approximation with COSX apprxomation

giao_2el_exactjcosx # exact J with COSX approximation

giao_2el_exactjrik # exact J with RIK approximation

Nuclei = all type { flags }
# Calculate nuclear properties. Here the properties

# for all nuclei of ‘‘type’’ are calculated (‘‘type’’ is

# an element name, for example Cu.)

# Flags can be the following:

# aiso - calculate the isotropic part of the HFC

# adip - calculate the dipolar part of the HFC

# aorb - 2nd order contribution to the HFC from SOC

# fgrad - calculate the electric field gradient

# rho - calculate the electron density at the

# nucleus

# shift - NMR chemical shielding tensor (orbital contribution)

# ssdso - spin spin coupling constants, diamagnetic spin orbit term

# sspso - spin spin coupling constants, paramagnetic spin orbit term

# ssfc - spin spin coupling constants, Fermi contact term

# sssd - spin spin coupling constants, spin dipole term

# ssall - spin spin coupling constants, calculate all above contributions

# For example:

# calculates the hyperfine coupling for all nitrogen atoms

Nuclei = all N { aiso, adip, fgrad, rho};

# calculates the spin spin coupling constants for all carbon atoms

# assuming all carbon atoms are 13C

Nuclei = all C { ssall, ist = 13};

# In addition you can change several parameters

# e.g. for a different isotope.

Nuclei = all N { PPP=39.1, QQQ=0.5, III=1.0 };
# PPP : the proportionality factor for this nucleus

# = ge*gN*betaE*betaN

# QQQ : the quadrupole moment for this nucleus

# III : the spin for this nucleus

# You can also calculate the hfc’s for individual atoms
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# as in the following example:

Nuclei = 1,5,8 { aiso, adip};

# NOTE: Counting starts with atom 1!

# WARNING: All the nuclei, mentioned in one line

# as above will be assigned the same isotopic mass !

# for spin spin coupling constants, as distance threshold can be

# applied in the eprnmr block to restrict the number of couplings

# to be computed, like the couplings between all nuclei that are

# within 10 Anstroms:

SpinSpinRThresh 10.0

end

For GIAO-based calculations with meta-GGAs, different options are available for the kinetic energy density τ .

The current-independent τ0 is not gauge-invariant. A gauge-invariant definition τMS, containing an explicit

dependence on the magnetic field, was proposed by Maximoff and Scuseria. [529] For a discussion of these and

alternative expressions not implemented in ORCA see refs [530] (in the context of TDDFT) and [531] (in the

context of NMR chemical shielding). The treatment of τ in GIAO-based calculations is chosed as follows

%eprnmr

Tau 0 # (default) field-independent, gauge-variant

MS # field-dependent, gauge-invariant version of Maximoff and Scuseria

end

9.36.3.1 Hyperfine and Quadrupole Couplings

The hyperfine coupling has three contributions:

(a) The isotropic Fermi contact term that arises from the finite spin density on the nucleus under investigation.

It is calculated for nucleus N from:

aiso (N) =

(
4

3
π 〈Sz〉−1

)
gegNβeβNρ

(
~RN

)
(9.397)

Here, 〈Sz〉 is the expectation value of the z-component of the total spin, ge and gN are the electron and

nuclear g-factors and βe and βN are the electron and nuclear magnetons respectively. ρ
(
~RN

)
is the spin

density at the nucleus. The proportionality factor PN = gegNβeβN is commonly used and has the dimensions

MHz bohr3 in ORCA.

(b) The spin dipole part that arises from the magnetic dipole interaction of the magnetic nucleus with the

magnetic moment of the electron. It is also calculated as an expectation value over the spin density as:
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Adip
µν (N) = PN

∑
klρkl

〈
φk
∣∣r−5
N

(
3~rNµ~rNν − δµνr2

N

)∣∣φl〉 (9.398)

where ρ is the spin-density matrix and ~rN is a vector of magnitude rN that points from the nucleus in

question to the electron ({φ} is the set of basis functions).

(c) The second order contribution that arises from spin-orbit coupling. Presently ORCA can calculate all these

contributions. The first two are calculated as simple expectation values of the appropriate operators over the

self-consistent spin density, but the second order contribution requires the solution of the coupled-perturbed

SCF equations and is consequently computationally more demanding. The contribution can be written:

Aorb
µν (N) = − 1

2S
PN
∑
kl

∂ρkl
∂Iν

〈
φk
∣∣hSOC
µ

∣∣φl〉 (9.399)

The derivative of the spin density is computed from solving the coupled-perturbed SCF equations with respect

to the nucleus-orbit coupling as perturbation. The nucleus-orbit coupling is represented by the operator

hNOC
ν (A) =

∑
i

r−3
iA l

(A)
i,ν (9.400)

where the sum is over electrons and A is the nucleus in question.

The field gradient tensor is closely related to the dipole contribution to the hyperfine coupling. The main

differences are that the electron instead of the spin density enters its calculation and that it contains a nuclear

contribution due to the surrounding nuclei. It is calculated from

Vµν (N) = −∑
kl

Pkl
〈
φk
∣∣r−5
N

(
3~rNµ~rNν − δµνr2

N

)∣∣φl〉
+
∑
A6=N

ZA ~R
−5
AN

(
3~RANµ ~RANν − δµνR2

AN

) (9.401)

with ZA as the nuclear charge of nucleus A and ~RAN as a vector of magnitude RAN that points from nucleus

A to nucleus N . P is the first order density matrix.

NOTE:

• Hyperfine and quadrupole couplings are properties where the standard basis sets that have been

designed for geometry optimization and the like may not be entirely satisfactory (especially for atoms

heavier than Ne). You should probably look into tailoring the basis set according to your needs. While

it is likely that a later release will provide one or two special basis sets for “core-property” calculations

at this time you have to make sure yourself that the basis set has enough flexibility in the core region,

for example by uncontracting core basis functions and adding s-primitives with large exponents (or

using the “decontraction feature”, section 9.4). If you add these tight functions and use DFT make

sure that the numerical integration is still satisfactory. Use the “SpecialGrid” feature to enlarge grids

for individual atoms without increasing the computational effort too drastically.
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• For very heavy nuclei you may not get satisfactory results because scalar relativistic effects may become

large. These are available at the ZORA and DKH levels in ORCA if the flag PictureChange is set

to true in the %rel block. The situation is such that for DKH the implementation is only valid for

the field gradient while the ZORA methodology is consistent throughout. The IORA method is also

available but the results will be approximate. In my experience some nice results have been obtained

with ZORA for HFCs and very nice results for EFGs with DKH. In these quasi-relativistic calculations

with DFT one has to be extremely cautious with numerical integration accuracy and values of intacc

of 9.0 and higher have been used for heavier (transition metal) nuclei. Much lower values just produce

noise!

Second order HFCs require the calculation of the spin-orbit coupling contributions which in turn requires the

calculation of the coupled perturbed SCF equations. These effects can be quite significant for heavier nuclei

and should definitely be included for transition metal complexes. The spin-orbit coupling treatment used is

the same as described under 9.36.2.

9.36.3.2 The g-Tensor

The EPR g-tensor is a property that can be calculated as a second derivative of the energy and it is

implemented as such in ORCA for the SCF methods, e.g. HF and DFT, as well as all-electron MP2 (or

RI-MP2) and double-hybrid DFT. The following four contributions arise for the g-tensor (SZ = spin Zeeman,

RMC = relativistic mass correction, DSO = diamagnetic spin-orbit correction, PSO = orbital Zeeman/SOC

term):

g(SZ)
µν = δµνge (9.402)

g(RMC)
µν = −α

2ge
2S

∑
k,l

Pα−βkl

〈
φk

∣∣∣T̂ ∣∣∣φl〉 (9.403)

g(DSO)
µν =

α2ge
4S

∑
k,l

Pα−βkl

〈
φk

∣∣∣∣∣∑
A

ξ (rA) [rArO − rA,µrO,ν ]

∣∣∣∣∣φl
〉

(9.404)

g(PSO)
µν = − ge

2S

∑
k,l

∂Pα−βkl

∂Bµ

〈
φk
∣∣hSOC
ν

∣∣φl〉 (9.405)

Here, ge is the free-electron g-value (=2.002319...), S is the total spin, α the fine structure constant, Pα−β is

the spin density matrix, {φ} is the basis set, T̂ is the kinetic energy operator, ξ (rA) an approximate radial

operator, hSOC the spatial part of an effective one-electron spin-orbit operator and Bµ is a component of the

magnetic field. The calculation of the derivative of the spin-density depends on the chosen level of theory.

For the SCF-level it is done based on the coupled-perturbed SCF theory with respect to a magnetic field

perturbation.

Accuracy.g-tensor calculations at the SCF level are not highly demanding in terms of basis set size. Basis

sets that give reliable SCF results (at least valence double-zeta plus polarization) usually also give reliable

g-tensor results. For many molecules the Hartree-Fock approximation will give reasonable predictions. In a
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number of cases, however, it breaks down completely. DFT is more robust in this respect and the number

of molecules where it fails is much smaller. Among the density functionals, the hybrid functionals seem to

be the most accurate. In my hands PBE0 is perhaps the best although PWP1 and B3LYP are not much

worse. The GGA functionals such as BP, PW91, BLYP or PBE are equally good for small radicals but are

significantly inferior to their hybrid counterparts for transition metal complexes.

Gauge dependence. Unfortunately, the g-tensor is a gauge dependent property, i.e. the results depend on

where the origin is chosen within the molecule. Unless fully invariant procedures (such as GIAOs) are used,

this undesirable aspect is always present in the calculations. GIAOs are now available for calculations on the

SCF-level in ORCA. However, if the choice of gauge origin is not outrageously poor, the gauge dependence

is usually so small that it can be ignored for all practical purposes, especially if large basis sets are used.

ORCA gives you considerable freedom in the choice of gauge origin. It can either be the center of mass, the

center of nuclear charge, the center of electronic charge, GIAOs (recommended if available), a special atom or

a user-defined point in space. It is wise to check the sensitivity of the results with respect to the choice of

origin, especially when small g-shifts on the order of only a few hundred ppm are calculated.

Spin-orbit coupling operator. In previous versions of the code, the g-tensor module used the parameteri-

zation of Koseki et al. [532–534] for the spin-orbit operator. This is expected to be a reasonable approximation

for the 2p and 3d elements and less satisfactory for heavier main group or transition metal containing systems.

Thus, the main target molecules with the simple operators are radicals made of light atoms and first row

transition metal complexes. More accurate SOC operators (at only moderately increased computational

cost) have now been implemented and are described in section 9.36.2. With these operators there are fewer

restrictions. However, for very heavy elements they will suffer from the shortcomings of the Breit-Pauli

approximation and future releases will modify these operators to take into account the ZORA or DKH

corrections to the SOC.

9.36.3.3 Zero-Field-Splitting

It is well known that the ZFS consists of a first order term arising from the direct spin-spin interaction [535]:

D
(SS)
KL =

1

2

α2

S (2S − 1)

〈
0SS

∣∣∣∣∣∣
∑
i

∑
j 6=i

r2
ijδKL − 3 (rij)K (rij)L

r5
ij

{2ŝziŝzj − ŝxiŝxj − ŝyiŝyj}

∣∣∣∣∣∣ 0SS
〉

(9.406)

(K,L =x,y,z). Here α is the fine structure constant (≈ 1/137 in atomic units), rij is the electronic distance

vector with magnitude rij and ŝi is the spin-vector operator for the i’th electron. |0SS〉 is the exact ground

state eigenfunction of the Born-Oppenheimer Hamiltonian with total spin S and projection quantum number

MS = S. Since the spin-spin interaction is of first order, it presents no particular difficulties. The more

complicated contribution to the D-tensor arises from the spin-orbit interaction, which gives a second order

contribution. Under the assumption that the spin-orbit coupling (SOC) operator can to a good approximation

be represented by an effective one-electron operator (ĤSOC =
∑
i ĥ

SOC
i ŝi), ref [211] has derived the following

sum-over-states (SOS) equations for the SOC contribution to the ZFS tensor:

D
SOC−(0)
KL = − 1

S2

∑
b(Sb=S)

∆−1
b

〈
0SS

∣∣∣∣∣∑
i

ĥK;SOC
i ŝi,0

∣∣∣∣∣ bSS
〉〈

bSS

∣∣∣∣∣∑
i

ĥL;SOC
i ŝi,0

∣∣∣∣∣ 0SS
〉

(9.407)
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D
SOC−(−1)
KL = − 1

S (2S − 1)

∑
b(Sb=S−1)

∆−1
b

〈
0SS

∣∣∣∣∣∑
i

ĥK;SOC
i ŝi,+1

∣∣∣∣∣ bS−1S−1

〉〈
bS−1S−1

∣∣∣∣∣∑
i

ĥL;SOC
i ŝi,−1

∣∣∣∣∣ 0SS
〉

(9.408)

D
SOC−(+1)
KL = − 1

(S+1)(2S+1) ·∑
b(Sb=S+1)

∆−1
b

〈
0SS

∣∣∣∣∑
i

ĥK;SOC
i ŝi,−1

∣∣∣∣ bS+1S+1

〉〈
bS+1S+1

∣∣∣∣∑
i

ĥL;SOC
i ŝi,+1

∣∣∣∣ 0SS〉 (9.409)

Here the one-electron spin-operator for electron i has been written in terms of spherical vector operator

components si,m with m = 0,±1 and ∆b = Eb − E0 is the excitation energy to the excited state multiplet∣∣bSS〉 (all MS components are degenerate at the level of the BO Hamiltonian).

One attractive possibility is to represent the SOC by the spin-orbit mean-field (SOMF) method developed

by Hess et al., [536] widely used in the AMFI program by Schimmelpfennig [537] and discussed in detail

by Berning et al. [538] as well as in ref. 527. In terms of an (orthonormal) one-electron basis, the matrix

elements of the SOMF operator are:

hK;SOC
rs =

(
p
∣∣∣ĥ1el−SOC
K

∣∣∣ q)
+
∑
rs
Prs

[(
pq
∣∣ĝSOC
K

∣∣ rs)− 3
2

(
pr
∣∣ĝSOC
K

∣∣ sq)− 3
2

(
sq
∣∣ĝSOC
K

∣∣ pr)] (9.410)

and:

ĥ1el−SOC
k (ri) =

α2

2

∑
i

∑
A

ZAr
−3
iA l̂iA;k (9.411)

ĝSOC
k (ri,rj) = −α

2

2
l̂ij;kr

−3
ij (9.412)

l̂iA = (r̂i − RA) × p̂i is the angular momentum of the i’th electron relative to nucleus A. The vector

r̂iA = r̂i −RA of magnitude riA is the position of the i’th electron relative to atom A. Likewise, the vector

r̂ij = r̂i − r̂j of magnitude rij is the position of the ith electron relative to electron j and l̂ij = (r̂i − r̂j)× p̂i

is its angular momentum relative to this electron. P is the charge density matrix of the electron ground state

(Ppq =
〈
0SS

∣∣Epq ∣∣ 0SS〉with Epq = a+
pβaqβ + a+

pαaqα where a+
pσ and aqσ are the usual Fermion creation and

annihilation operators).

9.36.3.4 General Treatment

The zero-field splitting (ZFS) is typically the leading term in the Spin-Hamiltonian (SH) for transition

metal complexes with a total ground state spin S>1/2 (for reviews and references see chapter 11). Its net

effect is to introduce a splitting of the 2S + 1 MS levels (which are exactly degenerate at the level of the

Born-Oppenheimer Hamiltonian), even in the absence of an external magnetic field. Thus, an analysis and
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interpretation of the ZFS is imperative if the information content of the various physical methods that are

sensitive to ZFS effects.

In 2007, we have developed a procedure that makes the ZFS calculation compatible with the language of

analytic derivatives. [213] Perhaps the most transparent route is to start from the exact solutions of the

Born-Oppenheimer Hamiltonian. To this end, we look at the second derivative of the ground state energy

(E =
〈

0SS
∣∣∣Ĥ∣∣∣ 0SS〉) with respect to a spin-dependent one-electron operator of the general form:

ĥK;(m) = x
(m)
K

∑
pq

hKpqŜ
(m)
pq (9.413)

Where hKpq is the matrix of the K’th component of the spatial part of the operator (assumed to be imaginary

Hermitian as is the case for the spatial components of the SOC operator) and Ŝ
(m)
pq is the second quantized

form of the spin vector operator (m = 0,±1). The quantity x
(m)
K is a formal perturbation parameter. Using

the exact eigenfunctions of the BO operator, the first derivative is:

∂E

∂x
(m)
K

∣∣∣∣∣
x
(m)
K =0

=
∑
pq

hKpqP
(m)
pq (9.414)

With the components of the spin density:

P (m)
pq =

〈
0SS |Ŝ(m)

pq |0SS
〉

(9.415)

The second derivative with respect to a second component for m′ = −m is:

∂2E

∂x
(m)
K ∂x

(−m)
L

∣∣∣∣∣
x
(m)
K =x

(−m)
L =0

=
∑
pq

hKpq
∂P

(m)
pq

x
(−m)
L

(9.416)

The derivative of the spin density may be written as:

∂P
(m)
pq

x
(−m)
L

=
〈

0
SS(−m)
L |Ŝ(m)

pq |0SS
〉

+
〈

0SS |Ŝ(m)
pq |0SS(−m)

L

〉
(9.417)

Expanding the perturbed wavefunction in terms of the unperturbed states gives to first order:

∣∣∣0SS(−m)
L

〉
= −

∑
n 6= 0∆−1

n |n〉
〈
n
∣∣∣ĥL;(−m)

∣∣∣ 0SS〉 (9.418)

Where |n〉 is any of the
∣∣∣bS′M ′〉. Thus, one gets:

∂2E

∂x
(m)
K ∂x

(−m)
L

=
∑
pq

hKpq
∂P

(m)
pq

x
(−m)
L

(9.419)
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= −
∑
n6=0

∆−1
n

[〈
0SS |ĥL;(−m)|n

〉〈
n|ĥK;(m)|0SS

〉
+
〈

0SS |ĥK;(m)|n
〉〈

n|ĥL;(−m)|0SS
〉]

(9.420)

The equality holds for exact states. For approximate electronic structure treatments, the analytic derivative

approach is more attractive since an infinite sum over states can never be performed in practice and the

calculation of analytic derivative is computationally less demanding than the calculation of excited many

electron states.

Using eq. 9.419, the components of the SOC-contribution to the D-tensor are reformulated as

D
SOC−(0)
KL =

1

2S2

∑
pq

hK;SOC
pq

∂P
(0)
pq

∂x
(0)
L

(9.421)

D
SOC−(−1)
KL =

1

S (2S − 1)

∑
pq

hK;SOC
pq

∂P
(+1)
pq

∂x
(−1)
L

(9.422)

D
SOC−(+1)
KL =

1

(S + 1) (2S + 1)

∑
pq

hK;SOC
pq

∂P
(−1)
pq

∂x
(+1)
L

(9.423)

These are general equations that can be applied together with any non-relativistic or scalar relativistic

electronic structure method that can be cast in second quantized form. Below, the formalism is applied to

the case of a self-consistent field (HF, DFT) reference state.

For DFT or HF ground states, the equations are further developed as follows:

The SCF energy is:

ESCF = VNN +
〈
Ph+

〉
+

1

2

∫ ∫
ρ (r1) ρ (r2)

|r1 − r2|
dr1dr2 −

1

2
aX

∑
µνκτσ

PσµκP
σ
ντ (µν|κτ) + cDFEXC [ρα, ρβ ] (9.424)

Here VNN is the nuclear repulsion energy and hµν is a matrix element of the one-electron operator which

contains the kinetic energy and electron-nuclear attraction terms (〈ab〉 denotes the trace of the matrix product

ab). As usual, the molecular spin-orbitals ψσp are expanded in atom centered basis functions (σ = α, β):

ψσp (r) =
∑
µ

cσµpφµ (r) (9.425)

with MO coefficients cσµp. The two-electron integrals are defined as:

(µν|κτ) =

∫ ∫
φµ (r1)φν (r1) r−1

12 φκ (r2)φτ (r2) dr1dr2 (9.426)
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The mixing parameter aX controls the fraction of Hartree-Fock exchange and is of a semi-empirical nature.

EXC [ρα, ρβ ] represent the exchange-correlation energy. The parameter cDF is an overall scaling factor that

allows one to proceed from Hartree-Fock theory (aX = 1, cDF = 0) to pure DFT (aX = 0, cDF = 1) to hybrid

DFT (0 < aX < 1, cDF = 1). The orbitals satisfy the spin-unrestricted SCF equations:

Fσµν = hµν +
∑
κτ

Pκτ (µν|κτ)− aXP
σ
κτ (µκ|ντ) + cDF (µ|V αXC |ν) (9.427)

With V σXC = δEXC
δρσ(r) and Pµν = Pαµν + P βµν being the total electron density. For the SOC perturbation it is

customary to regard the basis set as perturbation independent. In a spin-unrestricted treatment, the first

derivative is:

∂ESCF

∂x
(m)
K

=
∑
iα

(
iα|hKsm|iα

)
+
∑
iβ

(
iβ |hKsm|iβ

)
= 0 (9.428)

For the second derivative, the perturbed orbitals are required. However, in the presence of a spin-dependent

perturbation they can no longer be taken as pure spin-up or spin-down orbitals. With respect to the L’th

component of the perturbation for spin-component m, the orbitals are expanded as:

ψ
α;(m)L
i (r) =

∑
aα

U
(m);L
aαiα

ψαa (r) +
∑
aβ

U
(m);L
aβiα

ψβa (r) (9.429)

ψ
β;(m)L
i (r) =

∑
aα

U
(m);L
aαiβ

ψαa (r) +
∑
aβ

U
(m);L
aβiβ

ψβa (r) (9.430)

Since the matrix elements of the spin-vector operator components are purely real and the spatial part of the

SOC operator has purely imaginary matrix elements, it follows that the first order coefficients are purely

imaginary. The second derivative of the total SCF energy becomes:

∂2ESCF

∂x
(m)
K ∂x

(−m)
L

=
∑
iαaα

{
U

(−m);L∗
aαiα

(
aα|hKsm|iα

)
+ U

(−m);L
aαiα

(
iα|hKsm|aα

)}
+
∑
iαaβ

{
U

(−m);L∗
aβiα

(
aβ |hKsm|iα

)
+ U

(−m);L
aβiα

(
iα|hKsm|aβ

)}
+
∑
iβaα

{
U

(−m);L∗
aαiβ

(
aα|hKsm|iβ

)
+ U

(−m);L
aαiβ

(
iβ |hKsm|aα

)}
+
∑
iβaβ

{
U

(−m);L∗
aβiβ

(
aβ |hKsm|iβ

)
+ U

(−m);L
aβiβ

(
iβ |hKsm|aβ

)}
(9.431)

Examination of the three cases m = 0,±1 leads to the following equations for the D-tensor components:

D
(0)
KL = − 1

4S2

∑
µν

∂P
(0)
µν

∂x
(0)
L

(
µ|hK;SOC|ν

)
(9.432)

D
(+1)
KL =

1

2 (S + 1) (2S + 1)

∑
µν

(
µ|hK;SOC|ν

) ∂P (−1)
µν

∂x
(+1)
L

(9.433)
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D
(−1)
KL =

1

2S (2S − 1)

∑
µν

(
µ|hK;SOC|ν

)∂P (+1)
µν

∂x
(−1)
L

(9.434)

Where a special form of the perturbed densities has been chosen. They are given in the atomic orbital basis

as:

∂P
(0)
µν

∂x
(0)
L

=
∑
iαaα

U
(0);L
aαiα

cαµic
α
νa +

∑
iβaβ

U
(0);L
aβiβ

cβµic
β
νa (9.435)

∂P
(+1)
µν

∂x
(−1)
L

=
∑
iαaβ

U
(−1);L
aβiα

cαµic
β
νa −

∑
iβaα

U
(−1);L
aαiβ

cαµac
β
νi (9.436)

∂P
(−1)
µν

∂x
(+1)
L

= −
∑
iαaβ

U
(+1);L
aβiα

cβµac
α
νi +

∑
iβaα

U
(+1);L
aαiβ

cβµic
α
νa (9.437)

The special form of the coupled perturbed equations are implemented in ORCA run as follows: The

perturbation is of the general form hK ŝm. The equations 9.432-9.437 and 9.438-9.443 below have been written

in such a way that the spin integration has been performed but that the spin-dependent factors have been

dropped from the right-hand sides and included in the prefactors of eqs. 9.432-9.434. The explicit forms of

the linear equations to be solved are:

m = 0:

(
ε(0)
aα − ε

(0)
iα

)
U
K(0)
aαiα

+ aX

∑
jαbα

U
K(m)
bαjα

{(bαiα|aαjα)− (jαiα|aαbα)} = −
(
aα|hK |iα

)
(9.438)

(
ε(0)
aβ
− ε(0)

iβ

)
U
K(0)
aβiβ

+ aX

∑
jβbβ

U
K(m)
bβjβ

{(bβiβ |aβjβ)− (jβiβ |aβbβ)} = −
(
aβ |hK |iβ

)
(9.439)

m = +1:

(
ε(0)
aα − ε

(0)
iβ

)
U
K(+1)
aαiβ

+ aX

∑
jαbα

U
K(+1)
bβjα

(bβiβ |aαjα)− aX

∑
bαjβ

U
K(+1)
bβjα

(jβiβ |aαbα) = −
(
aα|hK |iβ

)
(9.440)

(
ε(0)
aβ
− ε(0)

iα

)
U
K(+1)
aβiα

+ aX

∑
jβbα

U
K(+1)
bαjβ

(bαiα|abjβ)− aX

∑
bβjα

U
K(+1)
bβjα

(jαiα|aβbβ) = 0 (9.441)

m = −1:

(
ε(0)
aβ
− ε(0)

iα

)
U
K(−1)
aβiα

+ aX

∑
jβbα

U
K(−1)
bαjβ

(bαiα|abjβ)− aX

∑
bβjα

U
K(−1)
bβjα

(jαiα|aβbβ) = −
(
aβ |hK |iα

)
(9.442)
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(
ε(0)
aα − ε

(0)
iβ

)
U
K(−1)
aαiβ

+ aX

∑
jαbα

U
K(−1)
bβjα

(bβiβ |aαjα)− aX

∑
bαjβ

U
K(−1)
bβjα

(jβiβ |aαbα) = 0 (9.443)

Note that these coupled-perturbed (CP) equations contain no contribution from the Coulomb potential or

any other local potential such as the exchange-correlation potential in DFT. Hence, in the absence of HF

exchange, the equations are trivially solved:

U
K(0)
aαiα

= −
(
aα|hK |iα

)
ε

(0)
aα − ε(0)

iα

(9.444)

U
K(0)
aβiβ

= −
(
aβ |hK |iβ

)
ε

(0)
aβ − ε(0)

iβ

(9.445)

U
K(+1)
aαiβ

= −
(
aα|hK |iβ

)
ε

(0)
aα − ε(0)

iβ

(9.446)

U
K(+1)
aβiα

= 0 (9.447)

U
K(−1)
aβiα

= −
(
aβ |hK |iα

)
ε

(0)
aβ − ε(0)

iα

(9.448)

U
K(−1)
aαiβ

= 0 (9.449)

It is interesting that the “reverse spin flip coefficients” U
K(+1)
aβiα

and U
K(−1)
aαiβ

are only nonzero in the presence

of HF exchange. In a perturbation expansion of the CP equations they arise at second order (V2/∆ε2) while

the other coefficients are of first order (V/∆ε; V represents the matrix elements of the perturbation). Hence,

these contributions are of the order of α4 and one could conceive dropping them from the treatment in order

to stay consistently at the level of α2. These terms were nevertheless kept in the present treatment.

Equations 9.438-9.443 are referred to as CP-SOC (coupled-perturbed spin-orbit coupling) equations. They

can be solved by standard techniques and represent the desired analogue of the CP-SCF magnetic response

equations solved for the determination of the g-tensor and discussed in detail earlier [269]. It is readily

confirmed that in the absence of HF exchange, eqs. 9.444-9.449 inserted into eqs. 9.432-9.437 lead back to a

modified Pederson-Khanna type treatment of the SOC contributions to the D-tensor [252]. In the framework

of the formalism developed above, the Pederson-Khanna formula can be re-written in the form:

D
(SOC;PK)
KL = 1

4S2

∑
iβ ,aβ

(
ψβi
∣∣hK;SOC

∣∣ψβa)UL;(0)
aβiβ

+ 1
4S2

∑
iα,aα

(
ψαi
∣∣hK;SOC

∣∣ψαa )UL;(0)
aαiα

− 1
4S2

∑
iα,aβ

(
ψαi
∣∣hK;SOC

∣∣ψβa )UL;(−1)
aβiα

− 1
4S2

∑
iβ ,aα

(
ψαi
∣∣hK;SOC

∣∣ψαa )UL;(+1)
aαiβ

(9.450)
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This equation was derived from second-order non-self-consistent perturbation theory without recourse to

spin-coupling. For the special case of no Hartree-Fock exchange, the main difference to the treatment

presented here is that the correct prefactors from eqs. 9.421-9.423 occur in front of the spin-flip contributions

rather than ± 1/(4S2) in eq. 9.450. In the presence of HF exchange it is suggested that the consistent

generalization of the PK method are eqs. 9.432-9.434 with the ± 1/(4S2) prefactors and this way the method

has been implemented as an option into the ORCA program.

For completeness, the evaluation of the spin-spin term in the SCF case proceeds conveniently through:

D
(SS)
KL =

g2
e

4

α2

S (2S − 1)

∑
µν

∑
κτ

{
Pα−βµν Pα−βκτ − Pα−βµκ Pα−βντ

} 〈
µν
∣∣r−5

12

{
3r12,Kr12,L − δKLr2

12

}∣∣κτ〉 (9.451)

as derived by McWeeny and Mizuno and discussed in some detail by Sinnecker and Neese. [214] In this

reference it was found that DFT methods tend to overestimate the spin-spin contribution if the calculations

are based on a spin-unrestricted SCF treatment. A much better correlation with experiment was found for

open-shell spin restricted calculations. The origin of this effect proved to be difficult to understand but it

was shown in ref [249] that in the case of small spin-contamination, the results of ROKS calculations and of

those that are obtained on the basis of the spin-unrestricted natural orbital (UNO) determinant are virtually

indistinguishable. It is therefore optionally possible in the ORCA program to calculate the spin-spin term on

the basis of the UNO determinant.

9.36.3.5 MP2 level magnetic properties

Presently, hyperfine couplings, g-tensors, and chemical shielding tensors without GIAOs can be calculated for

both canonical and RI-MP2 and double-hybrid DFT without the frozen core approximation. In case the

RIJCOSX approximation is used, the keywords Z GridX, Z GridX RHS, KCOpt, KC GridX and KC IntAccX are

relevant – see sections 9.11.5 and 9.11.6. NMR chemical shielding and g-tensor calculations with GIAOs are

available for RI-MP2 and double-hybrid DFT with or without a frozen core. The implementation is described

in detail in ref [539]. Note that for double-hybrid DFT the correct properties are printed after the heading

“EPRNMR WITH MP2 RELAXED DENSITY”.

! RHF RIJK RI-MP2 def2-SVP def2/JK def2-SVP/C TightSCF NMR NoFrozenCore

%mp2

Density relaxed # required

UsePertCanOrbs true # Whether to use perturbed canonical orbitals for

# the internal block of the perturbed Fock matrix

PertCan_EThresh 1e-6 # Energy threshold for special treatment of

# degenerate orbital pairs

PertCan_UThresh 10 # Coefficient threshold for special treatment of

# strongly interacting orbital pairs

FCut 1e-5 # Threshold for internal perturbed Fock elements

NMRStoreT true # Whether to precalculate and store all necessary

# unperturbed amplitudes on disk

NMRDijConv false # Whether to store intermediates required for the
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# internal block of the response density on disk

end

* int 0 1

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*

NMR-specific. By default perturbed canonical orbitals are used for the occupied block, i.e., the internal

orbital rotation coefficients are chosen as

UB
ij =

F
(B)
ij − S(B)

ij εj

εj − εi
(9.452)

which results in FB
ij = 0, thereby eliminating its contribution to the perturbed amplitudes:

T ij,Bab ← −
∑
k

[
T ikabF

B
kj + T kjab F

B
ki

]
(9.453)

If |εj − εi| < PertCan EThresh or
∣∣UB
ij

∣∣ > PertCan UThresh, then UB
ij is chosen using the standard formula

UB
ij = −1

2
S

(B)
ij (9.454)

And the relevant contributions to eq 9.453 are added, unless
∣∣FB
ij

∣∣ < FCut. The required amplitudes Tik

and Tkj (all amplitudes, in case UsePertCanOrbs = false) are stored on disk if NMRStoreT = true or

recalculated as needed otherwise. The latter option is significantly slower and not recommended unless disk

space is an issue. Similarly, in the case of insufficient RAM, the option NMRDijConv = true tells ORCA to

store all amplitudes in the batch (required to calculate DB
ij) on disk, rather than keep them in memory.

The input file for RI-MP2 g-tensor looks similar:

! UHF RIJK RI-MP2 def2-SVP def2/JK def2-SVP/C TightSCF g-tensor NoFrozenCore

%mp2

Density relaxed # required

FCut 1e-5 # Threshold for internal perturbed Fock elements

EPRStoreT true # Whether to precalculate and store all necessary

# unperturbed amplitudes on disk

EPRDijConv false # Whether to store intermediates required for the

# internal block of the response density on disk

end

* int 1 2

O 0 0 0 0 0 0

H 1 0 0 1.1056 0 0

H 1 2 0 1.1056 109.62 0

*
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9.36.4 Paramagnetic NMR shielding tensors

For systems with spin S > 0, the nuclear shielding contains a contribution which arises from the paramagnetism

of the unpaired electrons.22 This contribution is temperature-dependent and is called the “paramagnetic

shielding” (σp). It adds to the temperature-indendent contribution to the shielding, also called the “orbital”

contribution:

σ = σorb + σp. (9.455)

ORCA currently supports the calculation of σp for systems whose paramagnetism can be described by the

effective EPR spin Hamiltonian

HS = SDS + βeBgS + SAI. (9.456)

The theoretical background can be found in Refs. [541,542]. We reproduce here the main equations.

For a spin state described by Eq. 9.456, the paramagnetic shielding tensor is given by

σp = −βeS(S + 1)

gNβN3kT
gZA, (9.457)

where Z is a dimensionless 3× 3 matrix which is determined by the ZFS and the temperature, as follows:

Diagonalization of the ZFS Hamiltonian SDS yields energy levels Eλ and eigenstates |Sλa〉, where a labels

degenerate states if Eλ is degenerate. Then Z is defined as (i, j = x, y, z)

Zij =
3

S(S + 1)

1

Q0

∑
λ

e−Eλ/kT

[∑
a,a′

〈Sλa|Si|Sλa′〉〈Sλa′|Sj |Sλa〉

+ 2kT
∑
λ′ 6=λ

∑
a,a′

〈Sλa|Si|Sλ′a′〉〈Sλ′a′|Sj |Sλa〉
Eλ′ − Eλ

]
, (9.458)

where Q0 =
∑
λ,a e

−Eλ/kT denotes the partition function. An important property of the Z matrix as defined

above is that it goes to the identity matrix as D/kT goes to zero.

The orbital part of the shielding, σorb, is calculated in the same manner as for closed-shell molecules. It is

available in ORCA for the unrestricted HF and DFT methods and for MP2 (see Section 9.36.3.5 for more

information on the latter).

The orca pnmr tool uses Eq. (9.457) to calculate σp. Usage of orca pnmr is described in Section 9.40.14.

9.36.5 Local Energy Decomposition

The DLPNO-CCSD(T) method provides very accurate relative energies and allows to successfully predict

many chemical phenomena. In order to facilitate the interpretation of coupled cluster results, we have

developed the Local Energy Decomposition (LED) analysis [228, 229], which permit to divide the total

DLPNO-CCSD(T) energy (including the reference energy) into physically meaningful contributions. A

practical guide to the LED scheme is reported in Section 8.16 Recent illustrative applications of this scheme

can be found in Ref. [230,231,543–545]

22For a comprehensive review on paramagnetic NMR, see e.g. [540].
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As a word of caution we emphasize that only the total energy is an observable and its decomposition is, to

some extent, arbitrary. Nevertheless, the LED analysis appears to be physically well grounded and logical

to us, it is straightforward to apply and comes tipically at a negligible computational cost compared to

DLPNO-CCSD(T) calculations. Starting from ORCA 4.1, the LED scheme is available for both closed shell

and open shell calculations. The code has also been made parallel and more efficient.

The LED scheme makes no assumption about the strength of the intermolecular interaction and hence it

remains valid and consistent over the entire potential energy surface. Alternative schemes, such as the popular

symmetry adapted perturbation theory, are perturbative in nature and hence are best applied to weakly

interacting systems.

The idea of the LED analysis is rather simple. In local correlation methods occupied orbitals are localized and

can be readily assigned to pre-defined fragments in the molecule. The same can be done for the correlation

energy in terms of pair correlation energies that refer to pairs of occupied orbitals. In this way, both the

correlation and the reference energy can be decomposed into intra- and interfragment contributions. The

fragmentation is user defined. An arbitrary number of fragments can be defined. In the case that more than

2 fragments are defined, the interfragment interaction is printed for each fragment pair.

A very important feature of the LED scheme is the possibility to distinguish between dispersive and non-

dispersive part of the DLPNO-CCSD(T) correlation energy. In brief, we exploit the fact that each CCSD

pair correlation energy contribution can be expressed as a sum of double excitations from pairs of occupied

orbitals into the virtual space. As in the DLPNO-CCSD(T) scheme the virtual space is spanned by Pair

Natural Orbitals(PNOs) that are essentially local, the entire correlation energy can be decomposed into

double excitations types, depending on where occupied and virtual orbitals are localized. For each pair of

fragments, the sum of all excitations corresponding to the interaction of instantaneous local dipoles located

on different fragments defines the so called “London dispersion” attraction between the two fragments in the

LED framework.

For a system of two fragments, one can use as a reference point the geometrically and electronically relaxed

fragments that constitute the interacting super-molecule. Relative to this reference state, the binding energy

between the fragments can be written as:

∆E =∆Egeo−prep

+ ∆Eref.el−prep + Eref.elstat + Eref.exch (9.459)

+ ∆EC−CCSDnon−dispersion + EC−CCSDdispersion

+ ∆E
C−(T )
int

where ∆Egeo−prep is the energy needed to distort the fragments from their equilibrium configuration to

the interacting geometry (also called “strain” in other energy decomposition schemes). The ∆Eref.el−prep
term represents the electronic preparation energy and describes how much energy is necessary to bring the

fragments into the electronic structure that is optimal for interaction. Eref.exch is the inter-fragment exchange

interaction (it always gives a binding contribution in our formalism) and Eref.elstat is the electrostatic energy

interaction between the distorted electronic clouds of the fragments. The sum of these terms gives the

Hatree-Fock energy in the closed shell case and the energy of the QRO determinant in the open shell case.

Finally, the correlation energy is decomposed into dispersive EC−CCSDdispersion and non-dispersive ∆EC−CCSDnon−dispersion

contributions plus a triples correction term to the interaction energy ∆E
C−(T )
int .



9.37 Natural Bond Orbital (NBO) Analysis 905

The EC−CCSDdispersion term contains the London dispersion contribution from the strong pairs described above plus

the interfragment component of the weak pairs, which is essentially dispersive in nature. The ∆EC−CCSDnon−dispersion
correlation term serves to correct the contributions to the binding energy approximately included in the

reference energy, e.g it counteracts the overpolarization typical of the HF method. It contains the so called

charge transfer excitations from the strong pairs E
CT (X→Y )
C−SP + E

CT (X←Y )
C−SP , which represent the sum of

all double excitation contributions that do not conserve the charge within each fragment. Moreover, the

non-dispersive term also includes the electronic preparation from strong (∆EC−SPel−prep) and weak (∆EC−WP
el−prep)

pairs. Finally, ∆E
C−(T )
int represents the triples correction contribution to the interaction energy between

the fragments. In the LED scheme, this term can be further decomposed into intra- and interfragment

components.

9.37 Natural Bond Orbital (NBO) Analysis

A popular and useful method for population analysis is the natural bond orbital analysis due to Weinhold

and co-workers. It is implemented in the NBO program which is distributed in older versions via the CCL

list and in newer versions via the University of Wisconsin/Madison. Information about the NBO program can

be found at http://www.chem.wisc.edu/˜nbo6. In order to use it together with ORCA you need a version

of the stand-alone executable. Starting with version 3.1.x ORCA can only be used with NBO6 or NBO7. To

specify the NBO executable the environment variable NBOEXE=/full/name/of/nbo6-executable has to be

set. As the NBO part of the interface is not independent of the integer data-type width (i4 or i8), the NBO

executable which will be used together with ORCA has to be compiled using i4!

ORCA features two methods to interface with the NBO program: ! NBO and the %nbo - block. The following

example illustrates the use:

#

# Test the interface to the NBO program

#

! RHF SVP NBO

* xyz 0 1

C 0.000000 0.000000 0.000000

O 1.200000 0.000000 0.000000

H -0.550000 0.952628 0.000000

H -0.550000 -0.952628 -0.000000

*

This produces the following output:

Now starting NBO6....

*********************************** NBO 6.0 ***********************************

N A T U R A L A T O M I C O R B I T A L A N D

http://www.chem.wisc.edu/~nbo6
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N A T U R A L B O N D O R B I T A L A N A L Y S I S

***************************** development version *****************************

(c) Copyright 1996-2014 Board of Regents of the University of Wisconsin System

on behalf of the Theoretical Chemistry Institute. All rights reserved.

Cite this program as:

NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed,

J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis,

and F. Weinhold (Theoretical Chemistry Institute, University

of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/

/NPA / : Natural Population Analysis

/NBO / : Natural Bond Orbital Analysis

/AONBO / : Checkpoint the AO to NBO transformation

/ARCHIVE/ : Write the archive file to lfn47

Filename set to FILE

Job title: ORCA Job: check

NATURAL POPULATIONS: Natural atomic orbital occupancies

NAO Atom No lang Type(AO) Occupancy Energy

---------------------------------------------------------

1 C 1 s Cor( 1s) 1.99966 -11.23369

2 C 1 s Val( 2s) 1.01121 -0.23403

3 C 1 s Ryd( 3s) 0.00689 0.61431

4 C 1 px Val( 2p) 0.82024 0.05722

5 C 1 px Ryd( 3p) 0.01280 0.63773

6 C 1 py Val( 2p) 1.09998 -0.01646

7 C 1 py Ryd( 3p) 0.00064 0.80092

8 C 1 pz Val( 2p) 0.65974 -0.03397

9 C 1 pz Ryd( 3p) 0.00302 0.62768

10 C 1 dxy Ryd( 3d) 0.00572 2.75504

11 C 1 dxz Ryd( 3d) 0.00375 2.25507

12 C 1 dyz Ryd( 3d) 0.00000 2.09062

13 C 1 dx2y2 Ryd( 3d) 0.00346 2.73607

14 C 1 dz2 Ryd( 3d) 0.00114 2.41304

15 O 2 s Cor( 1s) 1.99976 -20.31978

16 O 2 s Val( 2s) 1.70414 -1.12939

17 O 2 s Ryd( 3s) 0.00165 1.55528

18 O 2 px Val( 2p) 1.62356 -0.45319

19 O 2 px Ryd( 3p) 0.00083 1.29399

20 O 2 py Val( 2p) 1.91500 -0.46837

21 O 2 py Ryd( 3p) 0.00338 1.41525

22 O 2 pz Val( 2p) 1.32997 -0.28652

23 O 2 pz Ryd( 3p) 0.00010 1.30113

24 O 2 dxy Ryd( 3d) 0.00211 3.27368

25 O 2 dxz Ryd( 3d) 0.00339 3.20718

26 O 2 dyz Ryd( 3d) 0.00000 2.98898

27 O 2 dx2y2 Ryd( 3d) 0.00393 3.55727

28 O 2 dz2 Ryd( 3d) 0.00114 3.17796
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29 H 3 s Val( 1s) 0.88637 0.05683

30 H 3 s Ryd( 2s) 0.00304 0.41662

31 H 3 px Ryd( 2p) 0.00031 2.18696

32 H 3 py Ryd( 2p) 0.00166 2.47708

33 H 3 pz Ryd( 2p) 0.00002 1.85384

34 H 4 s Val( 1s) 0.88637 0.05683

35 H 4 s Ryd( 2s) 0.00304 0.41662

36 H 4 px Ryd( 2p) 0.00031 2.18696

37 H 4 py Ryd( 2p) 0.00166 2.47708

38 H 4 pz Ryd( 2p) 0.00002 1.85384

Summary of Natural Population Analysis:

Natural Population

Natural ---------------------------------------------

Atom No Charge Core Valence Rydberg Total

--------------------------------------------------------------------

C 1 0.37176 1.99966 3.59117 0.03740 5.62824

O 2 -0.58895 1.99976 6.57267 0.01652 8.58895

H 3 0.10859 0.00000 0.88637 0.00503 0.89141

H 4 0.10859 0.00000 0.88637 0.00503 0.89141

====================================================================

* Total * 0.00000 3.99942 11.93659 0.06400 16.00000

Natural Population

---------------------------------------------------------

Core 3.99942 ( 99.9854% of 4)

Valence 11.93659 ( 99.4716% of 12)

Natural Minimal Basis 15.93600 ( 99.6000% of 16)

Natural Rydberg Basis 0.06400 ( 0.4000% of 16)

---------------------------------------------------------

Atom No Natural Electron Configuration

----------------------------------------------------------------------------

C 1 [core]2s( 1.01)2p( 2.58)3s( 0.01)3p( 0.02)3d( 0.01)

O 2 [core]2s( 1.70)2p( 4.87)3d( 0.01)

H 3 1s( 0.89)

H 4 1s( 0.89)

NATURAL BOND ORBITAL ANALYSIS:

Occupancies Lewis Structure Low High

Max Occ ------------------- ----------------- occ occ

Cycle Ctr Thresh Lewis non-Lewis CR BD nC LP (L) (NL)

============================================================================

1 2 1.90 15.89597 0.10403 2 4 0 2 0 0

----------------------------------------------------------------------------

Structure accepted: No low occupancy Lewis orbitals

-------------------------------------------------------

Core 3.99942 ( 99.985% of 4)

Valence Lewis 11.89656 ( 99.138% of 12)
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================== =============================

Total Lewis 15.89597 ( 99.350% of 16)

-----------------------------------------------------

Valence non-Lewis 0.07868 ( 0.492% of 16)

Rydberg non-Lewis 0.02535 ( 0.158% of 16)

================== =============================

Total non-Lewis 0.10403 ( 0.650% of 16)

-------------------------------------------------------

(Occupancy) Bond orbital / Coefficients / Hybrids

------------------ Lewis ------------------------------------------------------

1. (1.99966) CR ( 1) C 1 s(100.00%)

1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

2. (1.99976) CR ( 1) O 2 s(100.00%)

1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

3. (1.98819) LP ( 1) O 2 s( 55.84%)p 0.79( 44.11%)d 0.00( 0.05%)

0.0000 0.7471 -0.0168 0.6641 0.0071

-0.0000 0.0000 0.0000 -0.0000 0.0000

-0.0000 0.0000 -0.0201 0.0099

4. (1.91727) LP ( 2) O 2 s( 0.00%)p 1.00( 99.89%)d 0.00( 0.11%)

0.0000 0.0000 0.0000 -0.0000 -0.0000

0.9994 -0.0103 0.0000 -0.0000 -0.0328

-0.0000 0.0000 0.0000 -0.0000

5. (1.99996) BD ( 1) C 1- O 2

( 33.33%) 0.5773* C 1 s( 0.00%)p 1.00( 99.44%)d 0.01( 0.56%)

0.0000 0.0000 0.0000 0.0000 -0.0000

-0.0000 0.0000 0.9949 -0.0673 -0.0000

0.0750 0.0000 -0.0000 0.0000

( 66.67%) 0.8165* O 2 s( 0.00%)p 1.00( 99.75%)d 0.00( 0.25%)

0.0000 -0.0000 0.0000 -0.0000 0.0000

-0.0000 0.0000 0.9987 -0.0085 0.0000

-0.0504 0.0000 0.0000 -0.0000

6. (1.99969) BD ( 2) C 1- O 2

( 32.65%) 0.5714* C 1 s( 32.16%)p 2.10( 67.37%)d 0.01( 0.47%)

0.0000 0.5628 -0.0695 0.8153 0.0946

0.0000 -0.0000 0.0000 -0.0000 -0.0000

0.0000 0.0000 0.0620 -0.0288

( 67.35%) 0.8207* O 2 s( 44.21%)p 1.25( 55.49%)d 0.01( 0.30%)

0.0000 0.6643 0.0279 -0.7446 -0.0216

-0.0000 0.0000 -0.0000 -0.0000 -0.0000

-0.0000 0.0000 0.0480 -0.0264

7. (1.99572) BD ( 1) C 1- H 3

( 56.61%) 0.7524* C 1 s( 33.99%)p 1.94( 65.86%)d 0.00( 0.15%)

0.0000 0.5827 0.0187 -0.3995 -0.0027

0.7064 -0.0073 0.0000 -0.0000 -0.0314

-0.0000 0.0000 -0.0182 -0.0152

( 43.39%) 0.6587* H 3 s( 99.79%)p 0.00( 0.21%)

0.9989 -0.0092 0.0187 -0.0422 0.0000

8. (1.99572) BD ( 1) C 1- H 4

( 56.61%) 0.7524* C 1 s( 33.99%)p 1.94( 65.86%)d 0.00( 0.15%)

0.0000 0.5827 0.0187 -0.3995 -0.0027
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-0.7064 0.0073 -0.0000 0.0000 0.0314

0.0000 0.0000 -0.0182 -0.0152

( 43.39%) 0.6587* H 4 s( 99.79%)p 0.00( 0.21%)

0.9989 -0.0092 0.0187 0.0422 -0.0000

---------------- non-Lewis ----------------------------------------------------

9. (0.00000) BD*( 1) C 1- O 2

( 66.67%) 0.8165* C 1 s( 0.00%)p 1.00( 99.44%)d 0.01( 0.56%)

( 33.33%) -0.5773* O 2 s( 0.00%)p 1.00( 99.75%)d 0.00( 0.25%)

10. (0.00002) BD*( 2) C 1- O 2

( 67.35%) 0.8207* C 1 s( 32.16%)p 2.10( 67.37%)d 0.01( 0.47%)

( 32.65%) -0.5714* O 2 s( 44.21%)p 1.25( 55.49%)d 0.01( 0.30%)

11. (0.03933) BD*( 1) C 1- H 3

( 43.39%) 0.6587* C 1 s( 33.99%)p 1.94( 65.86%)d 0.00( 0.15%)

0.0000 -0.5827 -0.0187 0.3995 0.0027

-0.7064 0.0073 -0.0000 0.0000 0.0314

0.0000 0.0000 0.0182 0.0152

( 56.61%) -0.7524* H 3 s( 99.79%)p 0.00( 0.21%)

-0.9989 0.0092 -0.0187 0.0422 -0.0000

12. (0.03933) BD*( 1) C 1- H 4

( 43.39%) 0.6587* C 1 s( 33.99%)p 1.94( 65.86%)d 0.00( 0.15%)

0.0000 -0.5827 -0.0187 0.3995 0.0027

0.7064 -0.0073 0.0000 -0.0000 -0.0314

-0.0000 0.0000 0.0182 0.0152

( 56.61%) -0.7524* H 4 s( 99.79%)p 0.00( 0.21%)

-0.9989 0.0092 -0.0187 -0.0422 0.0000

13. (0.01023) RY ( 1) C 1 s( 28.97%)p 2.39( 69.11%)d 0.07( 1.92%)

0.0000 0.0555 0.5354 0.1145 -0.8234

-0.0000 -0.0000 -0.0000 0.0000 -0.0000

-0.0000 0.0000 -0.1197 0.0696

14. (0.00530) RY ( 2) C 1 s( 0.00%)p 1.00( 11.80%)d 7.47( 88.20%)

0.0000 0.0000 0.0000 0.0000 -0.0000

0.0452 0.3406 0.0000 -0.0000 0.9391

0.0000 0.0000 -0.0000 -0.0000

15. (0.00002) RY ( 3) C 1 s( 46.15%)p 0.23( 10.74%)d 0.93( 43.12%)

16. (0.00000) RY ( 4) C 1 s( 16.32%)p 0.89( 14.59%)d 4.23( 69.09%)

17. (0.00000) RY ( 5) C 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%)

18. (0.00000) RY ( 6) C 1 s( 0.00%)p 1.00( 88.39%)d 0.13( 11.61%)

19. (0.00000) RY ( 7) C 1 s( 0.00%)p 1.00( 0.56%)d99.99( 99.44%)

20. (0.00000) RY ( 8) C 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%)

21. (0.00000) RY ( 9) C 1 s( 8.42%)p 0.75( 6.28%)d10.13( 85.30%)

22. (0.00322) RY ( 1) O 2 s( 0.00%)p 1.00( 98.62%)d 0.01( 1.38%)

0.0000 0.0000 0.0000 -0.0000 -0.0000

0.0063 0.9931 -0.0000 -0.0000 -0.1175

0.0000 0.0000 0.0000 -0.0000

23. (0.00017) RY ( 2) O 2 s( 21.42%)p 2.91( 62.34%)d 0.76( 16.24%)

0.0000 -0.0179 0.4624 0.0539 -0.7877

0.0000 -0.0000 -0.0000 0.0000 0.0000

0.0000 0.0000 0.3540 -0.1926

24. (0.00001) RY ( 3) O 2 s( 0.62%)p38.98( 24.26%)d99.99( 75.12%)

25. (0.00000) RY ( 4) O 2 s( 76.20%)p 0.17( 13.08%)d 0.14( 10.73%)

26. (0.00000) RY ( 5) O 2 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%)

27. (0.00000) RY ( 6) O 2 s( 0.00%)p 1.00( 1.49%)d66.18( 98.51%)

28. (0.00000) RY ( 7) O 2 s( 0.00%)p 1.00( 0.25%)d99.99( 99.75%)

29. (0.00000) RY ( 8) O 2 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%)

30. (0.00000) RY ( 9) O 2 s( 1.71%)p 0.43( 0.73%)d57.04( 97.56%)

31. (0.00314) RY ( 1) H 3 s( 99.37%)p 0.01( 0.63%)
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0.0099 0.9968 -0.0772 -0.0189 0.0000

32. (0.00003) RY ( 2) H 3 s( 0.20%)p99.99( 99.80%)

33. (0.00002) RY ( 3) H 3 s( 0.00%)p 1.00(100.00%)

34. (0.00001) RY ( 4) H 3 s( 0.64%)p99.99( 99.36%)

35. (0.00314) RY ( 1) H 4 s( 99.37%)p 0.01( 0.63%)

0.0099 0.9968 -0.0772 0.0189 0.0000

36. (0.00003) RY ( 2) H 4 s( 0.20%)p99.99( 99.80%)

37. (0.00002) RY ( 3) H 4 s( 0.00%)p 1.00(100.00%)

38. (0.00001) RY ( 4) H 4 s( 0.64%)p99.99( 99.36%)

NHO DIRECTIONALITY AND BOND BENDING (deviations from line of nuclear centers)

[Thresholds for printing: angular deviation > 1.0 degree]

p-character > 25.0%

orbital occupancy > 0.10e

Line of Centers Hybrid 1 Hybrid 2

--------------- ------------------- ------------------

NBO Theta Phi Theta Phi Dev Theta Phi Dev

===============================================================================

3. LP ( 1) O 2 -- -- 90.0 0.0 -- -- -- --

4. LP ( 2) O 2 -- -- 90.0 90.1 -- -- -- --

5. BD ( 1) C 1- O 2 90.0 0.0 0.0 0.0 90.0 0.0 0.0 90.0

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

Threshold for printing: 0.50 kcal/mol

E(2) E(NL)-E(L) F(L,NL)

Donor (L) NBO Acceptor (NL) NBO kcal/mol a.u. a.u.

===============================================================================

within unit 1

1. CR ( 1) C 1 23. RY ( 2) O 2 0.56 12.79 0.076

1. CR ( 1) C 1 31. RY ( 1) H 3 0.53 11.66 0.070

1. CR ( 1) C 1 35. RY ( 1) H 4 0.53 11.66 0.070

2. CR ( 1) O 2 13. RY ( 1) C 1 6.44 20.90 0.328

3. LP ( 1) O 2 11. BD*( 1) C 1- H 3 0.56 1.63 0.027

3. LP ( 1) O 2 12. BD*( 1) C 1- H 4 0.56 1.63 0.027

3. LP ( 1) O 2 13. RY ( 1) C 1 12.74 1.52 0.124

4. LP ( 2) O 2 11. BD*( 1) C 1- H 3 26.31 1.16 0.156

4. LP ( 2) O 2 12. BD*( 1) C 1- H 4 26.31 1.16 0.156

4. LP ( 2) O 2 14. RY ( 2) C 1 5.71 3.02 0.117

4. LP ( 2) O 2 27. RY ( 6) O 2 0.72 3.76 0.047

6. BD ( 2) C 1- O 2 13. RY ( 1) C 1 1.25 1.99 0.045

7. BD ( 1) C 1- H 3 12. BD*( 1) C 1- H 4 0.68 1.45 0.028

7. BD ( 1) C 1- H 3 22. RY ( 1) O 2 1.95 2.16 0.058

8. BD ( 1) C 1- H 4 11. BD*( 1) C 1- H 3 0.68 1.45 0.028

8. BD ( 1) C 1- H 4 22. RY ( 1) O 2 1.95 2.16 0.058

NATURAL BOND ORBITALS (Summary):

Principal Delocalizations

NBO Occupancy Energy (geminal,vicinal,remote)
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===============================================================================

Molecular unit 1 (CH2O)

------ Lewis --------------------------------------

1. CR ( 1) C 1 1.99966 -11.23369 23(v),31(v),35(v)

2. CR ( 1) O 2 1.99976 -20.31978 13(v)

3. LP ( 1) O 2 1.98819 -0.93621 13(v),11(v),12(v)

4. LP ( 2) O 2 1.91727 -0.46967 11(v),12(v),14(v),27(g)

5. BD ( 1) C 1- O 2 1.99996 -0.53513

6. BD ( 2) C 1- O 2 1.99969 -1.40029 13(g)

7. BD ( 1) C 1- H 3 1.99572 -0.75649 22(v),12(g)

8. BD ( 1) C 1- H 4 1.99572 -0.75649 22(v),11(g)

------ non-Lewis ----------------------------------

9. BD*( 1) C 1- O 2 0.00000 0.20694

10. BD*( 2) C 1- O 2 0.00002 0.94920

11. BD*( 1) C 1- H 3 0.03933 0.68958

12. BD*( 1) C 1- H 4 0.03933 0.68958

13. RY ( 1) C 1 0.01023 0.58478

14. RY ( 2) C 1 0.00530 2.55081

15. RY ( 3) C 1 0.00002 1.54517

16. RY ( 4) C 1 0.00000 2.10893

17. RY ( 5) C 1 0.00000 0.64516

18. RY ( 6) C 1 0.00000 0.99534

19. RY ( 7) C 1 0.00000 2.24380

20. RY ( 8) C 1 0.00000 2.09062

21. RY ( 9) C 1 0.00000 2.07758

22. RY ( 1) O 2 0.00322 1.40263

23. RY ( 2) O 2 0.00017 1.55897

24. RY ( 3) O 2 0.00001 3.28708

25. RY ( 4) O 2 0.00000 1.77823

26. RY ( 5) O 2 0.00000 1.30247

27. RY ( 6) O 2 0.00000 3.28761

28. RY ( 7) O 2 0.00000 3.20733

29. RY ( 8) O 2 0.00000 2.98898

30. RY ( 9) O 2 0.00000 2.95015

31. RY ( 1) H 3 0.00314 0.42667

32. RY ( 2) H 3 0.00003 2.56145

33. RY ( 3) H 3 0.00002 1.85384

34. RY ( 4) H 3 0.00001 2.07427

35. RY ( 1) H 4 0.00314 0.42667

36. RY ( 2) H 4 0.00003 2.56145

37. RY ( 3) H 4 0.00002 1.85384

38. RY ( 4) H 4 0.00001 2.07427

-------------------------------

Total Lewis 15.89597 ( 99.3498%)

Valence non-Lewis 0.07868 ( 0.4917%)

Rydberg non-Lewis 0.02535 ( 0.1584%)

-------------------------------

Total unit 1 16.00000 (100.0000%)

Charge unit 1 0.00000

$CHOOSE

LONE 2 2 END

BOND D 1 2 S 1 3 S 1 4 END

$END

Maximum scratch memory used by NBO was 47171 words
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Stopping NBO6...Storing NBOs: check.nbo

*** returned from NBO program ***

Thus, in this example the NBO analysis shows that a single Lewis structure is dominant with single bonds

between C and H, a double bond between C and O and two lone pairs at the oxygen – just as ordinary

chemical arguments would imply. In addition, the program produces the four corresponding valence antibonds

(as expected). The remaining components of the basis set span the “Rydberg” space and lead to semilocalized,

orthogonal orbitals that are assigned to single atoms (Note the nomenclature: BD = bond, BD* = antibond,

LP = lone pair, CR = core orbital, RY= Rydberg orbital). The NPA analysis shows a patially negative

oxygen and partially positive carbon and hydrogen atoms – all matching the expectations.

Additionally, the NBO orbitals are stored in the ORCA .gbw file-format in a file called jobname.nbo. This

file can be used for further analysis and usage with ORCA e.g. for plotting orbitals via orca plot.

The NBO program has many additional features and analysis tools. The features that are implemented in

ORCA are

%nbo

NBOKEYLIST = "$NBO ... $END"

DELKEYLIST = "$DEL ... $END"

COREKEYLIST = "$CORE ... $END"

NRTSTRKEYLIST = "$NRTSTR ... $END"

NPEPAKEYLIST = "$NPEPA ... $END"

end

The syntax of the respective keylists is given by the NBO6.x/NBO7.x manual.

Specifying the ! NBO keyword as a one-liner command, the corresponding block as NBOKEYLIST would be:

%nbo

NBOKEYLIST = "$NBO NBO NPA AONBO=C ARCHIVE $END"

end

The full set of features beyond those which can be give via the %nbo block can be accessed using the file

FILE.47, which is generated by the NBO program. This is an ascii file that can be edited with a text editor.

Add or remove keywords in the corresponding blocks as needed and call the gennbo program like

gennbo < FILE.47 >jobname.nboout

The FILE.47 file looks like:
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(a) π (b) π − LP (c) π∗

(d) σ (e) σ − LP (f) σ∗

Figure 9.52: Six NBOs of the H2CO molecule. Shown are the occupied bonding π and σ orbitals
(left) for C and O, the two oxygen lone-pairs (middle) and the two π and σ antibonding
orbitals (right).

$GENNBO NATOMS=4 NBAS=38 UPPER BODM FORMAT $END

$NBO $END

$COORD

ORCA Job: check

6 6 0.000000 0.000000 0.000000

8 8 2.267671 0.000000 0.000000

1 1 -1.039349 1.800206 0.000000

1 1 -1.039349 -1.800206 0.000000

$END

$BASIS

If you have no need for this (rather large) file, then you have to delete it manually!

9.37.1 NBO Deletions

An advanced feature which has been implemented via the ORCA-NBO interface is the possibilty of using

deletions.
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! RHF 3-21G BOHRS TightSCF

%nbo

nbokeylist="$nbo nbo npa aonbo=c archive $end"

delkeylist="$del lewis delete 1 element 3 11 $end"

end

*xyz 0 1

C 1.4089705283 0.0210567401 0.0000000000

N -1.3645072652 -0.1355759321 0.0000000000

H 1.9849776453 1.9986808971 0.0000000000

H 2.1492280974 -0.9096841007 1.6818209547

H 2.1492280974 -0.9096841007 -1.6818209547

H -2.0504340036 0.7268536543 -1.5583845544

H -2.0504340036 0.7268536543 1.5583845544

*

The DELKEYLIST provides NBO with the task to perform certain deletions of orbitals/interactions. Per
deletion ORCA calculates a new Fock-matrix on basis of an NBO-density corresponding to the deletions:

Starting NBO again for $del instructions...

LEWIS: Delete all non-Lewis NBOs

Deletion of the following orbitals from the NBO Fock matrix:

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Orbital occupancies:

Orbital No deletions This deletion Change

------------------------------------------------------------------------------

1. CR ( 1) C 1 1.99900 2.00000 0.00100

2. CR ( 1) N 2 1.99953 2.00000 0.00047

3. LP ( 1) N 2 1.97796 2.00000 0.02204

4. BD ( 1) C 1- N 2 1.99855 2.00000 0.00145

5. BD ( 1) C 1- H 3 1.99863 2.00000 0.00137

6. BD ( 1) C 1- H 4 1.99400 2.00000 0.00600

7. BD ( 1) C 1- H 5 1.99400 2.00000 0.00600

8. BD ( 1) N 2- H 6 1.99441 2.00000 0.00559

9. BD ( 1) N 2- H 7 1.99441 2.00000 0.00559

10. BD*( 1) C 1- N 2 0.00012 0.00000 -0.00012

11. BD*( 1) C 1- H 3 0.01571 0.00000 -0.01571

12. BD*( 1) C 1- H 4 0.00771 0.00000 -0.00771

13. BD*( 1) C 1- H 5 0.00771 0.00000 -0.00771

14. BD*( 1) N 2- H 6 0.00428 0.00000 -0.00428

15. BD*( 1) N 2- H 7 0.00428 0.00000 -0.00428

16. RY ( 1) C 1 0.00103 0.00000 -0.00103

17. RY ( 2) C 1 0.00033 0.00000 -0.00033

18. RY ( 3) C 1 0.00023 0.00000 -0.00023

19. RY ( 4) C 1 0.00001 0.00000 -0.00001
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20. RY ( 1) N 2 0.00110 0.00000 -0.00110

21. RY ( 2) N 2 0.00046 0.00000 -0.00046

22. RY ( 3) N 2 0.00038 0.00000 -0.00038

23. RY ( 4) N 2 0.00002 0.00000 -0.00002

24. RY ( 1) H 3 0.00178 0.00000 -0.00178

25. RY ( 1) H 4 0.00096 0.00000 -0.00096

26. RY ( 1) H 5 0.00096 0.00000 -0.00096

27. RY ( 1) H 6 0.00123 0.00000 -0.00123

28. RY ( 1) H 7 0.00123 0.00000 -0.00123

NEXT STEP: Perform one SCF cycle to evaluate the energy of the new density

matrix constructed from the deleted NBO Fock matrix.

------------------------------------------------------------------------------

Copying NBO density...

Calculating new Fock-Matrix...

Calculating Fock-Matrix...done!

New NBO energy via Fock-Matrix: -94.618095

Starting NBO again for $del/return energy instructions...

------------------------------------------------------------------------------

Energy of deletion : -94.618095196

Total SCF energy : -94.679444929

-------------------

Energy change : 0.061350 a.u., 38.498 kcal/mol

------------------------------------------------------------------------------

Multiple deletions can also be specified, as can be seen in the example above. The output then conains the
additional energy values:

Starting NBO again for $del instructions...

Deletion of the following NBO Fock matrix elements:

3, 11;

Orbital occupancies:

Orbital No deletions This deletion Change

------------------------------------------------------------------------------

1. CR ( 1) C 1 1.99900 1.99901 0.00001

2. CR ( 1) N 2 1.99953 1.99952 -0.00001

3. LP ( 1) N 2 1.97796 1.99343 0.01548

4. BD ( 1) C 1- N 2 1.99855 1.99867 0.00012

5. BD ( 1) C 1- H 3 1.99863 1.99850 -0.00014

6. BD ( 1) C 1- H 4 1.99400 1.99397 -0.00003

7. BD ( 1) C 1- H 5 1.99400 1.99397 -0.00003

8. BD ( 1) N 2- H 6 1.99441 1.99452 0.00011

9. BD ( 1) N 2- H 7 1.99441 1.99452 0.00011

10. BD*( 1) C 1- N 2 0.00012 0.00011 -0.00000

11. BD*( 1) C 1- H 3 0.01571 0.00049 -0.01522

12. BD*( 1) C 1- H 4 0.00771 0.00788 0.00017
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13. BD*( 1) C 1- H 5 0.00771 0.00788 0.00017

14. BD*( 1) N 2- H 6 0.00428 0.00428 0.00000

15. BD*( 1) N 2- H 7 0.00428 0.00428 0.00000

16. RY ( 1) C 1 0.00103 0.00073 -0.00030

17. RY ( 2) C 1 0.00033 0.00033 0.00000

18. RY ( 3) C 1 0.00023 0.00036 0.00013

19. RY ( 4) C 1 0.00001 0.00001 -0.00000

20. RY ( 1) N 2 0.00110 0.00111 0.00001

21. RY ( 2) N 2 0.00046 0.00046 0.00000

22. RY ( 3) N 2 0.00038 0.00038 0.00000

23. RY ( 4) N 2 0.00002 0.00002 0.00000

24. RY ( 1) H 3 0.00178 0.00109 -0.00069

25. RY ( 1) H 4 0.00096 0.00100 0.00005

26. RY ( 1) H 5 0.00096 0.00100 0.00005

27. RY ( 1) H 6 0.00123 0.00123 0.00000

28. RY ( 1) H 7 0.00123 0.00123 0.00000

NEXT STEP: Perform one SCF cycle to evaluate the energy of the new density

matrix constructed from the deleted NBO Fock matrix.

------------------------------------------------------------------------------

Copying NBO density...

Calculating new Fock-Matrix...

Calculating Fock-Matrix...done!

New NBO energy via Fock-Matrix: -94.668195

Starting NBO again for $del/return energy instructions...

------------------------------------------------------------------------------

Energy of deletion : -94.668194723

Total SCF energy : -94.679444929

-------------------

Energy change : 0.011250 a.u., 7.060 kcal/mol

------------------------------------------------------------------------------

NOTE: Deletions are only implemented for SCF methods!

9.37.2 NBO for Post-HF Densities

NBO analysis can be performed on all methods producing a density. In some methods the density generation

has to be specified explictly, e. g. for MP2 calculations this would be:

! RHF MP2 3-21G TightSCF BOHRS NBO

%MP2

density relaxed

end
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*xyz 0 1

C 1.4089705283 0.0210567401 0.0000000000

N -1.3645072652 -0.1355759321 0.0000000000

H 1.9849776453 1.9986808971 0.0000000000

H 2.1492280974 -0.9096841007 1.6818209547

H 2.1492280974 -0.9096841007 -1.6818209547

H -2.0504340036 0.7268536543 -1.5583845544

H -2.0504340036 0.7268536543 1.5583845544

*

The output will contain both the NBO analysis of the SCF density as well as of the MP2 relaxed density. An

NBO analysis of a density generated by the MDCI module can be specified as follows:

! RHF CISD 3-21G TightSCF BOHRS NBO

%mdci

density linearized

end

*xyz 0 1

C 1.4089705283 0.0210567401 0.0000000000

N -1.3645072652 -0.1355759321 0.0000000000

H 1.9849776453 1.9986808971 0.0000000000

H 2.1492280974 -0.9096841007 1.6818209547

H 2.1492280974 -0.9096841007 -1.6818209547

H -2.0504340036 0.7268536543 -1.5583845544

H -2.0504340036 0.7268536543 1.5583845544

*

Again, the output will contain both the NBO analysis of the SCF density as well es of the CISD linearized

density.

9.38 Population Analyses and Control of Output

At present ORCA knows three different ways of analyzing the computed SCF wavefunction that will be

described below. All of these methods can produce a tremendous amount of output. However, this output

can be precisely controlled by the user to his or her individual needs.

In general there is one compound key called PrintLevel which is there to choose reasonable amounts of

output. All that PrintLevel does is to set certain flags in the array Print which holds the details about

what to print and what not.
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9.38.1 Controlling Output

The array Print allows the control of output. The general way of assigning elements of Print is:

%output

PrintLevel Normal

Print[ Flag ] 0 # turn print off

1 # turn print on

n # some flags are more sophisticated

end

The compound key PrintLevel can be used to select certain default settings for the print array. Specifying

Print after PrintLevel can be used to modify these defaults.

%output

PrintLevel Nothing

Mini

Small

Normal

Maxi

Large

Huge

Debug

end

Print has presently the following elements that can be user controlled:

Flag Action

P InputFile Echo the input file

P Cartesian Print the cartesian coordinates

P Internal Print the internal coordinates

P Basis = 1 : Print the basis set information

= 2 : Also print the primitives in input format

P OneElec Print of the one electron matrix

P Overlap Print the overlap matrix

P KinEn Print the kinetic energy matrix

P S12 Print the S−1/2 matrix

P GuessOrb Print the initial guess orbitals

P OrbEn Print Orbital Energies

P MOs Print the MO coefficients on convergence

P Density Print the converged electron density

P SpinDensity Print the converged spin density

P EHTDetails Print initial guess extended Hückel details

P SCFInfo Print the SCF input flags
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P SCFMemInfo Print the estimated SCF memory requirements

P SCFIterInfo = 1 : print short iteration information

= 2 : print longer iteration information

= 3 : in a direct SCF also print integral progress

P Fockian Print Fockian matrix

P DIISMat Print DIIS matrix

P DIISError Print DIIS error

P Iter P Print Density

P Iter C Print MO coefficients

P Iter F Print Fock matrix

P Mayer Print Mayer population analysis. Default = on.

P NatPop Print Natural population analysis. Default = off.

P Hirshfeld Print Hirshfeld population analysis. Default = off.

P Mulliken Print Mulliken population analysis. Default = on

P AtCharges M Print Mulliken atomic charges

P OrbCharges M Print Mulliken orbital charges

P FragCharges M Print Mulliken fragment charges

P FragBondOrder M Print Mulliken fragment bond orders

P BondOrder M Print Mulliken bond orders

P ReducedOrbPop M Print Mulliken reduced orb. charges

P FragPopMO M Print Mulliken fragment population for each MO

P FragOvlMO M Print Mulliken overlap populations per fragment pair

P AtPopMO M Print Mulliken atomic charges in each MO

P OrbPopMO M Print Mulliken orbital population for each MO

P ReducedOrbPopMO M Print Mulliken reduced orbital population for each MO

P Loewdin Print Loewdin population analysis. Default = on.

P AtCharges L Print Loewdin atomic charges

P OrbCharges L Print Loewdin orbital charges

P FragCharges L Print Loewdin fragment charges

P FragBondOrder L Print Loewdin fragment bond orders

P BondOrder L Print Loewdin bond orders

P ReducedOrbPop L Print Loewdin reduced orb. charges

P FragPopMO L Print Loewdin fragment population for each MO

P FragOvlMO L Print Loewdin overlap populations per fragment pair

P AtPopMO L Print Loewdin atomic charges in each MO

P OrbPopMO L Print Loewdin orbital population for each MO

P ReducedOrbPopMO L Print Loewdin reduced orbital population for each MO

P NPA Natural population analysis

P NBO Natural bond orbital analysis

P Fragments Print fragment information

P GUESSPOP Print initial guess populations

P UNO FragPopMO M Print Mulliken fragment population per UNO

P UNO OrbPopMO M Print Mulliken orbital pop. per UNO

P UNO AtPopMO M Print Mulliken atomic charges per UNO
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P UNO ReducedOrbPopMO M Print Mulliken reduced orbital pop. per UNO

P UNO FragPopMO L Print Loewdin fragment population per UNO

P UNO OrbPopMO L Print Loewdin orbital pop. per UNO

P UNO AtPopMO L Print Loewdin atomic charges per UNO

P UNO ReducedOrbPopMO L Print Loewdin reduced orbital pop. per UNO

P UNO OccNum Print occupation numbers per UNO

P AtomExpVal Print atomic expectation values

P AtomBasis Print atomic basis

P AtomDensFit Print electron density fit

P Symmetry Symmetry basic information

P Sym Salc Symmetry process printing

P SCFSTABANA Information on progress, convergence, and results of the

SCF stability analysis

P DFTD Print info on Grimme’s dispersion correction

print mini = 0

print small = 1

print normal = 1

print maxi = 2

print huge = 2

P DFTD GRAD Print gradient info on Grimme’s dispersion correction

print mini = 0

print small = 0

print normal = 0

print maxi = 1

print huge = 2

The various choices for PrintLevel have the following defaults:

PrintLevel Print settings

Mini P OrbEn = 1

P Cartesian = 1

P InputFile = 1

P SCFIterInfo = 1

Small all the previous plus

P SCFInfo = 1

P Mayer = 1

P MULLIKEN = 1

P AtCharges M = 1

P ReducedOrbPop M = 1

P Loewdin = 1

P AtCharges L = 1

P ReducedOrbPop L = 1

P Fragments = 1

P FragCharges M = 1

P FragBondOrder M = 1
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P FragCharges L = 1

P FragBondOrder L = 1

Normal all the previous plus

P Internal = 1

P BondOrder L = 1

P BondOrder M = 1

P FragPopMO L = 1

P ReducedOrbPopMO L = 1

P SCFIterInfo = 2

Maxi all the previous plus

P GuessOrb = 1

P MOs = 1

P Density = 1

P SpinDensity = 1

P Basis = 1

P FragOVLMO M = 1

P OrbPopMO M = 1

P OrbCharges M = 1

Huge All the previous plus

P OneElec = 1

P Overlap = 1

P S12 = 1

P AtPopMO M = 1

P OrbPopMO M = 1

P AtPopMO L = 1

P EHTDetails = 1

Debug print everything

9.38.2 Mulliken Population Analysis

The Mulliken population analysis [546] is, despite all its known considerable weaknesses, the standard in

most quantum chemical programs. It partitions the total density using the assignment of basis functions to

given atoms in the molecules and the basis function overlap. If the total charge density is written as ρ (~r)

and the total number of electrons is N we have:

∫
ρ (~r) d~r = N (9.460)

and from the density matrix P and the basis functions {φ}:

ρ (~r) =
∑
µν

Pµνφµ (~r)φν (~r) (9.461)

therefore:
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∫
ρ (~r) d~r =

∑
µν

Pµν

∫
φµ (~r)φν (~r) d~r︸ ︷︷ ︸

Sµν

(9.462)

=
∑
µν

PµνSµν (9.463)

After assigning each basis function to a given center this can be rewritten:

=
∑
A

∑
B

∑
µ

A
∑
ν

BPABµν S
AB
µν (9.464)

=
∑
A

∑
µ

A
∑
ν

APAAµν S
AA
µν + 2

∑
A

∑
B<A

∑
µ

A
∑
ν

BPABµν S
AB
µν (9.465)

Mulliken proposed to divide the second term equally between each pair of atoms involved and define the

number of electrons on center A, NA, as:

NA =
∑
µ

A
∑
ν

APAAµν S
AA
µν +

∑
B 6=A

∑
µ

A
∑
ν

BPABµν S
AB
µν (9.466)

such that
∑
A

NA = N . The charge of an atom in the molecule is then:

QA = ZA −NA (9.467)

where ZA is the core charge of atom A. The cross terms between pairs of basis functions centered on different

atoms is the overlap charge and is used in ORCA to define the Mulliken bond order:

BAB = 2
∑
µ

A
∑
ν

BPABµν S
AB
µν (9.468)

The Mulliken population analysis is turned on by using:

%output

Print[ P_Mulliken ] 1 # default = on

end

A number of additional options can be specified to control the details of the Mulliken population analysis.

By default the Mulliken population analysis is turned on.
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%output

Print[ P_AtCharges_M ] 1 # Print atomic charges

Print[ P_OrbCharges_M ] 1 # Print orbital charges

Print[ P_FragCharges_M] 1 # Print fragment charges

Print[ P_BondOrder_M ] 1 # Print bond orders

Print[ P_FragBondOrder_M ] 1# Print fragment b.o.

Print[ P_ReducedOrbPop_M ] 1# Print reduced orb. Charges

Print[ P_AtPopMO_M ] 1 # Print atomic charges in

# each MO

Print[ P_OrbPopMO_M ] 1 # Print orbital populaiton

# for each MO

Print[ P_ReducedOrbPopMO_M] 1 # Print reduced orbital

# pop for each MO

Print[ P_FragPopMO_M ] 1 # Print the fragment

# population for for each MO

end

These options allow to get very detailed information about the computed wavefunctions and is much more

convenient than to look at the MOs directly. A “reduced orbital population” is a population per angular

momentum type. For example the sum of populations of each pz orbital at a given atom is the reduced

orbital population of the pz function.

Note that for finite temperature HF or KS-DFT calculations (SmearTemp > 0 K, fractional occupation
numbers or FOD analysis, see 9.6.8), only the Mulliken reduced orbital charges based on ρFOD will be printed.
They can be used to get a first impression about the localization of hot electrons in the molecule without
generating the corresponding FOD plot (see 9.39.2.2). The following example shows the corresponding
printout for the first carbon atom of p-benzyne based on a FOD analysis with default settings (see 9.6.8.2).

------------------------------------------

FOD BASED MULLIKEN REDUCED ORBITAL CHARGES

------------------------------------------

0 C s : 0.006371 s : 0.006371

pz : 0.016375 p : 0.030785

px : 0.009893

py : 0.004516

dz2 : 0.004248 d : 0.010308

dxz : 0.000254

dyz : 0.004855

dx2y2 : 0.000860

dxy : 0.000091

f0 : 0.000006 f : 0.000378

f+1 : 0.000014

f-1 : 0.000309

f+2 : 0.000002

f-2 : 0.000006

f+3 : 0.000010

f-3 : 0.000032

If other population analysis printouts are wanted the user is referred to the Löwdin analysis (9.38.3) which

is turned on by default using the total SCF density of the calculation, also in the case of finite electronic

temperature.
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9.38.3 Löwdin Population Analysis

The Löwdin analysis [59] is somewhat more straightforward than the Mulliken analysis. In the Löwdin

method one changes to a basis where all overlap integrals vanish. This is accomplished via Löwdins symmetric

orthogonalization matrix S−1/2. Using this transformation matrix the new basis functions are multicentered

but are in a least square sense as similar as possible to the original, strictly localized, atomic basis functions.

The similarity of the transformed functions and original functions is explored in the population analysis. The

density matrix transforms as:

PL = S1/2PS1/2 (9.469)

Then the atomic populations are:

NA =
∑
µ

APLµµ (9.470)

The bond order is defined from the Wiberg index [547] that was first used in the context of semiempirical

methods (that are formulated in the Löwdin basis right from the start):

BAB =
∑
µ

A
∑
ν

B
(
PLµν

)2
(9.471)

The output for the Löwdin population analysis (that I personally prefer over the Mulliken analysis) is closely

similar. By default the Löwdin population analysis is turned on and provides some more detail than the

Mulliken analysis.

%output

Print[ P_Loewdin ] 1 # default = on

end

The flags to regulate the details are almost identical:

%output

Print[ P_AtCharges_L ] 1 # Print atomic charges

Print[ P_OrbCharges_L ] 1 # Print orbital charges

Print[ P_FragCharges_L] 1 # Print fragment charges

Print[ P_BondOrder_L ] 1 # Print bond orders

Print[ P_FragBondOrder_L ] 1# Print fragment b.o.

Print[ P_ReducedOrbPop_L ] 1# Print reduced orb. Charges

Print[ P_AtPopMO_L ] 1 # Print atomic charges in

# each MO

Print[ P_OrbPopMO_L ] 1 # Print orbital population

# for each MO
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Print[ P_ReducedOrbPopMO_L] 1 # Print reduced orbital

# pop for each MO

Print[ P_FragPopMO_L ] 1 # Print the fragment

# population for each MO

end

In addition one can set, in the method block, the threshold for the printing of the bond order.

%method

LOEWDIN_BONDORDERTHRESH 0.05

end

9.38.4 Mayer Population Analysis

Mayers bonding analysis [548–551] is another creative attempt to define chemically useful indices. The Mayer

atomic charge is identical to the Mulliken charge. The Mayer bond order is defined as:

BAB =
∑
µ

A
∑
ν

B (PS)µν (PS)νµ + (RS)µν (RS)νµ (9.472)

Here P is the total electron density matrix and R is the spin-density matrix. These Mayer bond orders are

very useful. Mayer’s total valence for atom A is defined as:

VA = 2NA −
∑
µ

A
∑
ν

A (PS)µν (PS)νµ (9.473)

In normal bonding situations and with normal basis sets VA should be reasonably close to the valence of

atom A in a chemical sense (i.e. close to four for a carbon atom). The bonded valence is given by:

XA = VA −
∑
B 6=A

BAB (9.474)

and finally the free valence (a measure of the ability to form further bonds) is given by:

FA = VA −XA (9.475)

The Mayer population analysis is turned on by:

%output

Print[ P_Mayer ] 1 # default = on

end
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The output is rather simple and short and can not be further controlled. By default the Mayer population

analysis is turned on. In addition one can set, in the method block, the threshold for the printing of the

bond order.

%method

MAYER_BONDORDERTHRESH 0.1

end

9.38.5 Natural Population Analysis

A popular and useful method for population analysis is the natural population analysis due to Weinhold and

co-workers. It is implemented in the NBO interface.

9.38.6 Local Spin Analysis

It is common practice in various areas of chemistry to think about the interaction of open-shell systems in

terms of local spin states. For example, in dimeric or oligomeric transition metal clusters, the ‘exchange

coupling’ between open shell ions that exist locally in high-spin states is a much studied phenomenon.

Diradicals would be typical systems in organic chemistry that show this phenomenon. In quantum mechanics,

however, the total spin is not a local property, but instead a property of the system as a whole. The total

spin squared, S2, and its projection onto the z-axis, Sz, commute with the non-relativistic Hamiltonian and

hence, the eigenfunctions of the non-relativistic Hamiltonian can be classified according to good quantum

numbers S and M according to:

S2
∣∣ΨSM

〉
= S(S + 1)

∣∣ΨSM
〉

Sz
∣∣ΨSM

〉
= M

∣∣ΨSM
〉

where
∣∣ΨSM

〉
is an exact eigenfunction of the non-relativistic Hamiltonian or an approximation to it that

conserves the total spin as a good quantum number. The total spin itself is given by the sum over the

individual electron spins as:

S =
∑
i

s(i)

And hence,

S2 =
∑

i,j
s(i)s(j)

is a two-electron property of the system. It is obviously not trivial to relate the chemically very meaningful

concept of local spin to a rigorous quantum mechanical treatment. While there are various proposals of how

to deal with this problem, we follow here a proposal of Clark and Davidson (Clark, A.E.; Davidson, E.R., J.

Chem. Phys. 2001, 115, 7382-7392). The following equations are implemented in the SCF and CASSCF

modules of Orca.
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Clark and Davidson define fragment projection operators with the property:

PAPB = δABPA

and: ∑
A

PA = 1

Then using this identity:

S =
∑
i

∑
A

s(i)PA(i)

S =
∑
A

∑
i

s(i)PA(i)

=
∑
A

SA(i)

they show that the local spin operators obey the standard relations for spin operators:

SA = S†A

SA × SA = i~SA

Hence

S2 =
∑
A

∑
B

SASB

But then importantly:

SASB =
∑
i

∑
j

s(i)s(j)PA(i)PB(j)

= 3
4δAB

∑
A

PA(i) +
∑
i

∑
j>i

s(i)s(j){PA(i)PB(j) + PA(j)PB(i)}

With the first- and second-order density matrix:

γ(x,x′) = N

∫
Ψ(x,x2, ...,xN )Ψ∗(x′,x2, ...,xN )dx2...dxN

Γ(x1,x
′
1; x2,x

′
2) =

(
N

2

)∫
Ψ(x1,x2, ...,xN )Ψ∗(x′1,x

′
2, ...,xN )dx3...dxN

(with
(
N
2

)
= 1

2N(N − 1)). Then:



928 9 Detailed Documentation

〈SASB〉 = 3
4δABtr(γPA) + 2tr(PA(1)PB(2)s(1)s(2)Γ(1, 1; 2, 2))

In terms of the number of electrons on site ‘A’ and the expectation value of SAz

〈
SAz
〉

= 1
2 tr(γ

α−βPA)

〈
NA
〉

= tr(γα+βPA)

in terms of molecular orbitals:

〈
SAz
〉

= 1
2

∑
p,q

γα−βpq 〈p|PA|q〉

〈
NA
〉

=
∑
p,q

γα+β
pq 〈p|PA|q〉

McWeeny and Kutzelnigg (McWeeny, R.; Kutzelnigg, W. Int. J. Quant. Chem. 1968, 11, 187-203) show that

for the expectation value of s(1)s(2), the relevant irreducible part of the two-body density can be expressed

in terms of the spinless density matrix of second order:

R
(0)
0 (1, 1′; 2, 2′) = − 1

3Γ(1, 1′; 2, 2′)− 2
3Γ(2, 1′; 1, 2′)

= − 1
3

∑
pqrs

Γpqrsp(1)q(1′)r(2)s(2′) + 2Γpqrsp(2)q(1′)r(1)s(2′)

= − 1
3

∑
pqrs

(Γpqrs + 2Γrqps)p(1)q(1′)r(2)s(2′)

with a normalization factor of 3
4 after spin integration. Hence using this:

〈SASB〉 = 3
4δABtr(γPA) + 6

4 tr(PA(1)PB(2)R
(0)
0 (1, 1; 2, 2))

And then performing the integral:

〈SASB〉 = 3
4δABtr(γPA)− 6

4
1
3︸︷︷︸

1
2

∑
pqrs

(Γpqrs + 2Γrqps)P
A
pqP

B
rs

This is the final and perhaps most compact equation. The projection operator can be defined in very many

different ways. The easiest is to Löwdin orthogonalize the basis set:

∣∣µAL〉 =
∑
νA

∣∣νA〉S−1/2
µν
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where ‘L’ denotes the Löwdin basis. This means that molecular orbitals are expressed in the orthogonal basis

as:

cL = S+1/2c

and the density as:

PL = S+1/2PS+1/2

The fragment projector is defined as:

PA =
∑
µL∈A

|µL〉 〈µL|

Clark and Davidson suggest a slightly more elaborate projector in which first, the intra-fragment overlap is

eliminated. This happens with a matrix U that for two fragments takes form:

U =

(
S
−1/2
A 0

0 S
−1/2
B

)
where is the block of basis functions belonging to fragment A. Likewise:

U−1 =

(
S

+1/2
A 0

0 S
+1/2
B

)

Then the ‘pre-overlap’ is:

S̄ = U†SU

This contains the unit matrix in the intra-fragment blocks and non-zero elements elsewhere. This overlap

matrix is the finally orthogonalized to obtain the globally orthogonal Löwdin basis. We finally transform the

MO coefficients by the following transformation:

cL = S+1/2U−1c

For the projectors, operating with the two MOs i and j gives:

〈i|PA|j〉 =
∑
µL∈A

∑
κBL τ

C
L

〈
κBL |µAL

〉 〈
µAL |τCL

〉
cLκic

L
τj

=
∑
µL∈A

∑
κBL τ

C
L

δABδACδκµδτµc
L
κic

L
τj
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=
∑
µL∈A

cLµic
L
µj

Herrmann et al. (Herrmann, C.; Reiher, M.; Hess, B.A. J. Chem. Phys. 2005, 122, 34102) give the correct

expression of the expectation values for a single spin-unrestricted determinant

〈SASB〉 = 3
4δAB

{∑
i

PAii +
∑
ī

PAī̄i

}

+ 1
4

∑
ij

PAii P
B
jj +

∑
īj̄

PAī̄i P
B
j̄j̄ −

∑
ij

PAijP
B
ij −

∑
īj̄

PAīj̄P
B
īj̄ −

∑
īj

PAī̄i P
B
jj −

∑
ij̄

PAii P
B
j̄j̄


−
∑
ij̄

PAij̄P
B
ij̄

Which is used in the Orca implementation.

The use of the Local spin-implementation is very easy. All that is required is to divide the molecule

into fragments. The rest happens automatically. For example, let us consider two nitrogen atoms at the

dissociation limit. While the total spin state is S=0, the tow nitrogen atoms local exist in high-spin states

(S=3/2). Consider the following test job:

! HF def2-SVP UHF TightSCF PModel

%scf brokensym 3,3 end

* xyz 0 1

N(1) 0 0 0

N(2) 0 0 1094

*

and the output:

-------------------

LOCAL SPIN ANALYSIS (Loewdin* projector)

-------------------

(1) A.E. Clark; E.R. Davison J. Chem. Phys. (2001), 115(16), pp 7382-7392

(2) C. Herrmann, M. Reiher, B.A. Hess J. Chem. Phys. (2005) 122, art 034102-1

Number of fragments = 2

Number of basis functions = 28

Number of atoms = 2

... Fragment AO indices were mapped

... intra-fragment orthogonalization completed

... Global Loewdin orthogonalizer constructed
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... Loewdin orthogonalized occupied orbitals constructed

<SA*SB> 1 2

----------------------------------

1 : 3.7568

2 : -2.2500 3.7568

<SzA> Seff(A)

--------------------------

1 : 1.5000 1.5017

2 : -1.5000 1.5017

thus perfectly corresponding to the expectations. The same can be done at the CASSCF level:

! HF def2-SVP UHF TightSCF PModel

%casscf nel 6 norb 6 nroots 1 end

* xyz 0 1

N(1) 0 0 0

N(2) 0 0 1094

*

With the result:

<SA*SB> 1 2

----------------------------------

1 : 3.7500

2 : -3.7500 3.7500

<SzA>* Seff(A)

--------------------------

1 : n.a. 1.5000

2 : n.a. 1.5000

* = for a singlet state all <SzA> values are zero by definition

Thus, cleanly confirming the expectations.

As a less trivial example, consider a typical Fe(III) antiferromatically coupled transition metal dimer. An

appropriate input may be:
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! pbe def2-sv(p) def2/j tightscf kdiis soscf pmodel

%scf brokensym 5,5

end

* xyz -2 1

Fe(1) -1.93818 0.53739 -0.00010

Fe(2) 1.06735 0.47031 0.00029

S(3) -0.38935 2.59862 -0.00983

S(3) -0.48170 -1.59050 0.01091

S(1) 2.68798 0.43924 1.99710

S(1) 2.68692 0.42704 -1.99712

S(2) -3.55594 0.56407 -1.99889

S(2) -3.55850 0.58107 1.99646

H(1) 3.91984 0.39462 1.47608

H(1) 3.91940 0.39536 -1.47662

H(2) -4.78410 0.69179 -1.48280

H(2) -4.78991 0.49249 1.47983

*

Where one of the bridging sulfurs was assigned to each site respectively.

<SA*SB> 1 2

----------------------------------

1 : 7.7009

2 : -5.3721 7.7012

<SzA> Seff(A)

--------------------------

1 : 1.7579 2.3197

2 : -1.7579 2.3198

Nice shows the expected results with the local site spins being close to their ideal value 2.5 which would hold

for a high-spin Fe(III) ion.

9.38.7 UNO Orbital Printing

The analysis of UNO’s can be controlled similarly. The flags together with their default values are shown

below:

%output

Print[ P_UNO_OccNum ] = 1; # Occupation numbers

Print[ P_UNO_AtPopMO_M ] = 0; # Mulliken atom pop.
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# per UNO

Print[ P_UNO_OrbPopMO_M] = 0; # Mulliken orbital pop.

# per UNO

Print[ P_UNO_ReducedOrbPopMO_M] = 0;

# Mulliken reduced orbital

# pop. per UNO

Print[ P_UNO_AtPopMO_L ] = 0; # Loewdin atom pop.

# per UNO

Print[ P_UNO_OrbPopMO_L] = 0; # Loewdin orbital pop.

# per UNO

Print[ P_UNO_ReducedOrbPopMO_L] = 0;

# Loewdin reduced orbital

# pop. per UNO

end

9.39 Orbital and Density Plots

There are two types of graphics output possible in ORCA - two dimensional contour plots and three

dimensional surface plots. The quantities that can be plotted are the atomic orbitals, molecular orbitals,

natural orbitals, the total electron density or the total spin density. The graphics is controlled through the

block %plots.

9.39.1 Contour Plots

The contour plots are controlled via the following variables

%plots

#*** the vectors defining the cut plane

v1 0, 0, 0 # pointer to the origin

v2 1, 0, 0 # first direction

v3 0, 1, 0 # second direction

#*** alternative to defining vectors. Use atom coordinates

at1 0 # first atom defining v1

at2 2 # second atom defining v2

at3 4 # third atom defining v3

#*** resolution of the contour

dim1 45 # resolution in v2-direction

dim2 45 # resolution in v3-direction

#*** minimum and maximum values along v2 and v3

min1 -7.0 # min value along v2 in bohr

max1 7.0 # min value along v2 in bohr

min2 -7.0 # min value along v3 in bohr
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max2 7.0 # max value along v3 in bohr

#***

UseCol true # Use color in the plot (blue=positive,

# red=negative)

Skeleton true # Draw Skeleton of the molecule of those

# atoms that are in or close to the cut

# plane

Atoms true # Draw the atoms that are in the plane as

# circles

NCont 200 # Number of contour levels.

ICont 0 # Draw NCont equally space contours

1 # Start with 1/NCont and the double the

# value for each additional contour

#*** the format of the output file

Format Origin # straight ascii files

HPGL # plotter language files

#*** the quantities to plot

MO("MyOrbital-15xy.plt",15,0); # orbital to plot

v3= 0, 0, 1 # change cut plane

MO("MyOrbital-16xz.plt",16,0); # orbital to plot

ElDens("MyElDens.plt"); # Electron density

SpinDens("MySpinDens"); # Spin density

end

Figure 9.53: Contour plot of the lowest unoc-

cupied spin down orbital of the

H2CO+ cation radical in the x, y

plane.

The input was:

v1 = 0, 0, 0;

v2 = 1, 0, 0;

v3 = 0, 1, 0;

min1= -8; max1= 8;

min2= -8; max2= 8;

dim1= 50; dim2=50;

Format = HPGL;

NCont = 200;

Icont = 1;

Skeleton= true;

Atoms = true;

MO("Test-DFT-H2CO+-MO7xy.plt",7,1);

NOTE:
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• The command MO("MyOrbital-15xy.plt",15,0); is to be interpreted as follows: MO means that a

MO is to be plotted. ”MyOrbital-15xy.plt” is the file to be created. 15 is the number of the MO to

be drawn (remember: counting starts at orbital 0!) and 0 is the operator the orbital belongs to. For

a RHF (or RKS) calculation there is only one operator which has number 0. For a UHF (or UKS)

calculation there are two operators - the spin-up orbitals belong to operator 0 and the spin-down

orbitals belong to operator 1. For ROHF calculations there may be many operators but at the end all

orbitals will be collected in one set of vectors. Thus the operator is always =0 in ROHF.

• The ELDENS (plot of the total electron density) and SPINDENS (plot of the total spin density) commands

work analogous to the MO with the obvious difference that there is no MO or operator to be defined.

• Analogous to ELDENS and SPINDENS, post-HF densities can be selected using the keyword extended

by the respective method. ELDENSMDCI / SPINDENSMDCI will plot the MDCI density, of course only

if is available. ELDENSMP2RE and SPINDENSMP2RE will work with the MP2 relaxed density, while

ELDENSMP2UR and SPINDENSMP2UR will yield the MP2 unrelaxed density. The OO-RI-MP2 densities

can be requested by ELDENSOO or SPINDENSOO.

• The UNO option plots natural orbitals of the UHF wavefunction (if they are available). No operator can

be given for this command because there is only one set of UHF-NOs. Similarly, using UCO option can

be used to plot the UHF corresponding orbitals.

• If the program cannot find the plot module (“Bad command or filename”) try to use ProgPlot="orca plot.exe"

in the %method block or point to the explicit path.

• The defining vectors v2 and v3 are required to be orthonormal. The program will use a Schmidt

orthonormalization of v3 with respect to v2 to ensure orthonormality. If you do not like this make

sure that the input vectors are already orthogonal.

• at1, at2 and at3 can be used instead of v1, v2 and v3. In this case say v1 is taken as the coordinates

of atom at1. Mixed definitions where say v2 is explicitly given and say v3 is defined through at3 are

possible. A value of -1 for at1, at2 and at3 signals that at1, at2 and at3 are not to be used. This

type of definition may sometimes be more convenient.

• Variables can be assigned several times. The “actual” value a variable has is stored together with the

command to generate a plot (MO, ELDENS or SPINDENS). Thus after each plot command the format or

orientation of the plot can be changed for the next one.

• The Origin format produces a straightforward ASCII file with x, y and z values that can be read

into your favorite contour plot program or you could write a small program that reads such files and

converts them to whatever format is more appropriate for you.

• I usually use Word for Windows to open the HPGL files which appears to work fine. Double clicking on

the graphics will allow modification of linewidth etc. For some reason that is not clear to me some

graphics programs do not like the HPGL code that is produced by ORCA. If you are an HPGL expert

and you have a suggestion - let me know.
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9.39.2 Surface Plots

9.39.2.1 General Points

Surface plots can, for example, be created through an interface to Leif Laaksonen’s gOpenMol program.

This program can be obtained free of charge over the internet (https://research.csc.fi/-/gopenmol). It

runs on a wide variety of platforms, is easy to use, produces high quality graphics and is easy to interface23 -

thank you Leif for making this program available!

The relevant [PLOTS] section looks like this:

%output

XYZFile true

end

%plots

dim1 45 # resolution in x-direction

dim2 45 # resolution in y-direction

dim3 45 # resolution in z-direction

min1 -7.0 # x-min value in bohr

max1 7.0 # x-min value in bohr

min2 -7.0 # y-min value in bohr

max2 7.0 # y-max value in bohr

min3 -7.0 # z-min value in bohr

max3 7.0 # z-max value in bohr

Format gOpenMol_bin # binary *.plt file

gOpenMol_ascii # ascii *.plt file

Gaussian_Cube # Gaussian-cube format

# (an ASCII file)

MO("MyOrbital-15.plt",15,0); # orbital to plot

MO("MyOrbital-16.plt",16,0); # orbital to plot

UNO("MyUNO-48.plt",48); # UHF-NO to plot

ElDens("MyElDens.plt"); # Electron density

SpinDens("MySpinDens.plt"); # Spin density

end

NOTE:

• it is admittedly inconvenient to manually input the dimension of the cube that is used for plotting. If

you do nothing such that min1 = max1 = min2 = max2 = min3 = max3=0 then the program will

try to be smart and figure out a good cube size by itself. It will look at the minimum and maximum

values of the coordinates and then add 7 bohrs to each dimension in the hope to properly catch all

wavefunction tails.

23 There were some reports of problems with the program on Windows platforms. Apparently it is better to choose
the display settings as “true color 32 bit” rather than “high 16 bit”. Thanks to Thomas Brunold!

https://research.csc.fi/-/gopenmol
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Figure 9.54: The total electron density (shown as a mesh) and the spin density (shown with solid
contours) of the H2CO+ cation radical as calculated by the RI-BP/VDZP method.
Note the small negative spin density at the carbon atom. The spin density was cal-
culated at 120x120x120 resolution which takes much longer than the DFT calculation
itself.

Sometimes you will want to produce orbital plots after you looked at the output file and decided which

orbitals you are interested in. In this case you can also run the orca plot program in a crude interactive

form by invoking it as:

orca_plot MyGBWFile.gbw -i

This will only provide you with a small subset of the capabilities of this program but may already be enough

to produce the plots you want to look at. Note that for the name of the GBW-file you may as well input

files that result from natural orbitals (normally *.uno), corresponding orbitals (normally *.uco) or localized

orbitals (normally *.loc).

9.39.2.2 FOD plots

The fractional occupation number weighted electron density (ρFOD, see 9.6.8.1) can be plotted in 3D for a pre-

defined contour surface value which, after extensive testing, was set to the default value of σ = 0.005 e/Bohr3.

In order to allow comparison of various systems this value should be kept fix (in critical cases, one may

also check the FOD plot with a a smaller value of σ = 0.002 e/Bohr3 for comparison). The FOD is strictly

positive in all space and resembles orbital densities (e.g., π-shape in large polyenes) or the total charge density

for an ideal ‘metal’ with complete orbital degeneracy in trivial cases. FOD plots represent a cost-effective

and robust way to identify the ‘hot’ (strongly correlated) electrons in a molecule and to choose appropriate

approximate QC methods for a subsequent computational study of the systems in question. Based on our

experience, the following rules of thumb can be derived:

a) no significant ρFOD: use (double)-hybrid functionals or (DLPNO-)CCSD(T) (single-reference electronic

structure)
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Figure 9.55: The π∗ orbital of H2CO as calculated by the RI-BP/VDZP method.

b) significant but rather localized ρFOD: use semi-local GGA functionals (or hybrid functional with low

Fock-exchange, avoid HF or MP2; slight multi-reference character)

c) significant and delocalized ρFOD: use multi-reference methods (or finite temperature DFT; strong

multi-reference character)

Basically, ρFOD can be plotted analogously to an electron density calculated with ORCA using Basename.scfp fod

instead of Basename.scfp. Note that producing *.cube files with orca plot (see 9.40.7) may take a consid-

erable amount of time for larger molecules, particularly if high quality plots for publication purposes (i.e.,

120x120x120 resolution) are wanted. An example FOD plot (singlet ground sate of p-benzyne, see 9.6.8.1 for

the corresponding ORCA input) is shown in Fig. 9.56. It has been produced with the UCSF CHIMERA pro-

gram (this program can be obtained free of charge over the internet: https://www.cgl.ucsf.edu/chimera/)

using the *.cube file generated with orca plot:

orca_plot pbenzyne.gbw -i

user input:

1 (type of plot)

2 (electron density)

n (default name: no)

pbenzyne.scfp fod (name of the FOD file)

4 (number of grid intervals)

120 (NGrid)

5 (output file format)

7 (cube)

10 (generate plot)

11 (exit)

It is also possible to generate *.cube files from ρFOD (analogously to electron density plots) with other pro-

grams that can read ORCA BaseName.gbw and electron density files by simply using the Basename.scfp fod

https://www.cgl.ucsf.edu/chimera/
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file instead of the Basename.scfp file.

Figure 9.56: FOD plot at σ = 0.005 e/Bohr3 (TPSS/def2-TZVP (T = 5000 K) level) for the 1Ag
ground state of p-benzyne (FOD depicted in yellow).

The significant and rather delocalized FOD for p-benzyne (1Ag) indicates that multi-reference methods would

be needed for reliable computational study of this molecule (category c)). More examples of FOD plots

generated with the same setup and programs can be found in the original publication and corresponding

supplementary information. [377]

9.39.2.3 Interface to gOpenMol

Here is a short summary of how to produce these plots with gOpenMol:

• First of all the molecular geometry must be save by choosing XYZFile=true in the [OUTPUT] block.

This will produce a straightforward ascii file containing the molecular geometry (or simply ! XYZFile).

• After having produced the plot files start gOpenMol and choose File-Import-Coords. In the dialog

choose the XYZ format and select the file. Then press apply and dismiss. The molecule should now

be displayed in the graphics window.

• You can change the appearance by choosing View-Atom type .

• The color of the background can be changed with Colour-Background .

• After having done all this choose Plot-Contour and select the Browse button to select the appropriate

file. Then press Import File to read it in. NOTE: you can only directly read files that were produced

in gOpenMol bin format. If you have chosen gOpenMol ascii you must first use the gOpenMol file

conversion utility under Run-Pltfile (conversion) to produce the binary plt file.

• After having read the plt file choose the appropriate isocontour value (one for the positive and one for

the negative lobes of an orbital) and select suitable colors via Colour(n) to the right of the isocontour

value. The Details button allows you to choose between solid and mesh representation and other

things.

• Once the plot looks the way you like, use File-Hardcopy to produce a publication quality postscript

or bitmap picture that can be imported into any word processing or graphics software.
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9.39.2.4 Interface to Molekel

The Molekel program (http://ugovaretto.github.io/molekel/) is another beautiful and easy-to-use

graphics tool that is recommended in combination with ORCA. You may even find it a little easier to use

than gOpenMol but this may be a matter of personal taste. In order to produce plots with Molekel follow

the following procedure:

• Produce Gaussian-Cube files (and optionally also an XYZ file) with ORCA as described above.

• Start Molekel and use the right mouse button to obtain the Load menu.

• Choose the format xyz to load your coordinates

• Use the right mouse button again to select the Surface menu

• Choose the format “Gaussian Cube” and click Load Surface

• Click on Both Signs if you visualize an orbital or spin density

• Select a suitable contour value in the Cutoff box.

• Click on Create Surface. That’s it!

• In the Color menu (also available via the right mouse button) you can adjust the colors and in the

main menu the display options for your molecule. Default settings are in a startup file that you can

modify to suit your taste. More details are in the Molekel manual – check it out; it can do many other

useful things for you too!

9.40 Utility Programs

9.40.1 orca mapspc

This utility program is used to turn calculated spectra into a format that can be plotted with standard

graphics programs. The usage is simple (for output examples see for example sections 9.23.2, 8.15.3.1, 8.15.3.2

and 9.24.4):

orca_mapspc file spectrum options

file = name of an ORCA output file

name of an ORCA hessian file (for IR and Raman)

spectrum= abs - Absorption spectra

cd - CD spectra

ir - IR spectra

raman - Raman spectra

options -x0value: Start of the x-axis for the plot

http://ugovaretto.github.io/molekel/
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-x1value: End of the x-axis for the plot

-wvalue : Full-width at half-maximum height in

cm**-1 for each transition

-nvalue : Number of points to be used

The exact abilities of orca mapspc can be seen by simply executing the command in a terminal

orca_mapspc

Then one gets:

----------------------------------------------------------------------------------

usage: orca_mapspc Output-file ABS, ABSV, ABSQ, ABSOI, CD, IR, RAMAN, NRVS, VDOS,

MCD, SOCABS, SOCABSQ,SOCABSOI, XES, XESV, XESQ, XESOI,

XAS, XASV, XASQ, XASOI, XESSOC,XASSOC, RIXS, RIXSSOC -options

----------------------------------------------------------------------------------

----General options ----

-o output file

-cm use cm**-1 (default)

-eV use eV (default cm**-1)

-g use Gaussian lineshape default

-l use Lorentz lineshape (only for Absorption and Emission like spectra)

-v use Voigt lineshape (only for Absorption and Emission like spectra)

-x0 initial point of spectrum

-x1 final point of spectrum

-w line width for Gaussian/Lorenzian linewidth

-q line width for the Gaussian part of Voigt linewidth

-kw coeffitient for the line width calculated as kw*sqrt(energy)

-n number of points

----The following additional options are for RIXS and RIXSSOC calculations----

-x2 initial point of the spectrum along y axis

-x3 final point of the spectrum along yaxis

-g line width for Gaussian/Lorenzian linewidth along y axis

-m number of points for the emission spectrum

-eaxis plot option for the emission axis: (1) for Energy transfer

(2) for emission spectrum

-uex number of user defined cuts at constant Excitation Energy axis

-udw number of user defined cuts at constant Emission/ Energy Transfer axis

-dx number for shifting the spectra along the Excitation /Emission Energy axis

-kg coeffitient for the line width calculated as kg*sqrt(energy)

----Using external files----

paras.inp: a list of energy ranges with desired broadening parameters

for x axis: E_start E_stop Width

for y axis: 0 0 0 E_start E_stop Width
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for xy axis: E_start1 E_stop1 Width1 E_start2 E_stop2 Width2

udex.inp: list of energies for taking cuts

at constant Excitation Energy axis (RIXS/RIXSOC)

udem.inp: list of energies for taking cuts

at constant Emission/ Energy Transfer axis (RIXS/RIXSOC)

gfsp.inp: list of ground-final state pairs to generate

individual state pair RIXS planes

and respective analysis planes (ROCIS RIXS/RIXSOC)

---------------------------------------------------------------------------------

NOTE:

• The input to this program can either be a normal output file from an ORCA calculation or a ORCA
.hess file if ir or Raman spectra are desired

• Unless it is specified otherwise the default lineshape is always assumed to be a gaussian

• There will be two output files:

– Input-file.spc.dat (spc=abs-like or cd or ir or raman): This file contains the data to be

plotted

– Input-file.spc.stk: This file contains the individual transitions (wavenumber and intensity)

• The absorption plot has five columns: The first is the wavenumber in reciprocal centimeters, the second

the total intensity and the third to fifth are the individual polarizations (i.e. assuming that the electric

vector of the incoming beam is parallel to either the input x-, or y- or z-axis respectively). The last

three columns are useful for interpreting polarized single crystal spectra.

• Generation of multiple spectra. When more than one spectra of the same kind are available the

program will try to plot them. For example in the case of a CASSCF calculation with the NEVPT2

flag on, there will be two Absorption spectra (CASSCF and NEVPT2) that can be ploted

For example:

orca_mapspc My-CASSCF/NEVPT2-Output.out SOCABS -x07000 -x18000 -eV -n10000 -w2.0 -l

Mode is SOCABS

Entering SOC-ABS reading

Using eV units

Using Lorentzian shape

Multiple SOCABS (2) spectra detected ...

----------------------------------

Plotting SOCABS Spectrum 0

----------------------------------

Cannot read the paras.inp file ...
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taking the line width parameter from the command line

Number of peaks ... 4455

Start energy [eV] ... 7000.00

Stop energy [eV] ... 8000.00

Peak FWHM [eV] ... 2.00

Number of points ... 10000

----------------------------------

Plotting SOCABS Spectrum 1

----------------------------------

Cannot read the paras.inp file ...

taking the line width parameter from the command line

Number of peaks ... 4455

Start energy [eV] ... 7000.00

Stop energy [eV] ... 8000.00

Peak FWHM [eV] ... 2.00

Number of points ... 10000

This will generate two kind of spectra one for the CASSCF and one for the NEVPT2 calculation

CASSCF:

My-CASSCF/NEVPT2-Output.out.0.socabs.dat

My-CASSCF/NEVPT2-Output.out.0.socabs.stk

NEVPT2:

My-CASSCF/NEVPT2-Output.out.1.socabs.dat

My-CASSCF/NEVPT2-Output.out.1.socabs.stk

Other Absorption or CD spectra can also be generated in the same way.

9.40.2 orca chelpg

This program calculates CHELPG atomic charges according to Breneman and Wiberg [552]. The atomic

charges are fitted to reproduce the electrostatic potential on a regular grid around the molecule, while

constraining the sum of all atomic charges to the molecule’s total charge.

The program works with default values in the following way:

orca_chelpg MyJob.gbw

The program uses three adjustable parameters, which can also be set in a separate chelpg input block
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%chelpg

GRID 0.3 # Spacing of the regular grid in Ang

RMAX 2.8 # Maximum distance of all atoms to any

# gridpoint in Ang

VDWRADII COSMO # VDW Radii of Atoms, COSMO default

BW # Breneman, Wiberg radii

end

In this case the ORCA automatically calculates the CHELPG charges at the end of the calculation. Automatic

calculation of CHELPG charges using the default values can also be achieved by specifying

! CHELPG

In the simple input section. By default the program uses the COSMO VDW radii for the exclusion of

gridpoints near the nuclei, as these are defined for all atoms. The BW radii are similar, but only defined for

very few atom types.

9.40.3 orca pltvib

This program is used in conjunction with gOpenMol (or xmol) to produce animations or plots of vibrational

modes following a frequency run. The usage is again simple and described in section 8.15.3.5 together with a

short description of how to produce these plots in gOpenMol.

The program produces 20 frames of animation, where first and last frame correspond to the TS, all others

calculated as sin(2πframe/20− 1) ∗ displacement.

9.40.4 orca vib

This is a small “standalone” program to perform vibrational analysis. The idea is that the user has some

control over things like the atomic masses that enter the prediction of vibrational frequencies but are

independent of the electronic structure calculation as such.

The program takes a “.hess” file as input and produces essentially the same output as follows the frequency

calculation. The point is that the “.hess” is a user-editable textfile that can be manually changed to achieve

isotope shift predictions and the like. The usage together with an example is described in section 8.15.3.6. If

you pipe the output from the screen into a textfile you should also be able to use orca mapspc to plot the

modified IR, Raman and NRVS spectra.
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9.40.5 orca loc

Localization is a widely used technique nowdays. By defining different functionals, various localization

methods are established. The most favorable localization methods are developed by Foster-Boys and Pipek-

Mezey. In ORCA there are four different localization methods available, the Pipek-Mezey method (PM),

the Foster-Boys method (FB), the intrinsic atomic orbitals (IAO) based PM method and the IAO based FB

method.

For Foster-Boys localization there are three different algorithms: first there is the conventional algorithm

(FB). Second, there is an alternative algorithm (NEWBOYS), which is faster and could be used, for example,

to localize the virtual MOs of a large system.

The third Foster-Boys algorithm is based on an augmented Hessian procedure (AHFB). It is particularly

suited to obtain very tightly converged orbitals if an appropriate tolerance is requested (useful for local

correlation). Furthermore, it systematically converges towards a local minimum, rather than a different type

of stationary point. The method proceeds in three stages. An initial set of localized orbitals is obtained

through the NEWBOYS method. This is followed by an augmented Hessian maximization (rational function

optimization) either with direct or with Davidson diagonalization, depending on the number of orbitals.

Efficiency is therefore achieved for small and large systems alike. If the optimization fails to proceed but the

augmented Hessian has got the correct eigenvalue structure, a Newton-Raphson maximization is triggered as

the third stage. Currently, the only user-adjustable parameter of the AHFB method is the tolerance Tol.

Convergence is signalled when the eigenvalue structure is correct, and the largest element of the orbital

gradient, 4 〈i|r|j〉 (〈j|r|j〉 − 〈i|r|i〉), is below Tol. This is different from the other localization methods, which

take the difference in the localization sum between two successive iterations as the convergence criterion.

The intrinsic atomic orbitals and intrinsic bond orbitals (IAOIBO) localization method is developed by

Gerald Knizia, see Ref. [553]. In IAOIBO method, the occupied MOs are projected to a minimal basis set to

get the IAOs, firstly. In ORCA different from original IAOIBO method, the converged SCF MO of atoms

are used instead of Huzinaga MINI or STO-3G. However, the IAO charges computed by our method are

quite similar to original IAO. Then, Pipek-Mezey functional is employed to localize these IAOs to IBOs.

Finally,IBOs will be backtransformed to their original basis set. The IAO partial charges of canonical MOs for

each atom is also printed out before the IAOIBO localization. But make sure you are included all occupied

MOs in the IAOIBO localization. Otherwise, the IAO charges are meaningless. We further improved the

original IAOIBO method by using the FB functional instead of PM functional. The computational time

of the new method named IAOBOYS should be faster than the standard FB method for large systems.

However, the IAO based method can only be used for the localization of occupied MOs.

There are two ways to do the MO localization in ORCA . The simpler way is to request the localization at

the end of any ORCA calculation input file. Details are set in the %loc block.

%loc

LocMet PM # Localization method e.g. PIPEK-MEZEY

FB # FOSTER-BOYS

IAOIBO # IAOIBO

IAOBOYS # IAOBOYS

NEWBOYS # FOSTER-BOYS

AHFB # Augmented Hessian Foster-Boys
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Tol 1e-6 # absolute convergence tolerance for the localization sum

# default value is 1e-6

# In the case of AHFB, however, this is the gradient threshold!

Random 0 # Always take the same seed for start for localization

# (For testing/debug purpose,optional)

1 # Take a random seed for start of localization (default)

PrintLevel 2 # Amount of printing

MaxIter 64 # Max number of iterations

T_Bond 0.85 # Thresh that classifies orbitals in bond-like at the printing

T_Strong 0.95 # Thresh that classifies orbitals into strongly-localized at

# the printing

OCC true # Localize the occupied space

T_CORE -99.9 # The Energy window for the first OCC MO to be localized (in a.u.)

# Here, we localize all occupied MOs including core orbitals.

VIRT true # Localize the virtual space

end

The localized MOs are obtained iteratively. Convergence is achieved when the localization functional value

is self-consistent (contraled by Tol). Setting the flags OCC/VIRT to true will request a localization of

the subspace. If both flags are set, two consecutive localizations are performed. The localized orbitals are

stored in the form of a standard GBW file named .loc. Keep in mind that the localization of the occupied

orbitals might change the total energy depending on what type of calculation you want to perform thereafter.

For RHF and UHF there shouldn’t be any problems, but for CASSCF the keyword OCC is not sufficient.

CASSCF is not invariant to rotation of all the occupied orbitals.

The other way to do the localization is calling the orca loc program directly from shell, which is more

general. The orca loc program requires an input of its own. The input is a textfile containing the necessary

parameters. If no input is specified, orca loc returns a help-file with a description of the necessary input-

parameters. You need to specify in/output gbw-files, along with orbital ranges and the localization method

to be used. A source of confusion is the operator line op (alpha = 0 or beta = 1). For RHF(ROHF) and

CASSCF, this should be set to zero. The input file usually looks like,

Myjob.gbw # input orbitals

Myjob.loc.gbw # output orbitals

10 # orbital window: first orbital to be localized e.g. first active

15 # orbital window: last orbital to be localized e.g. last active

0 # localization method:

# 1=PIPEK-MEZEY,2=FOSTER-BOYS,3=IAO-IBO,4=IAO-BOYS,5=NEW-BOYS,6=AHFB

# The following parameters are optional

# However, if you want to change one of them, all preceding ones have to be set, too.

0 # operator: 0 for alpha, 1 for beta

128 # maximum number of iterations

1e-6 # convergence tolerance of the localization functional value
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0.0 # relative convergence tolerance of the localization functional value

0.95 # printing thresh to call an orbital strongly localized

0.85 # printing thresh to call an orbital bond-like

2 # printlevel

1 # use Cholesky Decomposition (0=false, 1=true)

1 # randomize seed for localization (0=false, 1=true)

If the input file is called myloc.inp, running ”orca loc myloc.inp” will produce the Myjob.loc.gbw file containing

the localized orbitals. Please make sure the Myjob.gbw is in the same directory as myloc.inp.

9.40.6 orca blockf

This utility program allows the canonicalization of orbitals (.gbw file) for arbitrary subspaces. With

canonicalization we refer to the block diagonalization of the Fock matrix. Note that the necessary Fock

matrix must be generated and be available on disk prior calling orca blockf. The program is described in

section 9.30.2.2, where the Local ZFS decomposition is discussed.

9.40.7 orca plot

The use of this program is described more fully in section 9.39. It is used to create three dimensional graphics

data for visualization. It is also possible to run this program interactively. The input parameters are:

gbwfile # name of gbw-file

-i # interactive use of orca_plot

-m 256 # max. memory in MB (if needed)

You will then get a simple, self-explaining menu that will allow you to generate a variety of files (such as .plt

and .cube) directly from the .gbw files without restarting or running a new job. If needed, the -m-option

allows to control the memory usage of your plotting job.

It is possible to use the module to create difference densities between the ground and excited states from

CIS or TD-DFT calculations. This is implemented as an extra interactive menu point that is (hopefully)

self-explanatory.

9.40.8 orca 2mkl: Old Molekel as well as Molden inputs

This little utility program can be used to convert gbw files into mkl files which are of ASCII format. This is

useful since molekel can read these files and use them for plotting and the like. The contents of the mkl file

is roughly the same as the gbw file (except for the internal flags of ORCA) but this is an ASCII file which

can also be read for example by your own programs. It would therefore be a good point for developing an

interface. It is likely that this functionality will be further expanded in the future.
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orca_2mkl BaseName

(will produce BaseName.mkl from BaseName.gbw)

orca_2mkl BaseName -molden

(writes a file in molden format)

orca_2mkl BaseName -mkl

(writes a file in MKL format)

We have recently also added the capability to convert any gbw type file into MKL or Molden format. Thus,

you can use this device to vizualize QRO or UNO or UCO orbitals or any type of natural orbitals:

orca_2mkl gbw_type_file.extension mkl_file.extension -mkl -anyorbs

# or

orca_2mkl gbw_type_file.extension molden_file.extension -molden -anyorbs

You also have the opportunity to run orca 2mkl backwards in order to produce gbw type files. You can use

this device in order to import orbitals from other sources into ORCA. This is not a frequently used option

and it has limited capabilities. Hence, it is documented here only in a cursory way in order for you to be

able to experiment. Note that the CASSCF tutorial, that supplements the manual, shows how to edit the

molecular orbitals using orca 2mkl.

orca_2mkl BaseName -gbw

(will produce BaseName.gbw out of BaseName.mkl)

9.40.9 orca 2aim

This utility program reads a .gbw file and creates a .wfn and .wfx file that can be used for topological

analysis of the electron density by other programs. This works for open-shell and closed-shell wave functions.

The usage is very simple – just type AIM in the simple input line of your input file, or use

orca_2aim BaseName

(will produce BaseName.wfn and BaseName.wfx from BaseName.gbw)

9.40.10 orca vpot

This program calculates the electrostatic potential at a given set of user defined points. It takes four

arguments:

orca_vpot MyJob.gbw MyJob.scfp.tmp MyJob.vpot.xyz MyJob.vpot.out
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First : The gbw file containing the correct geometry and basis set

Second : The desired density matrix in this basis (perhaps use the KeepDens keyword)

Third : an ASCII file with the target positions in AU, e.g.

6 (number_of_points)

5.0 0.0 0.0 (XYZ coordinates)

-5.0 0.0 0.0

0.0 5.0 0.0

0.0-5.0 0.0

0.0 0.0 5.0

0.0 0.0 -5.0

Fourth: The target file which will then contain the electrostatic potential, e.g.

6 (number of points)

VX1 VY1 VZ1 (potential for first point)

VX2 VY2 VZ2 (potential for second point)

etc.

It should be straightforward for you to read this file and use the potential for whatever purpose.

9.40.11 orca euler

This utility program is used to calculate the relative orientation between calculated hyperfine coupling

(HFC)/nuclear quadrupole coupling (NQC) tensors and a reference tensor (the calculated molecular g-/D-

tensor). The orca euler program is run by default in an ORCA job after the calculation of HFCs or NQCs,

if g- or D-tensor are also calculated in the same job. The utility program can also be run as a stand-alone

program. In this case the .prop file of a previous NQC/HFC- and D- or g-tensor calculation must be

available.

The orientation between the tensors is calculated in terms of a 3x3 rotational matrix R. This is parametrized

by the three so-called Euler angles α, β and γ. These angles define the relative orientation between two

tensors A and B by three successively applied rotations around different axes in order to align A with B. In

the commonly used z-y-z convention these three rotations are:

• Rotate Axyz counterclockwise around its z axis by α to give Ax′y′z′ .

• Rotate Ax′y′z′ counterclockwise around its y′ axis by β to give Ax′′y′′z′′ .

• Rotate Ax′′y′′z′′ counterclockwise around its z′′ axis by γ to align with B.



950 9 Detailed Documentation

orca_euler prop-file options

file = name of an ORCA .prop file

options

-refg/-refD: Reference tensor (g-tensor or D-tensor, default is -refg)

-conv zyz/-conv zxz: Euler rotation convention (default is zyz)

-order: Ordering of the reference tensor (x, y, z) with respect to

ORCA output (min, mid, max)

-plotA: plot the HFC-tensors

-plotQ: plot the NQC-tensors

-detail: print detailed information

NOTE:

• By default the D-tensor is used as reference tensor only if S > 1
2 and if |D|>0.3 cm−1; in all other cases

the g-tensor is used as reference tensor. The user can manually select the reference tensor – if the

information is available in the prop-file – by using –refg or -refD.

• By default the Euler rotation in the z-y-z convention is used. The z-x-z convention can be selected

manually by using the option –conv zxz.

• By default the axes of the g- or D-tensor are assigned depending on their magnitude. gmin → gx,

gmid → gy, gmax → gz (similarly for D). This ordering can be modified manually when running the

standalone program as shown in the following examples:

-order 3 2 1: min → z

mid → y

max → x

-order 1 -2 3: min → x

mid → y (flipped in the orientation)

max → z

• The nuclear hyperfine and quadrupole coupling tensors can be plotted (in the xyz-file format) by the

orca euler program using –plotA or –plotQ. The HFC tensor for atom 3 (counting starts at zero) is

e.g. stored in the file prop-file.3.A.xyz, the respective NQC tensor is stored in prop-file.3.Q.xyz.

In these xyz files the position of four atoms (He, Ne, Ar, Kr) is given. The x-, y- and z-direction of the

tensor are in the direction of the vectors between He-Ne, He-Ar and He-Kr.

• The actual definition of the used rotation matrix and more information on the relative orientation can

be printed by using the option –detail.

9.40.12 orca exportbasis

A small utility program to print out the basis sets used by ORCA. Its usage requires at least the name of the

basis set, as specified in the simple input line of ORCA. Additional parameters like an ECP basis set, a list
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of specific atoms or the name of an ouput file are accepted. The output is stored in ASCII format, it can be

inspected and modified. The user can choose to print the basis sets in either ORCA format, which then can

be copied into the input file, or in GAMESS-US format, which can be read via the %basis block as externally

specified basis. NOTE: Basis set names containing special characters may need a pair of enclosing ” or ’ to

be recognized.

USAGE: orca_exportbasis keywords options

-b, --basis : name of basis set

def2-svp

’def2-tzvp(-f)’ - string to be passed with literals

EXAMPLE: orca_exportbasis -b svp

Additional Options:

-e, --ecp : ecp basis

sdd

default - ECP-part of basis (if present)

-f, --format : output format

ORCA - to be read via %basis NewGTO

GAMESS-US - to be read as %basis GTOName ’mybasis.bas’

default - ORCA

-a, --atoms : list of elements

Cu - single element

Ga Ge As Se - list of elements separated by blanks

default - whole periodic table is printed

-o, --outfile: name of outputfile

mybasis.bas

default - derived name

EXAMPLE: orca_exportbasis -b svp -e sdd -a Ag -f GAMESS-US -o mybasis.bas

The output stored in GAMESS-US format can be used in the %basis block of the next ORCA calculation.

%basis

GTOName "mybasis.bas"

GTOAuxJName "myauxjbasis.bas"

GTOAuxJKName "myauxjkbasis.bas"

GTOAuxCName "myauxjcbasis.bas"
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end

9.40.13 orca eca

This utility program makes use of the calculated exchange coupling constants to compute relative energies of

all possible spin states through diagonalization of spin Hamiltonian. The absolute and relative energies of the

spin states are printed in the *.en and *.en0 files respectively. The on-site spin expectation values are also

printed in a *.sp file.The following example calculates the spin ladder for a system with exchange coupling

constant of -152.48 cm**-1 between Mn(III) and Mn(IV).

%sim

ms_bs 0.5 # Arbitrary spin state

end

# specification of spin centers

$spins 2

1 2.0 # Spin on first manganese

2 1.5 # Spin on second manganese

# Exchange coupling constant (H = -2J S1 S2)

$ecc 1

1 -152.48

$aiso_bs 2 # A false segment just to print the *.sp file

1 0.00

2 0.00

9.40.14 orca pnmr

orca pnmr calculates the paramagnetic contribution to the NMR shielding tensor from EPR g, A, and D

tensors (see Section 9.40.14 for theoretical background). It is a standalone program which you can invoke on

the command line after the main ORCA calculation has finished. Alternatively, it can read user-provided

g/A/D tensors from an input file (option -i). Note that orca pnmr expects g and A tensors that conform to

the convention described in Section 9.2.

USAGE: orca_pnmr BaseName [Options]

OPTIONS: -i : read from the input file "BaseName.pnmr.inp"

-m : launch an interactive menu and read from ORCA property file(s)

-v : print more output (Z matrices)
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When called without options, orca pnmr will attempt to extract g, D, and A tensors from the property file

BaseName property.txt and use these to calculate the paramagnetic shieldings at 298 K. Note that this

functionality is not sophisticated: it only recognizes EPR tensors calculated by the EPRNMR module. For

more functionality use the interactive menu (-m). Through the menu one can, for example, use the A tensors

from one property file and the g and D tensors from another property file. This allows one to combine EPR

tensors obtained with different methods (e.g. A tensors from DFT, g and D tensors from MRCI). Through

the menu one can also specify the temperature (range). Alternatively, one can manually edit the textfile

BaseName.pnmr.inp and then run orca pnmr with the -i option.

• D and g tensors are optional: if they are not supplied orca pnmr will assume the isotropic free-electron

value for g, and D will be assumed zero.

• A tensors, however, are not optional; without an A tensor for a given nucleus, the pNMR shielding

cannot be calculated for that nucleus.

• Not all ORCA modules save EPR tensors to the propertyfile: currently only EPRNMR and MRCI do.

Other modules will join in the next release. For now, if you want to use, say, CASSCF g or D tensors,

you have to manually add these to the *.pnmr.inp file.

9.41 Compound Methods

9.41.1 Directives

9.41.1.1 Variable

Every variable has to be defined before it is used. We actually believe that it is a good practice to define all

variables in the beginning of the compound block. All of the following variable definitions are valid.

Usage:

1. Variable x End

2. Variable x, y End

3. Variable x= ... End

4. Variable x[n] End

5. Variable x[ ] = {y1, y2, ...} End

In definition 4, n should be a positive integer number and this will create an array named ”x” with n elements.

Using definition 5 the size of the array is simply the number of the elements provided in the brackets.

NOTE: Please do not forget the final END.
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9.41.1.2 New Step

New Step signals the beginning of a new ORCA input.

Usage

New Step

...Normal ORCA input commands

Step End

There is no restriction in the input of ORCA, except of course that it should not include another Compound

block.

9.41.1.3 Step End

Step End signals the end of an ORCA Input. It should always be the last directive of an ORCA input inside

the compound block.

9.41.1.4 Alias Step

Alias Step is useful when one does more than one calculations and does not want to use the corresponding

numbers as indicators, but a more representative name. In this case using Alias Step after the Step End

command will connect the preceding calculation number with the provided name.

Usage:

Alias Step name

9.41.1.5 Read

There are two ways to give a value to a variable. The first one is through the ”Read” directive. Read

works only for a set of predefined variables that the program stores in the property file, during each ORCA

calculation, and can then retrieve from there. A list with the available known variables is given in Table 9.25.

Usage:

Read VariableName = KnownVariable[StepIndex] End

The VariableName should be the name of a variable already defined. The KnownVariable should be one of

the variables defined in Table 9.25. The StepIndex defines for which calculation we should work. It can be

either an integer or, if we have already use an Step Alias before, the string of the alias. It should be noted

that number counting starts from 1, meaning that the first ORCA calculation, defined through New Step

corresponds to number 1.

NOTE: Please do not forget the final END.
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9.41.1.6 Assign

Assignment is the second way to give a value to a variable. Here one can create a custom function.

Usage:

Assign VariableName = CustomFunction End

VariableName should be the name of a variable already defined. Inside the custom function one can use the

usual mathematical functions and numbers or variables that their value is already known.

NOTE: Please do not forget the final END.

9.41.1.7 Print

With print directive one can create an output file with custom format. The idea behind the print command

in to immitate the corresponding printf command from C/C++.

Usage:

print (text, format, ...)

Example:

print (”The QCISD(T) energy is %12.6f”, EQCISDT)

Constraints:

Only variables of scalars can be used in the format, and no more than 10 variables per print command.

9.41.2 List of known Properties

The name and explanation of all the known variables that can be automatically recovered, from the property

file, are given in the next table

Table 9.25: List of predefined variable names recognised by the compound block.

SCF

SCF ENERGY SCF Energy

VDW CORRECTION van der Waals correction

SCF Electric properties

SCF DIPOLE MAGNITUDE DEBYE SCF dipole moment (debye)

SCF QUADRUPOLE ISOTROPIC SCF isotropic quadrupole moment

SCF POLAR ISOTROPIC SCF isotropic polarizability

MP2
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MP2 REF ENERGY Reference SCF Energy

MP2 CORR ENERGY MP2 Correlation energy

MP2 TOTAL ENERGY Total Energy (SCF + MP2)

MP2 Electric properties

MP2 DIPOLE MAGNITUDE DEBYE MP2 dipole moment (debye)

MP2 QUADRUPOLE ISOTROPIC MP2 isotropic quadrupole moment

MP2 POLAR ISOTROPIC MP2 isotropic polarizability

MDCI

MDCI REF ENERGY Reference SCF Energy

MDCI CORR ENERGY Total Correlation Energy

MDCI TOTAL ENERGY Total Energy (SCF + Correlation)

MDCI ALPHA ALPHA CORR ENERGY Correlation energy from αα electron pairs

MDCI BETA BETA CORR ENERGY Correlation energy from ββ electron pairs

MDCI ALPHA BETA CORR ENERGY Correlation energy from αβ electron pairs

MDCI DSINGLET CORR ENERGY Correlation energy from singlet electron pairs

(only for closed-shell)(double excitations)

MDCI DTRIPLET CORR ENERGY Correlation energy from triplet electron pairs

(only for closed-shell) (double excitations)

MDCI SSINGLET CORR ENERGY Correlation energy from singlet electron pairs

(only for closed-shell) (single excitations)

MDCI STRIPLET CORR ENERGY Correlation energy from triplet electron pairs

(only for closed-shell) (single excitations)

MDCI TRIPLES ENERGY Perturbative triples correlation energy

MDCI ALL ELECTRONS Total number of electrons

MDCI CORR ELECTRONS Number of correlated electrons

MDCI CORR ALPHA ELECTRONS Number of correlated α electrons

MDCI CORR BETA ELECTRONS Number of correlated β electrons

MDCI Electric properties

MDCI DIPOLE MAGNITUDE DEBYE MDCI dipole moment (debye)

MDCI QUADRUPOLE ISOTROPIC MDCI isotropic quadrupole moment

MDCI POLAR ISOTROPIC MDCI isotropic polarizability

CASSCF

CASSCF FINAL ENERGY The CASSCF final energy

CASSCF NUM OF MULTS The number of CASSCF spin multiplicities

EXTRAPOLATION
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SCF CBS ENERGY The extrapolated SCF energy

CORR CBS ENERGY The extrapolated correlatioin energy

TOTAL CBS ENERGY The extrapolated total energy

THERMOCHEMISTRY

THERMO TEMPERATURE Temperature (oK)

THERMO PRESSURE Pressure (Atm)

THERMO TOTAL MASS Total Mass of the molecule (AMU)

THERMO SPIN DEGENERACY Electronic degeneracy

THERMO ELEC ENERGY Electronic energy (Eh)

THERMO TRANS ENERGY Translational energy (Eh)

THERMO ROT ENERGY Rotational energy (Eh)

THERMO VIB ENERGY Vibrational energy (Eh)

THERMO ZPE Zero point energy (Eh)

THERMO INNER ENERGY U Inner Energy (Eh)

THERMO ENTHALPY H Enthalpy (Eh)

THERMO ELEC ENTROPY (Electronic Entropy)*T (Eh)

THERMO ROR ENTROPY (Rotational Entropy)*T (Eh)

THERMO VIB ENTROPY (Vibrational Entropy)*T (Eh)

THERMO TRANS ENTROPY (Translational Entropy)*T (Eh)

THERMO ENTROPY S (Total Entropy)*T (Eh)

THERMO FREE ENERGY G Free Energy (Eh)

Table 9.25: Variables, known to the compound block, with short explanation
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10 Some Tips and Tricks

10.1 Input

For calculations on open-shell systems we recommend to use the keywords !UNO !UCO in the input line. This

will generate quasi-restricted molecular orbitals QRO, unrestricted natural spin-orbitals UNSO, unrestricted

natural orbitals UNO and unrestricted corresponding orbitals UCO. Moreover, it will print the UCO overlaps

in the output, which can provide very clear information about the spin-coupling in the system. Below an

example of the input and section of the output is provided.

!B3LYP def2-SVP def2/J RIJCOSX UNO UCO TightSCF

The UCO overlap section in the output will look like:

***UHF Corresponding Orbitals were saved in MyJob.uco***

----------------------

Orbital Overlap(*)

----------------------

.

.

.

96: 0.99968

97: 0.99955

98: 0.99947

99: 0.99910

100: 0.99873

101: 0.99563

102: 0.74329

103: 0.00000

The overlap corresponds to a value usually less than 0.85 denotes a spin-coupled pair. Whereas, values close

to 1.00 and 0.00 refers to the doubly occupied and singly occupied orbitals respectively.

10.2 Cost versus Accuracy

A difficult but important subject in electronic structure theory is to balance the price/accuracy ratio of the

calculations. This ratio is governed by: (a) the method used, (b) the basis set used and (c) the cutoffs and

tolerances used. There are certainly differing opinions among scientists and I merely quote a few general,

subjective points:
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• Calculations with minimal basis sets are always unreliable and are only good for explorations. This

is also true for small split-valence basis sets like 3-21G, 3-21GSP and perhaps also 4-22GSP. These

basis sets are significantly more reliable than their minimal basis counterparts but are not capable of

delivering quantitatively reliable results. They may, however, be the only choice if very large molecules

are targeted.

• In our own research we almost exclusively use the basis sets of the Karlsruhe group for non-relativistic

calculations. They have been updated to the “def2” set that is more consistent than the older basis

sets.

• Def2-SV(P) is the smallest and computationally efficient split-valence basis set and is largely identical

to the old SV(P), except for the transition metals which have more consistent polarization sets.

• Def2-TZVP is different from the old TZVP. It has been realized that if one invests into an accurate

triple-zeta description of the valence region it makes limited sense to only employ a single polarization

function. The accuracy is then limited by the polarization set and is not much better than what one

gets from SV(P). Hence, def2-TZVP contains a single p-set for hydrogens but is otherwise very similar

to the old TZVPP basis set, e.g. it contains 2d1f polarization for main group elements and much more

extensive polarization sets for transition metals. The highest polarization function (f for main group)

does add substantially to the computational effort. Hence, we often use def2-TZVP without the f

polarization function. In order to do that one can use the keyword def2-TZVP(-f). Together with RI

or RIJCOSX this is still computationally economic enough for most studies.

• Def2-TZVPP is a fully consistent triple-zeta basis set that provides excellent accuracy for SCF

calculations (HF and DFT) and is still pretty good for correlated calculations. It is a good basis set to

provide final single point energies.

• Def2-QZVPP is a high accuracy basis set for all kinds of calculations. It provides SCF energies near

the basis set limit and correlation energies that are also excellent. It is computationally expensive

but with RI and RIJCOSX in conjunction with parallelization it can often still be applied for final

single-point energy calculations. In conjunction with such large basis sets one should also increase the

accuracy of the integration grids in DFT and RIJCOSX — it would be a shame to limit the accuracy

of otherwise very accurate calculations by numerical noise due to the grid.

• Correlation consistent basis sets provide good correlation energies but poor to very poor SCF energies.

For the same size, the ano-PVDZ basis sets are much more accurate but are also computationally more

expensive. Except for systematic basis set extrapolation we see little reason to use the cc bases.

• Pople basis sets are somewhat old fashioned and also much less consistent across the periodic table

than the basis from the Karlsruhe group. Hence, we generally prefer the latter.

• For scalar relativistic calculations (ZORA and DKH) we strongly recommend to use the SARC bases

in conjunction with the ZORA or DKH recontractions of the Karlsruhe bases. They are also flexible

enough in the core region for general purpose and spectroscopic applications.

• Effective core potentials lead to some savings (but not necessarily spectacular ones) compared to

all-electron relativistic calculations. For accurate results, small core ECPs should be used. They are

generally available for the def2 Karlsruhe type basis sets for elements past Krypton. In general we

prefer Stuttgart–Dresden ECPs over LANL ones. For the first transition row, the choices are more

meager. Here Karlsruhe basis sets do not exist in conjunction with ECPs and you are bound to either



960 10 Some Tips and Tricks

SDD or LANL of which we recommend the former. Geometries and energies are usually good from

ECPs, but for property calculations we strongly recommend to switch to all electron scalar relativistic

calculations using ZORA (magnetic properties) or DKH (electric properties).

• You can take advantage of a built-in basis set (Print[P Basis]=2) and then modify it by uncontracting

primitives, adding steeper functions etc. (fully uncontracted bases are generated via uncontract in

%basis) Alternatively some basis sets exist that are of at least double-zeta quality in the core region

including the DZP and Dunning basis sets. For higher accuracy you may want to consider the aug-

series of basis sets.

• Likewise, if you are doing calculations on anions in the gas phase it is advisable to include diffuse

functions in the basis set. Having these diffuse functions, however, makes things much more difficult as

the locality of the basis set is significantly reduced. If these functions are included it is advisable to

choose a small value for Thresh (10−12 or lower).

• In case of charged molecules, implicit solvent models are usefull in providing more realisitic charge

distributions and energetics. The use of CPCM model is recommended.

• The integration grids used in DFT should be viewed together with the basis set. If large basis set

calculations are converged to high accuracy it is advisable to also use large DFT integration grids (like

Grid=5 or even Grid=6). For “unlimited” accuracy (i.e. benchmark calculations) it is probably best

to use product grids (Grid=0) with a large value for IntAcc (perhaps around 6.0). The default grids

have been chosen such that they provide adequate accuracy at the lowest possible computational cost,

but for all-electron calculations on heavy elements in conjunction with scalar relativistic Hamiltonians

you should examine the grid dependency very carefully and adjust these parameters accordingly to

minimize errors. You should be aware that for large molecules the exchange-correlation integration is

usually not the dominating factor (not even in combination with RI-J).

• Similarly important is the value of Thresh that will largely determine the tunaround time for direct

SCF calculations. It may be possible to go to values of 10−6–10−8 which will result in large speed-ups.

However, the error in the final energy may then be 3 orders of magnitude larger than the cutoff or,

sometimes, your calculation will fail to converge, due to the limited integral accuracy. In general it

will not be possible to converge a direct SCF calculation to better than Thresh (the program will also

not allow this). For higher accuracy values of maybe 10−10–10−12 may be used with larger molecules

requiring smaller cutoffs. In cases where the SCF is almost converged but then fails to finally converge

(which is very annoying) decreasing Thresh (and possibly switch to NRSCF) may be a good idea. In

general, TCut should be around 0.01×Thresh in order to be on the safe side.

• DFT calculations have many good features and in many cases they produce reliable results. In particular

if you study organic molecules it is nevertheless a good idea to check on your DFT results using MP2.

MP2 in the form of RI-MP2 is usually affordable and produces reliable results (in particular for weaker

interactions where DFT is less accurate). In case of a large mismatch between the MP2 and DFT

results the alarm rings — in many such cases MP2 is the better choice, but in others (e.g. for redox

processes or transition metal systems) it is not. Remember that SCS-MP2 (RI-SCS-MP2) will usually

produce more accurate results than MP2 itself.

• Coupled-cluster calculations become more and more feasible and should be used whenever possible.

The LPNO-CCSD, DLPNO-CCSD and DLPNO-CCSD(T) calculations are available for single-point

calculations and provide accurate results. However, a coupled-cluster study does require careful study
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of basis set effects because convergence to the basis set limit is very slow. The established basis

set extrapolation schemes may be very helpful here. For open-shell molecules and in particular for

transition metals one cannot be careful enough with the reference. You have to carefully check that

the Hartree-Fock calculation converged to the desired state in order to get coupled-cluster results

that are meaningful. Orbital optimized MP2, CASSCF or DFT orbitals may help but we have often

encountered convergence difficulties in the coupled-cluster equations with such choices.

• Generally speaking, CEPA is often better than CCSD and approaches the quality of CCSD(T). It is,

however, also a little less robust than CC methods because of the less rigorous treatment of the single

excitations in relation to electronic relaxation.

• Don’t forget: “Computers don’t solve problems – people do”. Not denying the importance and desire

to obtain accurate numbers: don’t forget that in the end it is the molecule and its chemistry or

spectroscopy that we want to learn something about. The fact that you may be able to compute one

or the other number a little more accurate doesn’t mean that this helps us understanding the physics

and chemistry of our target system any better. The danger of getting locked into technicalities and

miss the desired insight is real!

10.3 Converging SCF Calculations

Despite all efforts you may still find molecules where SCF convergence is poor. These are almost invariably

related to open-shell situations and the answer is almost always to provide “better” starting orbitals. Here is

my standard strategy to deal with this (assuming a DFT calculation):

• Perform a small basis set (SV) calculation in using the LSD or BP functional and RI approximation with

a cheap auxiliary basis set. Set Convergence=Loose and MaxIter=200 or so. Turn the FinalGrid off

(NoFinalGrid). The key point is to use a large damping factor and damp until the DIIS comes into a

domain of convergence. This is accomplished by SlowConv or even VerySlowConv. If you have an even

more pathological case you may need to set DampFac larger and DampErr smaller than chosen by these

defaults. This calculation is quite crude and may take many cycles to converge. It will however be

rather quick in terms of wall clock time. If the DIIS gets stuck at some error 0.001 or so the SOSCF (or

even better NRSCF) could be put in operation from this point on.

• Use the orbitals of this calculation and GuessMode=CMatrix to start a calculation with the target

basis set. In DFT we normally use a pure GGA functional (e.g. BP86). This calculation normally

converges relatively smoothly.

• Use the target functional, grid etc. to get the final calculation converged. In many cases this should

converge fairly well now.

Here are a few other things that can be tried:

• Try to start from the orbitals of a related closed-shell species. In general closed-shell MO calculations

tend to converge better. You then hope to reach the convergence radius of another converger for the

open-shell case.

• Try to start from the orbitals of a more positive cation. Cation calculations tend to converge better.
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• Try to start from a calculation with a smaller basis set. Smaller basis sets converge better. Then

you have the choice of GuessMode=CMatrix or GuessMode=FMatrix which will affect the convergence

behavior.

• Use large level shifts. This increases the number of iterations but stabilizes the converger. (shift

shift 0.5 erroff 0 end)

• If your calculations converge to, say 10−4 in the DIIS error and then “creep” it is usually a good idea

to invoke the second order (NRSCF) converger. Close to the solution, it is incredibly strong and will

usually converge in 1 or 2 macro-iterations. Each of these cost perhaps 5–7 or maybe even 10 normal

SCF cycles but after the DIIS has brought you into the radius of the convergence of the NR procedure

its convergence properties are excellent.

• If you are doing DFT calculations try to start from a Hartree-Fock solution for your molecule. HF

calculations tend to converge somewhat better because they have a larger HOMO-LUMO gap (there

are of course exceptions).

• Carefully look at the starting orbitals (Print[P GuessOrb]=1) and see if they make sense for your

molecule. Perhaps you have to reorder them (using Rotate) to obtain smooth convergence.

• Most of the time the convergence problems come from “unreasonable” structures. Did you make sure

that your coordinates are in the correct units (Angström or Bohrs?) and have been correctly recognized

as such by the program?

• If you have trouble with UHF calculations try ROHF (especially SAHF or CAHF) first and then go to

the UHF calculation.

• Fool around with Guess=Hueckel, PAtom or even HCore.

• It may sometimes be better to converge to an undesired state and then take the orbitals of this state,

reorder them (using Rotate) and try to converge to the desired state.

• Similarly, bad orbitals may be manipulated using the SCF stability analysis (section 9.9) to provide a

new guess.

• Try to start the calculation with a large damping factor (DampFac=0.90; or even larger) and specify a

relatively small DIIS error to turn damping off (say DampErr=0.02;). This will increase the number of

cycles but may guide you into a regime were the calculation actually converges.

• The advices above mostly apply to Hartree-Fock and DFT. For CASSCF, the available options and

how they can aid to overcome convergence problems are described in the CASSCF manual section.

In many cases modifying the initial guess or adding a level shift will help. Do not hesitate to use

large level-shifts (e.g 2.0 or even 3.0). The manual is accompanied by CASSCF tutorial that goes

through many details of the process including practical advices on convergence. The choice of initial

guess is crucial. Some guesses work better for organic molecules while others excel for transition-metal

complexes. The tutorial therefore discusses various initial guess options available in ORCA.

• If nothing else helps, stop, grab a friend and go to the next pub (you can also send me an unfriendly

e-mail but this will likely not make your calculation converge any quicker; ¨̂ ).
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10.4 Choice of Theoretical Method

The array of available functionals makes it perhaps difficult to decide which one should be used. While this

is a matter of ongoing research and, in the end, can only be answered by experimentation and comparison to

experimental results or high-level ab initio calculations, I may attempt to give some guidelines.

The simplest density functionals (and in general the least accurate) are the local functionals (Functional=LSD).

Although several variants of the local DFT exist in ORCA there is little to choose among them — they give

more or less the same result.

The gradient corrected functionals are (very slightly) more expensive because the gradient of the electron

density at each point in space must be computed but they are also significantly more accurate for structures

and energetics of molecules. The various gradient corrected functionals (GGA functionals) are generally

similar in their behavior. The BP functional is probably the most widely used in transition metal chemistry.

The BLYP, PBE or PW91 functionals may also be considered. PWP has been shown to be rather good for

hyperfine coupling predictions of light nuclei in radicals. In addition, since no Hartree-Fock exchange is used

you have the ability to speed up the calculation by a factor of 4–40 if the RI approximation is employed.

This approximation is really advisable for the LSD and GGA functionals since it leads to very little or no

loss in accuracy while giving large speedups. It is, in fact, automatically chosen to be operative when you use

pure functionals.

In addition, meta-GGAs (TPSS) are available in ORCA and may provide superior results for certain properties

compared to standard GGAs. They are somewhat but not much more expensive to evaluate than standard

GGAs.

For many properties (but not necessarily for geometries), more accurate results are usually given by the

hybrid density functionals that incorporate part of the HF exchange. The computational effort for these is

higher than for the GGA functionals because the HF exchange needs to be computed exactly. Very large

speedups result if this is done via the RIJCOSX approximation. Nevertheless for energetics, properties and

for predictions of charge and spin densities the hybrids appear to be the best choice. The prototype functional

of this kind is B3LYP, which has been very widely used throughout chemistry and is successful for a wide

range of molecular properties. Other hybrids have been less well tested but maybe a good choice in specific

situations, for example the PBE0 functional has been advertised for NMR chemical shift predictions and

other properties. From my personal experience I can also recommend PBE0 and PWP1 as two functionals

that give good predictions for EPR g-values and hyperfine couplings. The TPSSh meta-GGA hybrid is also

very succesful in this area.1

Together with DFT, it is often observed that the atom-pairwise dispersion correction of Stefan Grimme

substantially improves the results at no extra cost.

Don’t forget that in present days the MP2 method becomes affordable for molecules of significant size

and there are quite a number of instances where MP2 (and particularly SCS-MP2) will do significantly

1 Some researchers like to adjust the amount of Hartree-Fock exchange according to their needs or what they think
is “better” than the standard. This increases the semiempirical character of the calculations and may represent
fixes that only work for a given class of compounds and/or properties while worsening the results for others. With
this caveat in mind it is one of the things that you are free to try if you like it. However, we do not recommend it
since it will deteriorate the comparability of your results with those of other workers the vast majority of which
use standard functionals. An alternative to changing the amount of HF exchange could be to simply construct a
linear regression for a number of known cases and then use linear regression.
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better than DFT even if it takes a little longer (the RI approximation is also highly recommended here).

The perturbatively corrected functionals (B2PLYP) may also be a very good choice for many problems

(at comparable cost to MP2; note that even for large molecules with more than 1000 basis functions the

MP2 correction only takes about 10-20% of the time required for the preceeding SCF calculation if the RI

approximation is invoked).

Beyond DFT and (SCS)MP2 there are coupled-cluster methods and their implementation in ORCA is

efficient. With the local pair natural orbital methods you can even study molecules of substantial size and

with appealing turnaround times.

When to go to multireference methods is a more complicated question. Typically, this will be the case if

multiplets are desired, pure spin functions for systems with several unpaired electrons, in bond breaking

situations or for certain classes of excited states (loosely speaking: whenever there are weakly interacting

electrons in the system). However, whenever you decide to do so, please be aware that this require substantial

insight into the physics and chemistry of the problem at hand. An uneducated use of CASSCF or MRCI/MRPT

method likely yields numbers that are nonsensical and that at tremendous computational cost. Here, there is

no substitute for experience (and patience ¨̂ ).
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73. Schöneboom, J.; Neese, F.; Thiel, W. (2005) Towards Identification of the Compound I Reactive

Intermediate in Cytochrome P450 Chemistry: A QM/MM Study of its EPR and Mössbauer Parameters,
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[97] Schütz, M.; Werner, H. J. (2000) Chem. Phys. Lett., 318, 370.
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J.; Olivucci, M.; Oppel, M.; Phung, Q. M.; Pierloot, K.; Plasser, F.; Reiher, M.; Sand, A. M.; Schapiro,
I.; Sharma, P.; Stein, C. J.; Sørensen, L. K.; Truhlar, D. G.; Ugandi, M.; Ungur, L.; Valentini, A.;
Vancoillie, S.; Veryazov, V.; Weser, O.; Widmark, P.-O.; Wouters, S.; Zobel, J. P.; Lindh, R. (2019) .
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[205] Mason, J. (1993) Solid State Nucl. Magn. Res., 2, 285.

[206] Auer, A. A.; Gauss, J. (2003) J. Chem. Phys., 118, 10407.

[207] Flaig, D.; Maurer, M.; Hanni, M.; Braunger, K.; Kick, L.; Thubauville, M.; Ochsenfeld, C. (2014) J.
Chem. Theory Comput., 10, 572.

[208] Stoychev, G. L.; Auer, A. A.; Izsák, R.; Neese, F. (2018) J. Chem. Theory Comput., 14(2), 619.
URL http://pubs.acs.org/doi/10.1021/acs.jctc.7b01006

[209] Pantazis, D. A.; Orio, M.; Petrenko, T.; Zein, S.; Bill, E.; Lubitz, W.; Messinger, J.; Neese, F. (2009)
Chem. Eur. J., 15, 5108.

[210] Neese, F. (2006) J. Am. Chem. Soc., 128, 10213.

[211] Neese, F.; Solomon, E. I. (1998) Inorg. Chem., 37, 6568.

[212] Pederson, M. R.; Khanna, S. N. (1999) Phys. Rev. B, 60, 9566.

[213] Neese, F. (2007) J. Chem. Phys., 127, 164112.

[214] Sinnecker, S.; Neese, F. (2006) J. Phys. Chem. A, 110, 12267.

[215] Riplinger, C.; Kao, J. P. Y.; Rosen, G. M.; Kathirvelu, V.; Eaton, G. R.; Eaton, S. S.; Kutateladze, A.;
Neese, F. (2009) J. Am. Chem. Soc., 131, 10092.

[216] Neese, F. (2002) Inorg. Chim. Acta, 337C, 181.

[217] Römelt, M.; Ye, S.; Neese, F. (2009) Inorg. Chem., 48, 784.

[218] Ginsberg, A. P. (1980) J. Am. Chem. Soc., 102, 111.

[219] Noodleman, L. (1981) J. Chem. Phys., 74, 5737.

[220] Noodleman, L.; Davidson, E. R. (1985) Chem. Phys., 109, 131.

[221] Bencini, A.; Gatteschi, D. (1980) J. Am. Chem. Soc., 108, 5763.

[222] Yamaguchi, K.; Takahara, Y.; Fueno, T. (1986) In: Smith, V. H. (editor), Applied Quantum Chemistry,
155, Wiley, Reidel, Dordrecht.

[223] Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K.
(2000) Chem. Phys. Lett., 319, 223.
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[415] Mášik, J.; Hubač, I. (1998) Adv. Quant. Chem., 31, 75.
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