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1 ORCA 4.2 Foreword

Dear ORCA Users or potential ORCA users,

We are all very proud that we can present ORCA Version 4.2. to you! We thoroughly hope that you enjoy
the program and that it will serve you well in all of your scientific endeavors. As with previous releases,
we have worked very hard on this release until the last minute and while we did our best to ensure that
everything is working and complete, we can of course not exclude the possibility that a few things might
have escaped our attention. Hence, please give us feedback over the next few months — we plan to follow up

with a minor release soon.

With this release, we have largely continued the path that we have been following for about the last decade —
namely to engage in wavefunction theory and make it applicable to larger and larger and larger systems with
higher and higher accuracy.

It has been increasingly evident that DLPNO methods are a staple of ORCA and with this release we have
significantly enhanced the DLPNO methodology by making sure that iterative (T) corrections are available
for closed- and open-shell systems. Also the long awaited DLPNO-STEOM for closed shells is an excellent
excited state method. Open shell DLPNO-CCSD(T)-F12 has been completed for this release as well.

The second staple of ORCA are multireference methods. In this release, we have added some significant
functionality, most importantly there is a full CASPT2 implementation now in ORCA and there are significant
improvements in our large-scale approximate full CI scheme (ICE). There also is a fully internally contracted

quadratic MRCI scheme implemented (essentially internally contracted multireference coupled cluster).

The third staple of ORCA are spectroscopic calculations. We have continued to enhance the NMR, capabilities
of ORCA by adding the RI-MP2 chemical shift calculations. It also works for double hybrid functionals and
give pretty accurate results. In addition, there have been a number of enhancements in the ORCA_ESD
module for the calculation of fluorescence, phosphorescence spectra as well as vibronic bandshapes and
resonance Raman spectra. One significant addition is spin-orbit coupling in TD-DFT. Additionally, ORCA

now has the capability to optimize to conical intersections.

The fourth staple of ORCA are analysis tools that allow you to go beyond the bare numbers. In this respect
the very successful local energy decomposition has been further extended to cover DLPNO-MP2. There
also is a low-cost, high accuracy method added: HF-LD that adds London dispersion to a Hartree-Fock

calculation.

A lot of work has gone into the improvement of the implicit solvation capabilities. We have added the Gaussian
charge scheme that is numerically much more stable than the usual point charge scheme used in CPCM or
COSMO. Great improvements have also been made to the nudge elastic band transition state optimizer. In

addition, we are now using the libxc library to give access to a wider variety of density functionals. The MD
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module has been significantly extended, now featuring a cartesian minimzer which can be used for tens of

thousands of atoms.

The current release now provides an ORCA-native QM/MM implementation, which renders setting up and
running QM /MM calculations way more efficient than with the previously available interfaces from external
programs. The QM/MM feature can be directly combined with all other ORCA methods, making it easy to
run all kinds of applications for large protein systems, ranging from simple optimizations to minimum energy

path explorations and spectroscopic calculations.

We are very excited to release this version of ORCA! The user community has now grown to significantly
over 20000 users world-wide. ORCA runs in most super-computer centers world-wide, on most synchrotron
computing facilities and it is increasingly used by industry. We are happy and proud that ORCA is now so
widely used in the scientific community and we will continue and intensify our efforts to give you the best

program possible.

As we pointed out previously, ORCA will remain free of charge for academic users in long term. The only
thing we ask you in return is to please cite our papers when you use ORCA and please do not just cite the
global ORCA reference, but make a slight effort to cite the relevant original method development literature —
this will allow us to document our standing in the scientific community and allow us to raise the funds to

continue with the development of ORCA to, hopefully, everybody’s benefit.

We have also pointed out since the release of ORCA 4.0, that ORCA is available for commercial users via the
company FAccTs (Fast and Accurate Computational Chemistry Tools; https://www.faccts.de). Please
contact info@faccts.de if you are interested in the opportunities offered by FAccTs. If you are unsure whether

you qualify for an academic license, please contact orca.license@kofo.mpg.de.

I want to express my heartfelt thanks to everybody who has contributed to this release! All our graduate
students, postdocs and collaborators have worked very hard to make this happen. Often this requires efforts
that are beyond the immediate scientific project and I am deeply grateful for their enthusiasm and dedication!
Very special thanks goes to the ORCA development team — Frank Wennmohs, Ute Becker, Kanthruban
Sivalingam, Dimitrios Liakos and Dagmar Lenk — who have taken the lead in putting everything together,
running countless checks, fixing many bugs and making sure that we deliver a package to you that is as good
as it can get. We warmly welcome Axel Koslowski to this team and his contributions will start to appear in

subsequent ORCA versions.

Please enjoy ORCA and do good science with it! This is the source of our inspiration and motivation to

continue.
Frank Neese on behalf of all ORCA developers!

August 9, 2019
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2 ORCA 4.2 Changes

2.1 New Features

2.1.1 Local correlation

o Iterative (T) for open shells

e Multi-level scheme for open shell systems (all PNO accuracy levels)
e DLPNO-STEOM-CCSD for closed shells

e DLPNO-CCSD(T)-F12 for open shells

e Automatic fragmentation in LED analysis

e RIJCOSX-LED implementation

e HF-LD method for efficient dispersion energy calculations

2.1.2 Multi-Reference

e FIC-CASPT?2 implementation including level shift and IP/EA shift.

o FIC-NEVPT?2 unrelaxed densities and natural orbitals.

e CIPSI/ICE improvements. Can be run now with configurations, individual determinants or CSFs
(experimental)

e FIC-ACPF/AQCC: variants of the FIC-MRCI ansatz

o Efficient linear response CASSCF

e Reduced memory requirements in MRCI and CIPSI/ICE

2.1.3 Spectroscopy

GIAO EPR calculations (one issue with the SOMF operator still remaining)
e Improvements to ESD module for fluorescence, phosphorescence, bandshape, lifetime and resonance
Raman calculations

e ESD now includes also the prediction of the Intersystem Crossing non-radiative rates

Hyperfine couplings for CASSCF calculations (but not as response)
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2.1.4 Excited states

Spin-orbit coupling in TD-DFT

MECP optimization for TD-DFT

Conical Intersection Optimization

Range-separated double-hybrids (wB2PLYP, wB2GPPLYP) for TDDFT
Numerical and Hellmann-Feynman NACMEs using TD-DFT/CIS
DLPNO-STEOM-CCSD for closed shells (also see ‘Local correlation’)

2.1.5 Solvation

CPCM Gaussian Charge Scheme with the scaled-vdW surface and the Solvent Excluded Surface (SES).

Available for single point energy calculations and geometry optimizations using the analytical gradient.

2.1.6 SCF/optimizer/semi-empirics/infrastructure etc.

Nudge elastic band (NEB) transition states improvements (also works with xTB for initial path)
Improved compound method scripting language for workflow improvements

Improved ASCII property file

Libxc interface allows a far wider range of density functionals to be used

Interfaced with Grimme’s GFN-xTB and GFN2-xTB

Improvement of IRC algorithm

Cartesian minimization (L-OPT) for systems with 100.000s of atoms, Minimization of specific elements
(incl. H) only, fragment specific optimization treatment (relax all, relax hydrogens, rigid fragment,

fixed fragments)

2.1.7 QM/MM and MM

First release with ORCA-native MM and QM/MM implementation

Automated conversion from NAMD’s CHARMM format

Automated generation of simple force-field for non-standard molecules

Simple definition of active and QM regions

Automated inclusion and placement of link-atoms

Automated charge-shifts to prevent over-polarization

MM and QM/MM work with all kinds of optimizations, NEB / NEB-TS methods, frequency analysis
Option for rigid MM water (TIP3P) in MD simulation and optimization

2.1.8 Molecular Dynamics

Added a Cartesian minimization command to the MD module, based on L-BFGS and simulated
annealing. Works for large systems (> 10’000 atoms) and also with constraints. Offers a flag to only

optimize hydrogen atom positions (for crystal structure refinement).
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e The MD module can now write trajectories in DCD file format (in addition to the already implemented
XYZ and PDB formats).

e The thermostat is now able to apply temperature ramps during simulation runs.

e Added more flexibility to region definition (can now add/remove atoms to/from existing regions).

e Added two new constraint types which keep centers of mass fixed or keep complete molecules rigid.

e Ability to store the GBW file every n-th step during MD runs (e.g. for plotting orbitals along the
trajectory).

e Can now set limit for maximum displacement of any atom in a MD step, which can stabilize dynamics
with poor initial structures. Runs can be cleanly aborted by “touch EXIT”.

e Better handling/reporting of non-converged SCF during MD runs.

e Fixed an issue which slowed down molecular dynamics after many steps.

e Stefan Grimme’s xTB method can now be used in the MD module, allowing fast simulations of large

systems.

2.1.9 Miscellaneous

e Compute thermochemical corrections at different temperatures without recomputing the Hessian
e Fragments can now be defined in the geom block as simple lists
e Simpler input format for definition of atom lists and fragments, in particular useful for large atom lists

e basename.trj files are now called basename_trj.xyz
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3 FAQ - frequently asked questions

Noticeable changes between ORCA 2.x, 3.x and ORCA 4.x

ORCA 4.0 exhibits a new basis sets convention.
e From ORCA 4.0 onwards, the standard basis-sets contain ECPs
e ECPs are specified using simple names, e.g. ! DEF2-ECP, the old ECP{. ..} is deprecated.

e When using relativistic options, recontracted basis sets have to be given explicitly,
e.g. ! ZORA ZORA-DEF2-TZVP

e Basis set names in the basis and coordinates block have to be specified in quotation marks.

Especially the conversion of old input files to the new ORCA 4.0 format has to be mentioned. To get the
same results with ORCA 4.0 as with previous ORCA versions the following rules apply.

0ld (pre 4.0) New (> ORCA 4.0)
! RKS BP RI ZORA DEF2-SVP DEF2-SVP/] ! RKS BP RI ZORA ZORA-DEF2-SVP DEF2/]
%basis basis CC_PVDZ %basis basis "CC-PVDZ"
aux CC_PVDZ_C aux "CC-PVDZ/C"
end end
*xyz 0 1 *xyz 0 1
¥ k3

ORCA 4.0 exhibits new frozencore definitions across the periodic table, see section 9.10.

The “standard” computational levels (section 9.3.2.10) are deprecated and may no longer work as expected

(in particular, they will not assign a basis set).

Why is ORCA called ORCA?

Frank Neese made the decision to write a quantum chemistry program in the summer of 1999 while finishing
a postdoc at Stanford University. While thinking about a name for the program he wanted to write he
decided against having yet another “whatever-Mol-something”. The name needed to be short and signify

something strong yet elegant.

During this time in the US Frank went on a whale watching cruise at the California coast—the name “ORCA”

stuck. It is often get asked whether ORCA is an acronym and over the years, various people made suggestions
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what acronym this could possibly be. At the end of the day it just isn’t an acronym which stands for anything.

It stands for itself and the association which comes with it.

How do | install ORCA on Linux / MacOS / Windows?

ORCA is available for Windows, Linux and Mac OS X platforms. A good place to start looking for detailed
installation instructions aside from the manual is the ORCA input library. Windows users furthermore have

the option of following this video description.

I’ve installed ORCA, how do | start it?

First and most importantly, ORCA is invoked from the command line on all platforms. A simple click on
a binary or an input file won’t start a calculation. Under Linux and MacOS you need to open a terminal
instance and navigate to the folder containing an example.inp file. You can run an ORCA calculation with

the command:
<full orca binary folder path>/orca example.inp > example.out

Similarly, under Windows you need to open a command prompt (Win7, Win8) or a power shell (Win10),

navigate to said directory and execute the following command:

<full orca binary folder path>/orca example.inp > example.out

How do | cite ORCA?

Please do NOT just cite the generic ORCA reference given below but also cite in addition our original
papers! We give this program away for free to the community and it is our pleasure and honour to do so. Our
payment are your citations! This will create the visibility and impact that we need to attract funding which
in turn allows us to continue the development. So, PLEASE, go the extra mile to look up and properly cite
the papers that report the development and ORCA implementation of the methods that you have used in

your studies!

The generic reference for ORCA is:
Neese, F. “The ORCA program system” Wiley Interdisciplinary Reviews: Computational Molecular Science,
2012, Vol. 2, Issue 1, Pages 73-78.

Please note that there has been an update for ORCA 4.0:
Neese, F. “Software update: the ORCA program system, version 4.0” Wiley Interdisciplinary Reviews:
Computational Molecular Science, 2017, Vol. 8, Issue 1, p. e1327.


https://sites.google.com/site/orcainputlibrary/setting-up-orca
https://www.youtube.com/watch?v=NTk62asaz8Y
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Are there recommended programmes to use alongside ORCA?

As a matter of fact there are: We make extensive use of Chemcraft. It is interesting to note that it works

well in MacOS or Linux (using Wine). Another popular visualization programme is Chimera.
OpenBabel is very useful for file conversion to various chemical formats.

Finally, Avogadro is an excellent tool to edit molecular geometries. It is also able to generate ORCA input
files. The Avogadro version with the latest ORCA modifications is available on the ORCA download site.

For other valuable suggestions please refer to the corresponding ORCA site.

My old inputs don’t work with the new ORCA version! Why?

Please be aware that ORCA has changed considerably from 3-0 to 4-0. The basis set naming convention has
changed as well as a couple of defaults (frozen core e.g.). (For detailed information please refer to the Release
Notes.) It therefore is not unexpected that the same inputs will now either give slightly different results, or
will totally crash, because the keywords have been changed or totally removed.

If you are unsure about an input, please consult the manual. It is provided by the ORCA developers and

should contain all information implemented in the published version of ORCA.

My SCF calculations suddenly die with 'Please increase MaxCore’! Why?

The SCF cannot restrict its memory to a given MaxCore, which, in the past, has led to crashes due to lack of
memory after many hours of calculation. To prevent this, the newer ORCA versions will try to estimate the
memory needed at an early stage of the calculation. If this estimation is smaller than MaxCore, you are fine.
If it is larger than MaxCore, but smaller than 2*MaxCore, ORCA will issue a warning and proceed. If the
estimation yields a value that’s larger than 2*MaxCore, ORCA will abort. You will then have to increase

MaxCore. Please note, that MaxCore is the amount of memory dedicated to each process!

When dealing with array structures, when does ORCA count starting from zero and
in which cases does counting start from one?

Since ORCA is a C++ based program its internal counting starts from zero. Therefore all electrons, atoms,
frequencies, orbitals, excitation energies etc. are counted from zero. User based counting such as the

numeration of fragments is counted from one.

How can | check that my SCF calculation converges to a correct electronic structure?

The expectation value <SQ> is an estimation of the spin contamination in the system. It is highly recom-
mended for open-shell systems, especially with transition metal complexes, to check the UCO (unrestricted
corresponding orbitals) overlaps and visualise the corresponding orbitals. Additionally, spin-population on

atoms that contribute to the singly occupied orbitals is also an identifier of the electronic structure.


http://www.chemcraftprog.com
https://www.cgl.ucsf.edu/chimera/
http://openbabel.org/wiki/Main_Page
http://avogadro.cc/wiki/Main_Page
https://orcaforum.cec.mpg.de/downloads.php?cat=10
https://orcaforum.cec.mpg.de/viewtopic.php?f=8&t=134

XXVIII 3 FAQ - frequently asked questions

| can’t locate the transition state (TS) for a reaction expected to feature a low/very
low barrier, what should | do?

For such critical case of locating the TS, running a very fine (e.g. 0.01 A increment of the bond length) relaxed
scan of the key reaction coordinate is recommended. In this way the highest energy point on a very shallow

surface can be identified and used for the final TS optimisation.

During the geometry optimisation some atoms merge into each other and the
optimisation fails. How can this problem be solved?

This usually occurs due to the wrong or poor construction of initial molecular orbital involving some atoms.

Check the basis set definition on problematic atoms and then the corresponding MOs!

While using MOREAD feature in ORCA, why am | getting an error saying, “no orbitals
found in the .gbw file”?

ORCA produces the .gbw file immediately after it reads the coordinates and basis set information. If you put
a .gbw file from a previous calculation with same base name as your current input into the working directory,
it will be overwritten and the previous orbital data will be lost. Therefore, it is recommended to change the

file name or .gbw extension to something else (.gbw.old, for example).

The localisation input file (.1oc.fil) | used to use for older ORCA versions is not
working with orca_loc of ORCA 4.0.

The content of the localization input file has been modified in the current ORCA version. Now some additional
input data is required for localisation. Type orca_loc in a shell and you will get the list of required input

information.

With all the GRID and RI and associated basis set settings I'm getting slightly
confused. Can you provide a brief overview?

Hartree-Fock (HF) and DFT require the calculation of Coulomb and exchange integrals. While the Coulomb
integrals are usually done analytically, the exchange integrals can be evaluated semi-numerically on a grid.
Here, the pure DFT exchange is calculated on one type of grid (controlled through the GRID keyword)
while the HF exchange can be evaluated on an different, often smaller grid (GRIDX). For both parts, further
approximations can be made (RI-J and RI-K! or COSX, respectively). When RI is used, axillary basis sets
are required (<basis>/ J for RI-J and <basis>/ JK for RI-JK). The following possible combinations arise:

e HF calculation

— Exact J + exact K: no auxiliary functions and no grids needed.
— RIJ + exact K (RIJONX, RIJDX): <basis>/J auxiliaries, no grids.
— RIJ 4+ RIK = RIJK: <basis>/JK auxiliaries, no grids.

!'Note that ORCA can only use RI-K in conjunction with RI-J; hence the combination RI-JK.
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— RIJ + COSX: <basis>/ J auxiliaries, COSX grid controlled by the GRIDX keyword.

o GGA DFT functional

— Exact J + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.
— RIJ + GGA-XC: <basis>/ J auxiliaries, DFT grid controlled by the GRID keyword.

e Hybrid DFT functional

Exact J 4+ exact K + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

— RIJ + exact K (RIJONX, RIIDX) + GGA-XC: <basis>/ J auxiliaries, DFT grid controlled by the GRID

keyword.

— RIJ + RIK (RIJK) + GGA-XC: <basis>/ JK auxiliaries, DFT grid controlled by the GRID keyword.

RIJ + COSX + GGA-XC: <basis>/ J auxiliaries, COSX grid controlled by the GRIDX keyword, DFT
grid controlled by the GRID keyword.

There are a lot of basis sets! Which basis should | use when?

ORCA offers a variety of methods and a large choice of basis sets to go with them. Here is an incomplete

overview:
Method Approximation basis set (and auxiliaries)
CASSCF/NEVPT2 <basis>
CASSCF/NEVPT2 RI-JK <basis>+ <basis>/JK
CASSCF/NEVPT2 RIJCOSX <basis>+ <basis>/J + <basis>/C
CASSCF/NEVPT2 TrafoStep RI <basis>+ <basis>/JK or <basis>/C
NEVPT2-F12 TrafoStep RI <basis>-F12 + <basis>-F12/CABS + <basis>/JK or <basis>/C
TDDFT <basis>
TDDFT Mode Rllnts <basis>+ <basis>/C
MP2 <basis>
F12-MP2 <basis>-F12 + <basis>-F12/CABS
RI-MP2 <basis>+ <basis>/C
HF+RI-MP2 RIJCOSX <basis>+ <basis>/C + <basis>/J
F12-RI-MP2 <basis>-F12 4+ <basis>-F12/CABS + <basis>/C
DLPNO-MP2 <basis>+ <basis>/C
HF+DLPNO-MP2 RI-JK <basis>+ <basis>/C + <basis>/JK
F12-DLPNO-MP2 <basis>-F12 4+ <basis>-F12/CABS + <basis>/C
CCSD <basis>
RI-CCSD <basis>+ <basis>/C
(D)LPNO-CCSD <basis>+ <basis>/C
HF+(D)LPNO-CCSD RIJCOSX <basis>+ <basis>/C + <basis>/J
F12-CCSD <basis>-F12 + <basis>-F12/CABS
F12-RI-CCSD <basis>-F12 + <basis>-F12/CABS + <basis>/C
HF+F12-RI-CCSD RI-JK <basis>-F12 + <basis>-F12/CABS + <basis>/C + <basis>/JK




XXX




4 General Information

4.1 Program Components

The program system ORCA consists of several separate programs that call each other during a run. The

following basic modules are included in this release:

orca
orca_anoint
orca_autoci
orca_ciprep
orca_cis
orca_cipsi
orca_cpscf
orca_casscf
orca_eprnmr
orca_fci
orca_gtoint
orca_gstep
orca_loc
orca_md
orca_mdci
orca_mp?2
orca_mrci
orca_ndoint
orca_numfreq
orca_pc
orca_plot
orca_pop
orca_rel
orca_rocis
orca_scf
orca_scfgrad
orca_scfhess
0rca_soc
orca_vpot

Utility programs:

Main input+driver program

Integral generation over ANOs

CI type program using the automated generation environment (ORCA-AGE)
Preparation of data for MRCI calculations (frozen core matrices and the like)
Excited states via CIS and TD-DFT

Iterative Configuration Expansion Configuration Interaction (ICE-CI)
Solution of the coupled-perturbed SCF equations

Main program for CASSCF driver

SCF approximation to EPR and NMR, parameters

Full-CI program

Calculation of gaussian integrals

Relaxation of the geometry based on energies and gradients

Calculation of localized molecular orbitals

Molecular dynamics program

Matrix driven correlation program: CI, CEPA, CPF, QCISD, CCSD(T)
MP2 program (conventional, direct and RI)

MRCI and MRPT calculations (individually selecting)

Calculates semiempirical integrals and gradients

Numerical hessian computation

Addition of point charge terms to the one-electron matrix

Generation of orbital and density plots

External program for population analysis on a given density

(Quasi) Relativistic corrections

Excited states via the ROCIS method

Self-consistent field program (conventional and direct)

Analytic derivatives of SCF energies (HF and DFT)

Analytical hessian calculation for SCF

Calculation of spin-orbit coupling matrices

Calculation of the electrostatic potential on a given molecular surface
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orca_2aim Produces WFN and WFX files suitable for AIM analysis

orca_2mkl Produces an ASCII file to be read by molekel, molden or
other visualization programs

orca_asa Calculation of absorption, fluorescence and resonance Ra-

orca_chelpg

man spectra
Electrostatic potential derived charges

orca_euler Calculate Euler angles from .prop file

orca_fitpes Simple program to fit potential energy curves of diatomics

orca_mapspc Produces files for transfer into plotting programs

orca_pltvib Produces files for the animation of vibrations

orca_pnmr Calculation of paramagnetic NMR shielding tensors

orca_vib Calculation of vibrational frequencies from a completed fre-
quency run (also used for isotope shift calculations)

otool_gcp Geometrical Counterpose Correction

Friends of ORCA:

gennbo The NBO analysis package of Weinhold (must be purchased
separately from the university of Wisconsin; older versions
available for free on the internet may also work)

Molekel Molecular visualization program (see 7.20.2.3)

gOpenMol Molecular visualization program (see 7.20.2.2)

In principle every individual module can also be called “standalone”. However, it is most convenient to do

everything via the main module.

There is no real installation procedure. Just copy the executables wherever you want them to be and make
sure that your path variable contains a reference to the directory where you copied the files. This is important
to make sure that the programs can call each other (but you can also tell the main program the explicit

position of the other programs in the input file as described below).

4.2 Units and Conversion Factors

Internally the program uses atomic units. This means that the unit of energy is the Hartree (Eh) and the

unit of length is the Bohr radius (ag). The following conversion factors to other units are used:

1 Eh = 27.2113834 eV
1eV = 8065.54477 cm !
1 em™! 29979.2458 MHz
1 ag 0.5291772083 A

1 a.t.u. 2.4188843 10717

= 23.0605 keal

mol



5 Calling the Program (Serial and Parallel)

5.1 Calling the Programm

Under Windows the program is called from the command prompt! (Make sure that the PATH variable is set

such that the orca executables are visible)

orca MyMol.inp > MyMol.out

Under UNIX based operating systems the following call is convenient® (here also: make sure that the PATH

variable is set to the directory where the orca executables reside):

nohup orca MyMol.inp >& MyMol.out &

The nohup command lets the program run even if the user is logged out. The program writes to stdout
and stderr. Therefore the output must be redirected to the file MyMol.out in this example. MyMol.inp is
a free format ASCII file that contains the input description. The program will produce a number of files
MyMol.xz.tmp and the file MyMol.gbw. The “*.gbw” file contains a binary summary of the calculation. GBW
stands for “Geometry-Basis-Wavefunction”. Basically this together with the calculation flags is what is stored
in this file. You need this file for restarting SCF calculations or starting other calculations with the orbitals
from this calculation as input. The “*.tmp” files are temporary files that contain integrals, density matrices,
Fock matrices etc. that are used as intermediates in the calculation. If the program exits normally all of
these files are deleted. If it happens to crash you have to remove the files manually (rm MyMol*.tmp under
Unix or del MyMol*.tmp under Windows). In case you want to monitor the output file while it is written,

you can use the command (under Unix):

tail -f MyMol.out

to follow (option -f) the progress of the calculation. Under Windows you have to either open another command

shell and use:

type MyMol.out
type MyMol.out |more

'Many people (including myself) will prefer to write a small shellscript that, for example, creates a run directory,
copies the input there, runs the program, deletes possibly left over temporary files and then copies the output back
to the original directory.
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or you have to copy the output file to another file and then use any text editor to look at it.

you cannot use edit MyMol.out because this would result in a sharing violation.

There are parallel versions for Linux, MAC and Windows computers (thanks to the work of Ms Ute Becker)
which make use of OpenMPI (open-source MPI-2 implementation). Assuming that OpenMPI libraries are
installed properly on your computer, it is fairly easy to run the parallel version of ORCA. You simply have
to specify the number of parallel processes, like:

The following modules are presently parallelized:

e ANOINT

o CASSCF / NEVPT2

o CIPSI

e CIS/TDDFT

e CPSCF

¢ EPRNMR

e GTOINT

e MDCI (Canonical-, PNO-, DLPNO-Methods)
o MP2 and RI-MP2 (including Gradient and Hessian)
e MRCI

e PC

e ROCIS

e SCF

e SCFGRAD

e SCFHESS

e SOC
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e Numerical Gradients and Frequencies

Thus, all major modules are parallelized in the present version. The efficiency is such that for RI-DFT
perhaps up to 16 processors are a good idea while for hybrid DFT and Hartree-Fock a few more processors are
appropriate. Above this, the overhead becomes significant and the parallelization loses efficiency. Coupled-
cluster calculations usually scale well up to at least 8 processors but probably it is also worthwhile to try 16.
For Numerical Frequencies or Gradient runs it makes sense to use as many processors as 3*Number of Atoms.
If you run a queuing system you have to make sure that it works together with ORCA in a reasonable way.
NOTE:

e Parallelization is a difficult undertaking and there are many different protocols that work differently
for different machines. Please understand that we can not provide a 1:1 support for each platform.
We are trying our best to make the parallelization transparent and provide executables for various
platforms but we can not possibly guarantee that they always work on every system. Please see the

download information for details of the version.

5.2 Hints on the Use of Parallel ORCA

Many questions that are asked in the discussion forum deal with the parallel version of ORCA. Please
understand that we cannot possibly provide one-on-one support for every parallel computer in the world. So
please, make every effort to solve the problems locally together with your system administrator. Here are

some of the most common problems and how to deal with them.

1. Parallel ORCA can be used with OpenMPI only. Please see the download information for details of the
relevant OpenMPI-version for your platform.

2. The OpenMPI version is configurable in a large variety of ways, which cannot be covered here. For a more

detailed explanation of all available options, cf. http://www.open-mpi.org?

Otherwise, the usage of the OpenMPI version is like the older MPICH version, especially with regard to the
provision of a nodefile (<inputfile>.nodes). If you run the OpenMPI version on only one computer, you do
not need to provide a machinefile, and neither have to enable an rsh/ssh access, as in this case the processes

will simply be forked!

Please note that the OpenMPI version is dynamically linked, that is, it needs at runtime the OpenMPI
libraries (and several other standard libraries)!

(Remember to set the LD_.LIBRARY_PATH)

3. Many problems arise, because parallel ORCA does not find its executables. To avoid this, it is crucial to
provide ORCA with its complete pathname. The easiest and safest way to do so is to include the directory
with the orca-executables in your $PATH. Then start the calculation:

- interactively: start orca with full path: /mypath_orca_executables/orca MyMol.inp

- batch : export your path: export PATH=$PATH:/mypath orca executables (for bash) then start orca with
full path: $PATH/orca $jobname.inp

20penMPI 3.1.x did contain a few errors causing calculations to hang randomly. Building OpenMPI with the switch
--disable-builtin-atomics circumvents this.


http://www.open-mpi.org
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This seems redundant, but it really is important if you want to start a parallel calculation to run ORCA
with full path! Otherwise it will not be able to find the parallel executables.

4. Tt is recommended to run orca in local (not nfs-mounted) scratch-directories, (for example /tmpl,
/usr/local, ...) and to renew these directories for each run to avoid confusion with left-overs of a previous
run.

5. It has proven convenient to use “wrapper” scripts. These scripts should
e set the path
e create local scratch directories
e copy input files to the scratch directory
e start orca
e save your results
e remove the scratch directory

A basic example of such a submission script for the parallel ORCA version is shown below (this is for the

Torque/PBS queuing system, running on Apple Mac OS X):
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6. Parallel ORCA distinguishes 3 cases of disk availability:

e each process works on its own (private) scratch directory (the data on this directory cannot be seen

from any other process)
e all processes work in a common scratch directory (all processes can see all file-data)

e there are at least 2 groups of processes on different scratch directories, one of the groups consisting of

more than 1 process

Parallel ORCA will find out, which case exists and handle its I/O respectively. If ORCA states disk availability
differently from what you would expect, check the number of available nodes and/or the distribution pattern
(fill_up/round_robin)

7. If Parallel ORCA finds a file named “MyMol.nodes” in the directory where it’s running, it will use the
nodes listed in this file to start the processes on, provided your input file was “MyMol.inp”. You can use this

file as your machinefile specifying your nodes, using the usual OpenMPI machinefile notation.

8. It is possible to pass additional MPI-parameters to the mpirun by adding these arguments to the ORCA
call:

e /mypath_orca_executables/orca MyMol.inp --bind-to core

- or - for multiple arguments
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e /mypath_orca_executables/orca MyMol.inp "--bind-to core --verbose"

9. An additional remark on multi-process numerical calculations (frequencies, gradient, hybrid hessian):

The processes that execute these calculations do not work in parallel, but independently, often in a totally
asynchronous manner. The numerical calculations will start as many processes, as you dedicated for the
parallel parts before and they will run on the same nodes. If your calculation runs on multiple nodes, you
have to set the environment variable RSH_.COMMAND to either “rsh” or “ssh”. You may specify special flags,
like “ssh -x”. If RSH_.COMMAND is not set, ORCA will start all processes of a multi-process run on localhost.
(Take care not to exceed your localhost’s ressources!) There is no gain in taking more processes than 3-times
the number of atoms to be displaced. For restart (available for numerical frequencies, hybrid hessian and
partial hessian calculations) make sure you have all local Hessian files (input.proc%d.hess). ORCA will

check these files to determine which displacements are left to be done.



6 General Structure of the Input File

In general, the input file is a free format ASCII file and can contain one or more keyword lines that start
with a “!” sign, one or more input blocks enclosed between an “%” sign and “end” that provide finer control
over specific aspects of the calculation, and finally the specification of the coordinates for the system along

with the charge and multiplicity provided either with a %coords block, or more usually enclosed within two

“*” gymbols. Here is an example of a simple input file that contains all three input elements:

Comments in the file start by a “#”. For example:

Comments can also be closed by a second “#”, as the example below where TolE and TolMaxP are two

variables that can be user specified:

The input may contain several blocks, which consist of logically related data that can be user controlled. The
program tries to choose sensible default values for all of these variables. However, it is impossible to give
defaults that are equally sensible for all systems. In general the defaults are slightly on the conservative
side and more aggressive cutoffs etc. can be chosen by the user and may help to speed things up for actual

systems or give higher accuracy if desired.
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6 General Structure of the Input File

6.1 Input Blocks

The following blocks exist:

AUTOCI
BASIS
CASSCF
CIPSI

CIM
CIS
COORDS
CPCM
ELPROP
EPRNMR
ESD
FREQ
GEOM
LOC

MD

MDCI
METHOD
MP2
MRCC
MRCI
NUMGRAD
NBO
OouUTPUT
PAL
PARAS
PLOTS
REL
ROCIS
RR

SCF

Controls autogenerated correlation calculations

Basis sets are specified

Control of CASSCF/NEVPT2 and DMRG calculations
Control of Iterative-Configuration Expansion Configuration Interaction calcula-
tion

Control of Cluster In Molecules calculations

Control of CIS and TD-DFT calculations (synonym is TDDFT)
Input of atomic coordinates

Control of the Conductor-like Polarizable Continuum Model
Control of electric property calculations

Control of EPR and NMR calculations

Control of ESD calculations

Control of frequency calculations

Control of geometry optimization

Localization of orbitals

Control of molecular dynamics simulation
Controls single reference correlation methods
Here a computation method is specified
Controls the details of the MP2 calculation
Control of multi-reference CC calculations
Control of MRCI calculations

Control of numerical gradients

Controls NBO analysis with GENNBO
Control of output

Control of parallel jobs

Input of semi-empirical parameters

Control of plot generation

Control of relativistic options

Control of restricted-open-shell CIS

Control of resonance Raman and absorption /fluorescence band-shape calculations
Control of the SCF procedure

Blocks start with “%” and end with “end”. Note that input is not case sensitive. For example:

%method method HF

end

No blocks need to be present in an input file but they can be present if detailed control over the behavior of

the program is desired. Otherwise all normal jobs can be defined via the keywords described in the next

section. Variable assignments have the following general structure:
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VariableName Value
Some variables are actually arrays. In this case several possible assignments are useful:

Array[1] Valuel
Array[1] Valuel,Value2,Value3
Array Valuel,Value2

Note: Arrays always start with index 0 in ORCA (this is because ORCA is a C++ program). The first line in
the example gives the value “Valuel” to Array[1], which is the second member of this array. The second line
assigns Valuel to Array[1], Value2 to Array[2] and Value3 to Array[3]. The third line assigns Valuel
to Array[0] and Value2 to Array[1]. Strings (for examples filenames) must be enclosed in quotes. For

example:
MOInp "Myfile.gbw"

In general the input is not case sensitive. However, inside strings the input is case sensitive. This is because
on unix systems MYFILE.GBW and MyFile.gbw are different files. Under Windows the file names are not case

sensitive.

6.2 Keyword Lines

It is possible to give a line of keywords that assign certain variables that normally belong to different input

AL|77

blocks. The syntax for this “simple input” is line-oriented. A keyword line starts with the sign.

| Keywords

6.2.1 Main Methods and Options

Table 6.1 provides a list of keywords that can be used within the “simple input” keyword line to request
specific methods and/or algorithmic options. Most of them are self-explanatory. The others are explained in

detail in the section of the manual that deals with the indicated input block.
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Table 6.1: Main keywords that can be used in the simple input of ORCA.
Keyword Input Variable Comment
block

HF METHOD METHOD Selects the Hartree—Fock method

DFT Selects the DFT method (see table 6.2
on page 23 for a list of functionals)

FOD FOD analysis (see 9.6.8.2) employ-
ing default settings (TPSS/def2-TZVP,
TightSCF, SmearTemp = 5000 K)

Runtypes

ENERGY or SP METHOD RUNTYP Selects a single point calculation

OPT Selects a geometry optimization calcu-
lation (using internal redundant coordi-
nates)

COPT Optimization in Cartesian coordinates
(if you are desperate)

ZOPT Optimization in Z-matrix coordinates
(dangerous)

GDIIS-COPT COPT using GDIIS

GDIIS-ZOPT ZOPT using GDIIS

GDIIS-OPT Normal optimization using GDIIS

ENGRAD Selects an energy and gradient calcula-
tion

NUMGRAD Numerical gradient (has explicitly to
be asked for, if analytic gradient is not
available)

NUMFREQ Numerical frequencies

NUMNACME Numerical non-adiabatic coplings (only
for CIS/TD-DFT)

MD Molecular dynamic simulation

CIM Cluster-In-Molecule calculation

Atomic mass/weight handling

Mass2016 METHOD AMASS Use the latest (2016) atomic masses of

the most abundant or most stable iso-

topes instead of atomic weights.

Symmetry handling

UseSym

NoUseSym

Turns on the use of molecular symme-
try (see section 6.5). THIS IS VERY
RUDIMENTARY!

Turns symmetry off

Second order many body perturbation theory

MP2

MP2RI or RI-MP2
SCS-MP2
RI-SCS-MP2

Selects Method=HF and DoMP2=true
Select the MP2-RI method
Spin-component scaled MP2
Spin-component scaled RI-MP2
(synonym is SCS-RI-MP2)
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OO-RI-MP2
OO0O-RI-SCS-MP2

MP2-F12

MP2-F12-RI
MP2-F12D-RI

Orbital optimized RI-MP2

Orbital optimized and spin-component
scaled RI-MP2

MP2 with F12 correction

(synonym is F12-MP2)

MP2-RI with RI-F12 correction
MP2-RI with RI-F12 correction employ-
ing the D approximation (less expensive)
(synonyms are F12-RI-MP2, RI-MP2-
F12)

They can be run in a number of technical variants.

High-level single reference methods. These are implemented in the MDCI module.

CCSD
CCSD(T)

CCSD-F12
CCSD(T)-F12
CCSD-F12/RI
CCSD-F12D/RI

CCSD(T)-F12/RI
CCSD(T)-
F12D/RI

QCISD
QCISD(T)

QCISD-F12
QCISD(T)-F12
QCISD-F12/RI
QCISD(T)-F12/RI
CPF/1

NCPF/1

CEPA/1
NCEPA/1
RI-CEPA /1-F12
MP3

SCS-MP3

MDCI

CITYPE

Coupled-cluster singles and doubles
Same with perturbative triples correc-
tion

CCSD with F12 correction

CCSD(T) with F12 correction

CCSD with RI-F12 correction

CCSD with RI-F12 correction employ-
ing the D approximation (less expensive)
CCSD(T) with RI-F12 correction
CCSD(T) with RI-F12 correction em-
ploying the D approximation (less ex-
pensive)

Quadratic Configuration interaction
Same with perturbative triples correc-
tion

QCISD with F12 correction

QCISD(T) with F12 correction

QCISD with RI-F12 correction
QCISD(T) with RI-F12 correction
Coupled-pair functional

A “new” modified coupled-pair func-
tional

Coupled-electron-pair approximation
The CEPA analogue of NCPF/1
RI-CEPA with F12 correction

MP3 energies

Grimme’s refined version of MP3

Other coupled-pair methods are available and are documented later in the manual in detail
(section 7.8) In general you can augment the method with RI-METHOD in order to make
the density fitting approximation operative; RI34-METHOD does the same but only for the
3- and 4-external integrals). MO-METHOD performs a full four index transformation and
AO-METHOD computes the 3- and 4-external contributions on the fly. With AOX-METHOD

this is is done from stored AO integrals.
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Local correlation methods.

These are local, pair natural orbital based correlation

methods. They must be used together with auxiliary correlation fitting basis sets. Open-shell

variants are available for some of the methods, for full list please see section 8.1.3. We
recommend n = 1 for the CEPA methods.

LPNO-CEPA /n
LPNO-CPF /n
LPNO-NCEPA /n
LPNO-NCPF /n
LPNO-QCISD
LPNO-CCSD

DLPNO-CCSD

DLPNO-CCSD(T)
DLPNO-
CCSD(T1)
DLPNO-MP?2
DLPNO-SCS-MP2
DLPNO-MP2-F12
DLPNO-MP2-

F12/D

DLPNO-CCSD-
F12

DLPNO-CCSD-
F12/D

DLPNO-CCSD(T)-
F12

DLPNO-CCSD(T)-
F12/D

DLPNO-NEVPT2

MDCI

MP2

Various

Various

Local pair natural orbital CEPA meth-
ods

Same for coupled-pair functionals
Same for modified versions

Same for modified versions

Same for quadratic CI with singles and
doubles

Same for coupled-cluster theory with
single and double excitations

Domain based local pair natural orbital
coupled-cluster method with single and
double excitations (closed-shell only)
DLPNO-CCSD with perturbative triple
excitations

DLPNO-CCSD with iterative perturba-
tive triple excitations

Local (DLPNO) MP2

Spin-component scaled DLPNO-MP2
(a synonym is SCS-DLPNO-MP2)
DLPNO-MP2 with F12 correction em-
ploying an efficient form of the C ap-
proximation

DLPNO-MP2-F12 with approach D
(less expensive than the C approxima-
tion)

DLPNO-CCSD with F12 correction em-
ploying an efficient form of the C ap-
proximation

DLPNO-CCSD-F12 with approach D
(less expensive than the C approxima-
tion)

DLPNO-CCSD(T) with F12 correction
employing an efficient form of the C
approximation

DLPNO-CCSD(T)-F12 with approach
D (less expensive than the C approxi-
mation)

DLPNO-NEVPT2 requires a CASSCF
block
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Accuracy control for local correlation methods. These keywords select predefined sen-

sible sets of thresholds to control the accuracy of DLPNO calculations. See the corresponding

sections on local correlation methods for more details.

LoosePNO MDCI, MP2 | Various Selects loose DLPNO thresholds

NormalPNO Selects default DLPNO thresholds

TightPNO Selects tight DLPNO thresholds

DLPNO-HFC1 Tightened truncation setting for
DLPNO-CCSD  hyperfine coupling
constants calculation

DLPNO-HFC2 Tighter truncation setting than for
DLPNO-HFC1

Automatic basis set eaxtrapolation

Extrapolate (n/m,
bas)

Extrapolate
bas)

(n,

ExtrapolateEP2
(n/m,
bas,[method,method-
details])

ExtrapolateEP3
(bas,[method,method;
details])

Extrapolation of the basis set fam-
ily “bas” (bas=cc,aug-cc, cc-core, ano,
saug-ano, aug-ano, def2; if omitted
“cc-pVnZ” is used) for cardinal num-
bers n,m (n<m=2,3,4,5), e.g. Extrapo-
late(2/3,cc) extrapolates the SCF, MP2
and MDCI energies to the basis set
limit. “core” refers to basis sets with
core correlation function. In this case
the frozen core approximation is - by
default - turned off. This setting can
be overridden in the “methods” block if
one just wants to use the basis set with
core correlation functions (steep primi-
tives) but without unfreezing the core
electrons.

Calculate the first n-energies for mem-
ber of the basis set family basis, e.g. Ex-
trapolate(3) is doing calculations with
cc-pVDZ, cc-pVTZ and ce-pVQZ.
Similar: performs SCF, MP2 and MDCI
calculations. The higher basis set can
only be done with DLPNO-CCSD(T) or
MP2 methods and then used to extrap-
olate the MDCI calculation to the basis
set limit.

Similar to EP2: for the high basis set
method we go one cardinal number

higher.

CASSCEF related options. All of

them require the C

ASSCF block as minimal input

DMRG
NEVPT2

Sets DMRG as “CIStep” in CASSCF
SC NEVPT2
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SC-NEVPT2
RI-NEVPT?2
FIC-NEVPT2
DLPNO-NEVPT2

CASPT2
RI-CASPT?2

DCD-CAS(2)

RI-DCD-CAS(2)

SC-NEVPT2 same as NEVPT2
SC-NEVPT?2 with the RI approximation
FIC-NEVPT?2 aka PC-NEVPT2
FIC-NEVPT2 in the framework of
DLPNO

FIC-CASPT2

FIC-CASPT2 with the RI approxima-
tion

2nd order Dynamic Correlation Dressed
CAS

2nd order Dynamic Correlation Dressed
CAS with RI approximation

(internally contracted)Multireference methods beyond NEVPT2/CASPT2: If spec-
ified in a single keyword all information about reference spaces, number of roots etc. is taken

from the CASSCF module that is assumed to be run in advance. These methods reside in the

autoci module. More refined settings require the autoci block in the input.

FIC-MRCI

FIC-DDCI3
FIC-CEPAO
FIC-ACPF
FIC-AQCC

CIType

Invokes the fully internally contracted
MRCI

Fully internally contracted DDCI3
Fully internally contracted CEPAOQ
Fully internally contracted ACPF
Fully internally contracted AQCC

(uncontracted)Multireference methods: If specified in a single keyword all information

about reference spaces, number of roots etc. is taken from the CASSCF module that is assumed

to be run in advance. In general, these calculations are of the individually selecting type and are

very time consuming. Very many flags can be set and modified for these methods and in general

using these methods requires expert users! In general see the variables Tsel, Tpre and Tnat

that define the individual selection process. All of these methods can be used with RI integrals

by using RI-MRCI etc. However, then the calculations become even more time consuming since

integrals are made one- by one on the fly. Non-RI calculations will be pretty much limited to
about 200-300 orbitals that are included in the CI

MRCI

MRCI+Q

MRACPF
MRAQCC
MRDDCI1

MRDDCI2
MRDDCI3
MRDDCIn+Q
SORCI

MRCI

CIType

Initiates a multireference configuration
interaction calculation with single and
double excitations

Same with multireference Davidson cor-
rection for unlinked quadruples
Average coupled-pair functional
Average quadratic coupled-cluster
Difference dedicated CI with one degree
of freedom

Same with two degrees of freedom
Same with three degrees of freedom
MRDDCI with Davidson correction
Spectroscopy oriented CI
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Frozen core features. NOTE: this deviates from previous versions of ORCA! We are now
counting core electrons rather than using an energy window. If you do want to use an orbital
energy window use %method FrozenCore FC_EWIN end. Otherwise the EWin commands will
be ignored! (alternatives are FC_ELECTRONS (default) and FC_.NONE).

FROZENCORE

NOFROZENCORE

METHOD

FrozenCore

Use a frozen core. By default this is done
by counting the number of chemical core
electrons

Do not use a frozen core

Semiempirical methods

ZINDO/S
ZINDO/1
ZINDO/2
NDDO/1
NDDO/2
MNDO
AM1
PM3

Selects the ZINDO/S method
Selects the ZINDO/1 method
Selects the ZINDO/2 method
Selects the NDDO/1 method
Selects the NDDO/2 method
Selects the MNDO method
Selects the AM1 method
Selects the PM3 method

Algorithmic variations, options,

add-ons, modifiers,.

RHF or RKS
UHF or UKS
ROHF or ROKS

SCF

HFTYP

Selects closed-shell SCF
Selects spin unrestricted SCF
Selects open-shell spin restricted SCF

AllowRHF

METHOD

ALLOWRHF

Allow a RHF calculation even if the sys-
tem is open-shell (Mult>1). Default is
to switch to UHF then

RI

NORI

METHOD

RI

Sets RI=true to use the RI approxima-
tion in DFT calculations. Default to
Split-RI-J

Sets RI=false

RIJCOSX

METHOD/
SCF

RI, KMatrix

Sets the flag for the efficient RIJCOSX
algorithm (treat the Coulomb term via
RI and the Exchange term via seminu-

merical integration)

RI-JK

METHOD/
SCF

RI, KMatrix

Sets the flag for the efficient RI al-
gorithm for Coulomb and Exchange.
Works for SCF (HF/DFT) energies and

gradients. Works direct or conventional.

SPLITJ

SPLIT-RI-J

NoSplit-RI-J

SCF

SCF

SCF

JMATRIX

JMATRIX,RI

JMATRIX,RI

Select the efficient Split-J procedure for
the calculation of the Coulomb matrix
in non-hybrid DFT (rarely used)

Select the efficient Split-RI-J procedure
for the improved evaluation of the RI-
approximation to the Coulomb-matrix
Turns the Split-RI-J feature off (but
does not set the RI flag to false!)
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RI-J-XC SCF JMATRIX, KMA- | Turn on RI for the Coulomb term and
TRIX,RI the XC terms. This saves time when the

XC integration is significant but intro-
duces another basis set incompleteness
error. (rarely used)

DIRECT SCF SCFMODE Selects an integral direct calculation

SEMIDIRECT Selects an integral semidirect calculation
(rarely used nowadays)

CONV Selects an integral conventional calcula-
tion

NOITER SCF MAXITER Sets the number of SCF iterations to

0. This works together with MOREAD
and means that the program will work
with the provided starting orbitals.

Initial guess options: In most cases the default PMODEL guess will be adequate. In some

special situations you may want to switch to a different choice

PATOM SCF GUESS Selects the polarized atoms guess
PMODEL Selects the model potential guess
HUECKEL Selects the extended Hiickel guess
HCORE Selects the one-electron matrix guess
MOREAD Read MOs from a previous calulation
(use %moinp "myorbitals.gbw" in a
separate line to specify the GBW file
that contains these MOs to be read)
AUTOSTART AUTOSTART Try to start from the existing GBW file
of the same name as the present one
NOAUTOSTART Don’t try to do that
Basis-set related keywords
DecontractBas BASIS DecontractBas Decontract the basis set. If the basis set
arises from general contraction, dupli-
cate primitives will be removed.
NoDecontractBas NoDecontractBas Do not decontract the basis set
Decontract AuxJ Decontract AuxJ Decontract the AuxJ basis set
NoDecontract AuxJ NoDecontractAuxJ | Do not decontract the AuxJ basis
Decontract AuxJK Decontract AuxJK Decontract the AuxJK basis set
NoDecontractAuxJK NoDecontractAuxJK| Do not decontract the AuxJK basis
Decontract AuxC Decontract AuxC Decontract the AuxC basis set
NoDecontract AuxC NoDecontractAuxC | Do not decontract the AuxC basis
Decontract Decontract Decontract all (orbital and auxiliary)

basis sets

Relativistic options: There are several variants of scalar

in all electron calculations

relativistic Hamiltonians to use

DKH or DKH2

REL

METHOD,/ORDER

Selects the scalar relativistic Douglas—

Kroll-Hess Hamiltonian of 2nd order
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NOFINALGRIDX

ZORA REL METHOD Selects the scalar relativistic ZORA
Hamiltonian

ZORA/RI REL METHOD Selects the scalar relativistic ZORA
Hamiltonian in RI approximation

IORA/RI REL METHOD Selects the scalar relativistic IORA
Hamiltonian in RI approximation

IORAmm/RI REL METHOD Selects the scalar relativistic IORA mm
(modified metric) Hamiltonian in RI ap-
proximation

Grid options

GRIDn (n = 0-7) METHOD GRID Selects the DFT integration grid no n

FINALGRIDn Selects the DFT final integration grid
non

NOFINALGRID Turns the final grid feature off

GRIDXn (n =1-9) | METHOD GRIDX Grids for the COSX approximation. A

sequence of three grids is used. Higher
accuracy at higher cost is offered by the
higher grids.

Turn off the final grid in COSX (not

recommended)

Convergence thresholds: These keywords control how tightly the SCF and geometry
optimizations will be converged. The program makes an effort to set the convergence
thresholds for correlation modules consistently with that of the SCF.

NORMALSCF SCF CONVERGENCE | Selects normal SCF convergence
LOOSESCF Selects loose SCF convergence
SLOPPYSCF Selects sloppy SCF convergence
STRONGSCF Selects strong SCF convergence
TIGHTSCF Selects tight SCF convergence
VERYTIGHTSCF Selects very tight SCF convergence
EXTREMESCF Selects “extreme” convergence. All
thresholds are practically reduced to nu-
merical precision of the computer. Only
for benchmarking (very expensive).
SCFCONVn Selects energy convergence check and
sets ETol to 107" (n = 6-10). Also se-
lects appropriate thresh, tcut, and bfcut
values.
VERYTIGHTOPT | GEOM TolE, TolRMSG Selects very tight optimization conver-
gence
TIGHTOPT TolMaxG Selects tight optimization convergence
NORMALOPT TolRMSD,TolMaxD | Selects default optimization convergence
LOOSEOPT Selects loose optimization convergence




6 General Structure of the Input File

Convergence acceleration: the default is DIIS which is robust. For most closed-shell organic
molecules SOSCF converges somewhat better and might be a good idea to use. For “trailing
convergence” , KDIIS or the true second-order procedures NRSCF and AHSCF might be good

choices.

DIIS SCF DIIS Turns DIIS on

NODIIS Turns DIIS off

KDIIS SCF KDIIS Turns Kollmar’s DIIS on

NRSCF SCF NR Turns Newton-Raphson SCF on
AHSCF Same but with augmented Hessian step
NONRSCF Turns Newton-Raphson SCF off
SOSCF SCF SOSCF Turns SOSCF on

NOSOSCF Turns SOSCF off

DAMP SCF CNVDAMP Turns damping on

NODAMP Turns damping off

LSHIFT SCF CNVSHIFT Turns level shifting on

NOLSHIFT Turns level shifting off

Convergence strategies (does not modify the convergence criteria)

EasyConv Assumes no convergence problems.
NormalConv Normal convergence criteria.

SlowConv Selects appropriate SCF converger cri-

teria for difficult cases. Most transition
metal complexes fall into this category.
VerySlowConv Selects appropriate SCF converger cri-

teria for very difficult cases.

ForceConv Force convergence: do not continue with
the calculation, if the SCF did not fully
converge.

IgnoreConv Ignore convergence: continue with the

calculation, even if the SCF wavefunc-

tion is far from convergence.

CPCM(solvent) CPCM Invoke the conductor-like polarizable
C-PCM continuum model with a standard sol-
vent (see section 9.35 for a list of sol-
vents). If no solvent is given, infinity (a

conductor) is assumed.

Spin-orbit coupling

SOMF(1X) REL SOCType, Invokes the RI-SOMF (1X) treatment of
SOCFlags the spin-orbit coupling operator

Miscellaneous options

ANGS COORDS UNITS Select angstrom units

BOHRS Select input coordinates in atomic units

FRACOCC SCF FRACOCC Turns the fractional occupation option

on (FOD is always calculated in this

case)
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SMEAR SCF SMEARTEMP Temperature for occupation number
smearing on (default is 5000 K; FOD
(see 9.6.8.2) is always calculated in this
case)
NOSMEAR Turn occupation number smearing off
KEEPINTS SCF KEEPINTS Keep two electron integrals on disk
NOKEEPINTS Do not keep two electron integrals
KEEPDENS SCF KEEPDENS Keep the density matrix on disk
NOKEEPDENS Do not keep the density matrix
READINTS SCF READINTS Reading of two electron integrals on
NOREADINTS Reading of two electron integrals off
CHEAPINTS SCF USECHEAPINTS Use the cheap integral feature in direct
SCF calculations
NOCHEAPINTS Turn that feature off
FLOAT SCF VALFORMAT Set storage format for numbers to single
precision (SCF, RI-MP2, CIS, CIS(D),
MDCI)
DOUBLE SCF VALFORMAT Set storage format for numbers to dou-
ble precision (default)
UCFLOAT SCF VALFORMAT Use float storage in the matrix contain-
COMPRESSION ers without data compression
CFLOAT SCF VALFORMAT Use float storage in the matrix contain-
COMPRESSION ers with data compression
UCDOUBLE SCF VALFORMAT Use double storage in the matrix con-
COMPRESSION tainers without data compression
CDOUBLE SCF VALFORMAT Use double storage in the matrix con-
COMPRESSION tainers with data compression
Output control
NORMALPRINT OUTPUT PRINTLEVEL Selects the normal output
MINIPRINT Selects the minimal output
SMALLPRINT Selects the small output
LARGEPRINT Selects the large output
PRINTMOS OUTPUT Print[p_-MOS] Prints MO coefficients
NOPRINTMOS OuUTPUT Suppress printing of MO coefficients
PRINTBASIS OUTPUT Print[p_basis] Print the basis set in input format
PRINTGAP OuUTPUT Print[p Prints the HOMO/LUMO gap in each
_homolumogap] SCF iteration. This may help to detect
convergence problems
ALLPOP OUTPUT Print][. ..] Turns on all population analysis
NOPOP Turns off all populaton analysis
MULLIKEN Turns on the Mulliken analysis
NOMULLIKEN Turns off the Mulliken analysis
LOEWDIN Turns on the Loewdin analysis
NOLOEWDIN Turns off the Loewdin analysis
MAYER Turns on the Mayer analysis
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NOMAYER Turns off the Mayer analysis

NPA Turns on interface for the NPA analysis
using the GENNBO program

NBO Turns on the interface for the NPA plus
NBO analysis with the GENNBO pro-
gram

NONPA Turns off NPA analysis

NONBO Turns of NBO analysis

REDUCEDPOP Prints Loewdin reduced orb.pop per MO

NOREDUCEDPOP Turns this feature off

UNO SCF UNO Produce UHF natural orbitals

AIM Produce a WFEN file

XYZFILE OUTPUT XYZFILE Produce an XYZ coordinate file

PDBFILE PDBFILE Produce a PDB file

Compression and storage. The data compression and storage options deserve some comment: in a number
of modules including RI-MP2, MDCI, CIS, (D) correction to CIS, etc. the program uses so called “Matrix
Containers”. This means that the data to be processed is stored in terms of matrices in files and is accessed
by a double label. A typical example is the exchange operator K¥ with matrix elements K% (a,b) = (ia|jb).
Here the indices ¢ and j refer to occupied orbitals of the reference state and a and b are empty orbitals of
the reference state. Data of this kind may become quite large (formally N* scaling). To store the numbers
in single precision cuts down the memory requirements by a factor of two with (usually very) slight loss
in precision. For larger systems one may also gain advantages by also compressing the data (e.g. use a
“packed” storage format on disk). This option leads to additional packing/unpacking work and adds some
overhead. For small molecules UCDOUBLE is probably the best option, while for larger molecules UCFLOAT
or particularly CFLOAT may be the best choice. Compression does not necessarily slow the calculation
down for larger systems since the total I/O load may may be substantially reduced and thus (since CPU
is much faster than disk) the work of packing and unpacking takes less time than to read much larger files
(the packing may reduce disk requirements for larger systems by approximately a factor of 4 but it has not
been extensively tested so far). There are many factors contributing to the overall wall clock time in such
cases including the total system load. It may thus require some experimentation to find out with which set of

options the program runs fastest with.

! CAUTION !

e [t is possible that FLOAT may lead to unacceptable errors. Thus it is
not the recommended option when MP2 or RI-MP2 gradients or relaxed
densities are computed. For this reason the default is DOUBLE.

e If you have convinced yourself that FLOAT is OK, it may save you a
factor of two in both storage and CPU.

Global memory use. Some ORCA modules (in particular those that perform some kind of wavefunction

based correlation calculations) require large scratch arrays. Each module has an independent variable
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to control the size of these dominant scratch arrays. However, since these modules are never running
simultaneously, we provide a global variable MaxCore that assigns a certain amount of scratch memory to all

of these modules. Thus:

%MaxCore 4000

sets 4000 MB (= 4 GB) as the limit for these scratch arrays. This limit applies per processing core.
Do not be surprised if the program takes more than that — this size only refers to the dominant work areas.
Thus, you are well advised to provide a number that is significantly less than your physical memory. Note
also that the memory use of the SCF program cannot be controlled: it dynamically allocates all memory that
it needs and if it runs out of physical memory you are out of luck. This, however, rarely happens unless you

run on a really small memory computer or you are running a gigantic job.

6.2.2 Density Functional Methods

For density functional calculations a number of standard functionals can be selected via the “simple input”
feature. Since any of these keywords will select a DFT method, the keyword “DFT” is not needed in the

input. Further functionals are available via the %method block. References are given in section 9.3.2.1.

Table 6.2: Density functionals available in ORCA.

Local and gradient corrected functionals

HFS Hartree—Fock—Slater Exchange only functional

LDA or LSD Local density approximation (defaults to VWN5)

VWN or VWN5H Vosko—Wilk—Nusair local density approx. parameter set “V”

VWN3 Vosko-Wilk—Nusair local density approx. parameter set “III”

PWLDA Perdew-Wang parameterization of LDA

BP86 or BP Becke ’88 exchange and Perdew ’86 correlation

BLYP Becke ’88 exchange and Lee-Yang-Parr correlation

OLYP Handy’s “optimal” exchange and Lee-Yang-Parr correlation

GLYP Gill’s "96 exchange and Lee-Yang-Parr correlation

XLYP The Xu and Goddard exchange and Lee-Yang-Parr correlation

PW91 Perdew-Wang 91 GGA functional

mPWPW Modified PW exchange and PW correlation

mPWLYP Modified PW exchange and LYP correlation

PBE Perdew-Burke-Erzerhoff GGA functional

RPBE “Modified” PBE

REVPBE “Revised” PBE

PWP Perdew-Wang ’91 exchange and Perdew 86 correlation

Hybrid functionals

BI1LYP The one-parameter hybrid functional with Becke '88 exchange
and Lee-Yang-Parr correlation (25% HF exchange)

B3LYP and B3LYP/G The popular B3LYP functional (20% HF exchange) as defined
in the TurboMole program system and the Gaussian program
system, respectively

O3LYP The Handy hybrid functional
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X3LYP

B1P

B3P

B3PW
PW1PW
mPWI1PW
mPWILYP
PBEO
PW6B95
BHANDHLYP

The Xu and Goddard hybrid functional

The one-parameter hybrid version of BP86
The three-parameter hybrid version of BP86
The three-parameter hybrid version of PW91
One-parameter hybrid version of PW91
One-parameter hybrid version of mPWPW
One-parameter hybrid version of mPWLYP
One-parameter hybrid version of PBE
Hybrid functional by Truhlar

Half-and-half hybrid functional by Becke

Meta-GGA and hybrid meta-GGA functionals

TPSS
TPSSh
TPSSO

MO6L

MO6

M062X
B9TM-V
B97M-D3BJ

SCANfunc

The TPSS meta-GGA functional

The hybrid version of TPSS (10% HF exchange)

A 25% exchange version of TPSSh that yields improved ener-
getics compared to TPSSh but is otherwise not well tested
The Minnesota M06-L meta-GGA functional

The M06 hybrid meta-GGA (27% HF exchange)

The M06-2X version with 54% HF exchange

Head-Gordon’s DF B97M-V with nonlocal correlation
Modified version of B97M-V with D3BJ correction by Najibi
and Goerigk

Perdew’s SCAN functional

Range-separated hybrid functionals

wB97

wB97X
wB97X-D3
wB97X-V
wB97X-D3BJ

wB97TM-V
wB97M-D3BJ

CAM-B3LYP
LC-BLYP

Head-Gordon’s fully variable DF wB97

Head-Gordon’s DF wB97X with minimal Fock exchange
Chai’s refit incl. D3 in its zero-damping version
Head-Gordon’s DF wB97X-V with nonlocal correlation
Modified version of wB97X-V with D3BJ correction by Najibi
and Goerigk

Head-Gordon’s DF wB97M-V with nonlocal correlation
Modified version of wB97M-V with D3BJ correction by Najibi
and Goerigk

Handy’s fit

Hirao’s original application

Perturbatively corrected double-hybrid functionals (add the prefix RI- or DLPNO-

to use the respective approximation for the MP2 part)

B2PLYP
B2PLYP-D

B2PLYP-D3

mPW2PLYP

mPW2PLYP-D

B2GP-PLYP

Grimme’s mixture of B88, LYP, and MP2

B2PLYP with Grimme’s empirical dispersion correction from
2006 (D2) [1]

B2PLYP with Grimme’s atom-pairwise dispersion correction
from 2010 [2] and Becke-Johnson damping (D3BJ)

mPW exchange instead of B88, which is supposed to improve
on weak interactions.

mPW2PLYP with Grimme’s empirical dispersion correction
from 2006 (D2)

Gershom Martin’s “general purpose” reparameterization
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B2K-PLYP
B2T-PLYP
PWPB95

DSD-BLYP

DSD-PBEP86

DSD-PBEB95

Gershom Martin’s “kinetic” reparameterization

Gershom Martin’s “thermochemistry” reparameterization
Goerigk and Grimme’s mixture of modified PW91, modified
B95, and SOS-MP2

Gershom Martin’s “general purpose” double-hybrid with B88

exchange, LYP correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction
Gershom Martin’s “general purpose” double-hybrid with PBE

exchange, P86 correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction
Gershom Martin’s “general purpose” double-hybrid with PBE

exchange, B95 correlation and SCS-MP2 mixing, i.e. not incl.

D3BJ correction

Range-separated double-hybrid functionals (add the prefix RI- or DLPNO- to use the

respective approximation for the MP2 part)

wB2PLYP

wB2GP-PLYP

Goerigk and Casanova-Péez’s range-separated DHDF, with
the correlation contributions based on B2PLYP, optimized for
excitation energies

Goerigk and Casanova-Péez’s range-separated DHDF, with the
correlation contributions based on B2GP-PLYP, optimized for

excitation energies

Dispersion corrections (see 8.1.4.6 and 9.3.2.11 for details)

D4

D3BJ

D3ZERO
D2

density dependent atom-pairwise dispersion correction with
Becke-Johnson damping and ATM

Atom-pairwise dispersion correction to the DFT energy with
Becke-Johnson damping

Atom-pairwise dispersion correction with zero damping

Empirical dispersion correction from 2006 (not recommended)

6.3 Basis Sets

6.3.1 Standard basis set library

There are standard basis sets that can be specified via the “simple input” feature in the keyword line.

However, any basis set that is not already included in the ORCA library can be provided either directly

in the input or through an external file. See the BASIS input block for a full list of internal basis sets

and various advanced aspects (section 9.4). Effective core potentials and their use are described in section 6.3.3.

Table 6.3: Basis sets available on ORCA.

Pople-style basis sets

3-21G
STO-3G
3-21GSP

Pople 3-21G (H-Cs)
Minimal basis set(H-TI)
Buenker 3-21GSP (H-Ar)
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4-22GSP Buenker 4-22GSP (H-Ar)

6-31G Pople 6-31G and its modifications (H-Zn)

m6-31G Modified 6-31G for 3d transition metals (Sc—Cu)

6-311G Pople 6-311G and its modifications (H-Br)

Polarization functions for the 6-31G basis set:

*or (d) One set of first polarization functions on all atoms except H
** or (d,p) One set of first polarization functions on all atoms

Further combinations: (2d), (2df), (2d,p), (2d,2p), (2df,2p), (2df,2pd)

Polarization functions for the 6-311G basis set:
All of the above plus (3df) and (3df,3pd)

Diffuse functions for the 6-831G and 6-311G basis sets:

+ before “G” Include diffuse functions on all atoms except H (e.g. 6-314+-G)

++ before “G” Include diffuse functions on all atoms. Works only when H
polarization is already included, e.g. 6-31+4G(d,p)

The def2 basis sets of the Karlsruhe group

These basis sets are all-electron for elements H-Kr, and automatically load Stuttgart-Dresden

effective core potentials for elements Rb—Rn.

def2-SVP Valence double-zeta basis set with “new” polarization functions.
def2-SV(P) The above with slightly reduced polarization.
def2-TZVP Valence triple-zeta basis set with “new” polarization functions.

Note that this is quite similar to the older (“def”) TZVPP for
the main group elements and TZVP for hydrogen.

def2-TZVP(-f) TZVP with f polarization removed from main group elements.
def2-TZVPP TZVPP basis set with “new” polarization functions.
def2-QZVPP Accurate polarized quadruple-zeta basis.

Older (“def”) Ahlrichs basis sets

All-electron basis sets for elements H-Kr.

SV Valence double-zeta basis set.

SV(P) Valence double-zeta with polarization only on heavy elements.
SVP Polarized valence double-zeta basis set.

TZV Valence triple-zeta basis set.

TZV(P) Valence triple-zeta with polarization on heavy elements.
TZVP Polarized valence triple-zeta basis set.

TZVPP Doubly polarized triple-zeta basis set.

QZVP Polarized valence quadruple-zeta basis set.

QZVPP Doubly polarized quadruple-zeta basis set.

Note: Past versions of ORCA used to load all-electron basis sets also for elements Rb—I with
the above keywords for double- and triple-zeta basis sets. The Rb—I basis sets originated from
non-relativistic all-electron basis sets of the Turbomole library (such as “TZVPAlls”). This
automatic substitution is now deprecated. However, we offer temporarily the ability to

reproduce that behavior by adding the prefix “old-” to the above keywords, e.g. “old-TZVP”.

Diffuse def2 basis sets
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Minimally augmented def2 ba- Augmented def2 basis sets by diffuse s and p functions according

sis sets to Truhlar [3]. Recommended for general use.
ma-def2-SVP Minimally augmented def2-SVP basis set.
ma-def2-SV(P) Minimally augmented def2-SV(P) basis set.
ma-def2-TZVP Minimally augmented def2-TZVP basis set.
ma-def2-TZVP(-f) Minimally augmented def2-TZVP(-f) basis set.
ma-def2-TZVPP Minimally augmented def2-TZVPP basis set.
ma-def2-QZVPP Minimally augmented def2-QZVPP basis set.

Rappoport property-optimized Augmented def2 basis sets by diffuse functions according to

diffuse def?2 basis sets Rappoport et al. [4]

def2-SVPD Diffuse def2-SVP basis set for property calculations
def2-TZVPD Diffuse def2-TZVP basis set for property calculations
def2-TZVPPD Diffuse def2-TZVPP basis set for property calculations
def2-QZVPD Diffuse def2-QZVP basis set for property calculations
def2-QZVPPD Diffuse def2-QZVPP basis set for property calculations

Relativistically recontracted Karlsruhe basis sets

For use in DKH or ZORA calculations we provide adapted versions of the def2 basis sets
for the elements H-Kr (i.e., for the all-electron def2 basis sets). These basis sets retain the
original def2 exponents but have only one contracted function per angular momentum (and
hence are somewhat larger), with contraction coefficients suitable for the respective scalar
relativistic Hamiltonian. These basis sets can be called with the prefic DKH- or ZORA-, and

can be combined with the SARC basis sets for the heavier elements.

DKH-def2-SVP and ZORA-def2-SVP
DKH-def2-SV(P) and ZORA-def2-SV(P)
DKH-def2-TZVP and ZORA-def2-TZVP
DKH-def2-TZVP(-f) and ZORA-def2-TZVP(-f)
DKH-def2-TZVPP and ZORA-def2-TZVPP
DKH-def2-QZVPP and ZORA-def2-QZVPP

Minimally augmented versions:

ma-DKH-def2-SVP and ma-ZORA-def2-SVP
ma-DKH-def2-SV(P) and ma-ZORA-def2-SV(P)
ma-DKH-def2-TZVP and ma-ZORA-def2-TZVP
ma-DKH-def2-TZVP(-f) and ma-ZORA-def2-TZVP(-f)
ma-DKH-def2-TZVPP and ma-ZORA-def2-TZVPP
ma-DKH-def2-QZVPP and ma-ZORA-def2-QZVPP

The same functionality is offered for the “def” basis sets, e.g. “ZORA-TZVP”. In this case
too, the relativistically recontracted versions refer to the elements H-Kr. To replicate the
behavior of past ORCA wversions for elements Rb—I, the prefix “old-” can be used with these

keywords as in the non-relativistic case.
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WARNING: Previous verions of ORCA made extensive use of automatic basis
set substitution and aliasing when the use of the DKH or ZORA Hamiltonians
was detected. This is no longer the case! Relativistic versions of Karlsruhe basis
sets now have to be requested explicitly with the appropriate prefix. SARC basis

sets also have to be requested explicitly.

SARC basis sets [5-9]

Segmented all-electron relativistically contracted basis sets for use with the DKH2 and ZORA

Hamiltonians. Available for elements beyond Xe.

SARC-DKH-TZVP
SARC-DKH-TZVPP
SARC-ZORA-TZVP
SARC-ZORA-TZVPP

SARC-DKH-SVP and SARC-ZORA-SVP are also available for the 5d transition metals only.
Note: SARC/J is the general-purpose Coulomb-fitting auxiliary for all SARC orbital basis

sets.

SARC?2 basis sets for the lanthanides [10]

SARC basis sets of quadruple-zeta quality for lanthanides. With polarization they are suitable

for accurate calculations using correlated wavefunction methods.

SARC2-DKH-QZV SARC2 basis set of valence quadruple-zeta quality.
SARC2-DKH-QZVP Extended with NEVPT2-optimized (3g2h) polarization.
SARC2-ZORA-QZV

SARC2-ZORA-QZVP

Note: FEach of the above basis sets has a large dedicated /JK auziliary basis set for simulta-

neous Coulomb and exchange fitting.

Jensen basis sets

pc-n (n=0,1,2,3,4) “Polarization-consistent” generally contracted
basis sets (H-Kr) of up to quintuple-zeta quality, optimized for
SCF calculations

aug-pc-n As above, augmented by diffuse functions

peseg-n Segmented PC basis sets (H-Kr), DFT-optimized

aug-pcseg-n As above, augmented by diffuse functions

pcSseg-n Segmented contracted basis sets (H-Kr) optimized for nuclear
magnetic shielding

aug-pcdseg-n As above, augmented by diffuse functions

peJ-n Segmented contracted basis sets (H-Ar) optimized for spin-spin
coupling constants

aug-pcd-n As above, augmented by diffuse functions

Sapporo basis bets

Sapporo-nZP-2012 (n =D, T, Q) All-electron generally contracted non-relativistic
basis sets (H-Xe)

Sapporo-DKH3-nZP-2012 (n=D, T, Q) All-electron basis sets optimized for the DKH3

Hamiltonian and finite nucleus (K-Rn)

Correlation-consistent basis sets
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cc-pVDZ
cc-pVTZ
cc-pVQZ
cc-pVoHZ
cc-pV6Z
aug-cc-pVnZz
cc-pCVnZ
aug-cc-pCVnZ
cc-pwCVnZ
aug-cc-pwCVnZ

ce-pVn(+d)Z

Dunning correlation-consistent polarized double-zeta
Dunning correlation-consistent polarized triple-zeta
Dunning correlation-consistent polarized quadruple-zeta
Dunning correlation-consistent polarized quintuple-zeta

Dunning correlation-consistent polarized sextuple-zeta
n=D, T, Q,5, 6) Augmented with diffuse functions

(
(n=D, T, Q, 5, 6) Core-polarized basis sets

(n=D, T, Q, 5, 6) as above, augmented with diffuse functions
(

(

n=D, T, Q, 5) Core-polarized with weighted core functions

n=D, T, Q, 5) as above, augmented with diffuse functions

(n=D, T, Q, 5) with tight d functions

DKH versions of correlation-consistent basis sets

cc-pVnZ-DK

aug-cc-pVnZ-DK
cc-pwCVnZ-DK

aug-cc-pwCVnZ-DK

(n=D, T, Q, 5) Correlation-consistent all-electron basis sets
for use with the 2nd-order Douglas-Kroll-Hess Hamiltonian
(n=D, T, Q, 5) as above, augmented with diffuse functions
(n =D, T, Q, 5) DK versions of weighted core correlation-
consistent basis sets

(n =D, T, Q, 5) weighted-core DK basis sets with diffuse
functions

ECP-based versions of correlation-consistent basis sets

cc-pVnZ-PP

aug-cc-pVnZ-PP
cc-pwCVnZ-PP
aug-cc-pwCVnZ-PP

(n=D, T, Q, 5) Correlation-consistent all-electron basis sets
combined with SK-MCDHF-RSC effective core potentials
(n=D, T, Q, 5) as above, augmented with diffuse functions
(n=D, T, Q, 5) with weighted core functions

(n=D, T, Q, 5) as above, augmented with diffuse functions

F12 and F12-CABS basis sets

cc-pVnZ-F12

cc-pCVnZ-F12
cc-pVnZ-PP-F12

cc-pVnZ-F12-CABS

cc-pVnZ-F12-OptRI
cc-pCVnZ-F12-OptRI
cc-pVnZ-PP-F12-OptRI
aug-cc-pVnZ-PP-F12-OptRI
aug-cc-pwCVnZ-PP-F12-
OptRI

(n =D, T, Q) Special orbital basis sets for F12 calculations
(larger than the regular D, T, Q-zeta basis sets!)

(n =D, T, Q) with core polarization functions

(n=D, T, Q) ECP-based versions
(n

= D, T, Q) Near-complete auxiliary basis sets for F12

calculations

(n =D, T, Q) identical to the cc-pVnZ-F12-CABS basis above
(=D, T, Q)

(n=D, T, Q)

(n=D, T, Q,5)

(n=D, T, Q,5)

Atomic Natural Orbital basis sets




30 6 General Structure of the Input File

ano-pVnZz (n =D, T, Q, 5). Our newly contracted ANO basis sets on
the basis of the cc-pV6Z (or pc-4 where missing) primitives.
These are very accurate basis sets that are significantly better
than the cc-pVnZ counterparts for the same number of basis
functions (but much larger number of primitives of course).

saug-ano-pVnZ (n =D, T, Q) augmentation with a single set of sp functions.
Greatly enhances the accuracy of the SCF energies but not for
correlation energies.

aug-ano-pVnZ (n=D, T, Q) full augmentation with spd, spdf, spdfg set of
polarization functions. Almost as expensive as the next higher
basis set. In fact, aug-ano-pVnZ = ano-pV(n + 1)Z with the

highest angular momentum polarization function deleted.

Relativistic contracted ANO-RCC basis sets

ANO-RCC-FULL The complete ANO-RCC basis sets (H-Cm). Some default
contractions are provided for convenience with the keywords:

ANO-RCC-DZP

ANO-RCC-TZP

ANO-RCC-QZP

Miscellaneous and specialized basis sets

D95 Dunning’s double-zeta basis set (H-Cl).

D95p Polarized version of D95.

MINI Huzinaga’s minimal basis set.

MINIS Scaled version of the MINI.

MIDI Huzinaga’s valence double-zeta basis set.

MINIX Combination of small basis sets by Grimme (see Table 9.6).

Wachters—+f First-row transition metal basis set (Sc—Cu).

Partridge-n (n =1, 2, 3, 4) Uncontracted basis sets by Partridge.

LANL2DZ Los Alamos valence double-zeta with Hay—Wadt ECPs.

LANL2TZ Triple-zeta version.

LANL2TZ(f) Triple-zeta plus polarization.

LANLO8 Uncontracted basis set.

LANLOS(f) Uncontracted basis set + polarization.

EPR-1I Barone’s basis set (H, B-F) for EPR calculations (double-zeta).

EPR-III Barone’s basis set for EPR calculations (triple-zeta).

IGLO-II Kutzelnigg’s basis set (H, B-F, Al-Cl) for NMR and EPR
calculations.

IGLO-III Larger version of the above.

aug-cc-pVTZ-J Sauer’s basis set for accurate hyperfine coupling constants.

Auxiliary basis sets. Auxiliary basis sets for the RI-J and RI-MP2 approximations can also be specified
directly in the simple input:

Table 6.4: Overview of auxiliary basis sets available in ORCA.
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Auxiliary basis sets for Coulomb fitting

Def2/J

SARC/J

Weigend’s “universal” Coulomb fitting basis that is suitable for
all def2 type basis sets. Assumes the use of ECPs beyond Kr (do
not use with DKH/ZORA).

General-purpose Coulomb fitting basis set for all-electron calcula-
tions. Consists of the decontracted def2/J up to Kr and of our own
auxiliary basis sets for the rest of the periodic table. Appropriate
for use in DKH or ZORA calculations with the recontracted ver-
sions of the all-electron def2 basis sets (up to Kr) and the SARC

basis sets for the heavier elements.

Auxiliary basis sets for simultaneously fitting Coulomb and exchange

Fitting basis sets developed by Weigend for fitting simultaneously Coulomb and exchange energies.
They are quite large and accurate. They fit SCF energies very well but even if they are large they

do not fit correlation as well as the dedicated “/C” auxiliary basis sets.

Def2/JK
Def2/JKsmall
cc-pVnZ/JK
aug-cc-pVnZ/JK

Coulomb+Exchange fitting for all def2 basis sets

reduced version of the above

(n=T, Q, 5) for the respective cc-pVnZ orbital basis
(n=T, Q, 5) for the respective aug-cc-pVnZ orbital basis

Auxiliary basis sets for correlation calculations

Def2-SVP/C
Def2-TZVP/C
Def2-TZVPP/C
Def2-QZVPP/C
cc-pVnZ/C
aug-cc-pVnZ/C
cc-pwCVnZ/C
aug-cc-pwCVnZ/C
cc-pVnZ-PP/C
aug-cc-pVnZ-PP/C
cc-pwCVnZ-PP/C
aug-cc-pwCVnZ-PP/C
cc-pVnZ-F12-MP2fit

cc-pCVnZ-F12-MP2fit
cc-pVnZ-PP-F12-MP2fit

Correlation fitting for the def2-SVP orbital basis

for the def2-TZVP orbital basis

for the def2-TZVPP orbital basis

for the def2-QZVPP orbital basis

n=D, T, Q,5, 6) for the respective cc-pVnZ orbital basis
n=D, T, Q, 5, 6) for the respective aug-cc-pVnZ orbital basis
n =D, T, Q, 5) for the respective cc-pwCVnZ orbital basis
n=D, T, Q, 5) for the respective aug-cc-pwCVnZ orbital basis
n =D, T, Q) for the respective cc-pVnZ-PP orbital basis
=D, T, Q) for the respective aug-cc-pVnZ-PP orbital basis
for the respective cc-pwCVnZ-PP orbital basis

3 3 3
I

T, Q)

T, Q) for the respective aug-cc-pwCVnZ-PP orbital basis
T, Q) for the respective cc-pVnZ-F12 orbital basis

T, Q)

I
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for the respective cc-pCVnZ-F12 orbital basis

n
n
n =D, T, Q) for the respective cc-pVnZ-PP-F12 orbital basis

(
(
(
(
(
(
(
(
(
(
(

AutoAux

Automatic construction of a general purpose auxiliary basis for
simultaneously fitting Coulomb, exchange and correlation calcula-

tions. See section 9.4.2 for details.

NOTE: ORCA versions before 4.0 allowed the use of multiple keywords to invoke the same def2 Coulomb or
Coulomb+exchange fitting basis set of Weigend. To avoid confusion all these keywords are now deprecated

and the auxiliary basis sets are simply called using “def2/]” and “def2/JK”.

NOTE: Starting from version 2.6.63 ORCA can deal with two auxiliary basis sets — one for Coulomb and

one for correlation. The default is the Coulomb fitting aux-basis. If you select a separate correlation fitting
basis, the correlation modules (RI-MP2, RI-MDCI, RI-MRCI) will replace this Coulomb fitting aux-basis
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with the correlation fitting basis. In order to use this feature you have to give the “/C”-fit basis via the

“simple input” lines.

6.3.2 Use of scalar relativistic basis sets

For DKH and ZORA calculations ORCA provides relativistically recontracted versions of the Karlsruhe basis
sets for elements up to Kr. These can be requested by adding the prefix DKH- or ZORA- to the normal basis
set name. Note that for other non-relativistic basis sets (for example Pople-style bases) no recontraction has
been performed and consequently such calculations are inconsistent! The basis set and the scalar relativistic

Hamiltonian are specified in the keyword line, for example:

! B3LYP ZORA ZORA-TZVP

If an auxiliary basis set is required for these recontracted Karlsruhe basis sets, we recommend the use of
the decontracted def2/J. This can be obtained simply by using the keyword “! SARC/J” (instead of the
equivalent “! def2/] DecontractAux]”) and is the recommended option as it simultaneously covers the use

of SARC basis sets for elements beyond Krypton.

! TPSS ZORA ZORA-def2-TZVP SARC/J]

For all-electron calculations with heavier elements (third-row transition metals, lanthanides, actinides and
6p elements) we offer the SARC (segmented all-electron relativistically contracted) basis sets [5-9]. These
were specifically developed for scalar relativistic calculations and are individually adapted to the DKH2 and
ZORA Hamiltonians. In this case the auxiliary basis set must be specified as SARC/J.

! PBE DKH SARC-DKH-TZVP SARC/J

Other basis sets suitable for scalar relativistic calculations are various versions of the all-electron correlation-
consistent basis sets that are optimized for the DKH2 Hamiltonian and can be called with the suffix ”-DK”.
The relativistically contracted atomic natural orbital (ANO-RCC) basis sets of Roos and coworkers were also
developed for the DKH2 Hamiltonian and have almost complete coverage of the periodic table (up to Cm).

6.3.3 Effective Core Potentials

Starting from version 2.8.0, ORCA features effective core potentials (ECPs). They are a good alternative
to scalar relativistic all-electron calculations if heavy elements are involved. This pertains to geometry

optimizations and energy calculations but may not be true for property calculations.

In order to reduce the computational effort, the usually highly contracted and chemically inert core basis
functions can be eliminated by employing ECPs. ECP calculations comprise a “valence-only” basis and thus
are subject to the frozen core approximation. Contributions due to the core orbitals are accounted for by an
effective one-electron operator U°*® which replaces the interactions between core and valence electrons and

accounts for the indistinguishability of the electrons. Its radial parts U;(r) are generally expressed as a linear
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combination of Gaussian functions, while the angular dependence is included through angular momentum

projectors |S.,).

L-1 l
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The maximum angular momentum L is generally defined as
that are necessary to evaluate the ECP integrals have been published by various authors, among them the
well-known Los Alamos (LANL) [11] and Stuttgart—Dresden (SD) [12-57] parameter sets. Depending on
the specific parametrization of the ECP, relativistic effects can be included in a semiempirical fashion in an
otherwise nonrelativistic calculation. Introducing U°*® into the electronic Hamiltonian yields two types of
ECP integrals, the local (or type-1) integrals that arise because of the maximum angular momentum potential
U}, and the semi-local (or type-2) integrals that result from the projected potential terms. The evaluation of

these integrals in ORCA proceeds according to the scheme published by Flores-Moreno et al. [58].

A selection of ECP parameters and associated basis sets is directly accessible in ORCA through the internal
ECP library (see table 6.5 for a listing of keywords).

Table 6.5: Overview of library keywords for ECPs and associated basis sets available in ORCA.

ECP keyword Core size! | Elements ‘ Valence basis sets
Recommended
def2-ECP 28 Rb—Xe Karlsruhe basis sets:
46 Cs—La def2-SVP, def2-TZVP, etc.
28 Ce-Lu def2-SVPD, def2-TZVPD, etc.
60 Hf-Rn ma-def2-SVP, ma-def2-TZVP, etc.
SK-MCDHF-RSC | 10 Ca, Cu-Kr Correlation-consistent basis sets:
28 Sr-Xe cc-pVnZ-PP, aug-cc-pVnZ-PP,
46 Ba cc-pCVnZ-PP, aug-cc-pCVnZ-PP,
60 Hf-Rn cc-pwCVnZ-PP, aug-cc-pwCVnZ-PP
78 Ra (n=D, T, Q,5)
HayWadt? 10 Na—Cu LANL-type basis sets:
18 VA LANL2DZ, LANL2TZ, LANL2TZ(f),
28 Ga—-Ag LANLO0S8, LANLOS(f)
36 Cd
46 In-La
60 Hf-Au
68 Heg-T1
78 Pb-Bi, U-Pu
Legacy definitions
def2-SD 28, MWB Rb-Cd
28, MDF? In—Xe
46, MWB Cs—La
60,MWB Hf-Pt
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60,MDF* Au—Rn
def-SD 28, MWB Rb-Cd
46, MWB In-La
28 MWB Ce—Lu
60,MWB Hf-Pt
60,MDF* Au, Hg, Rn
78, MWB T1-At
78, MDF Fr, Ra
60,MWB Ac-Lr
SDD 2,SDF Li, Be
2,MWB B-Ne
10,SDF Na, Mg
10,MWB Al-Ca
10,MDF Sc—Zn
10,MWB Cu-Zn
28 MWB Ga—Sr
28 MHF Y-Cd
28 MDF Ge—Br, Rb—Xe
46, MWB In-Ba
28, MWB La—Lu
60,MWB Hf-Hg
78, MWB T1-Rn
60,MWB Ac-Lr
LANL1 10 Na—Ar
18 K-Zn
28 Ga—Kr
36 Rb-Cd
46 In—Xe
54 Cs—La
68 Hf-T1
78 Pb, Bi
LANL2 10 K—Cu
28 Rb-Ag
46 Cs—La
60 Hf-Au

1 Where applicable, reference method and data are given (S: single-valence-electron ion; M: neutral

atom; HF: Hartree—Fock; WB: quasi-relativistic; DF: relativistic).
2 Corresponds to LANL2 and to LANL1 where LANL2 is unavailable.

3 I OLD-SD(28,MDF) for compatibility with TURBOMOLE.

4 Au, Hg: OLD-SD(60,MDF) for compatibility with TURBOMOLE.

By default, the Def2-X basis sets use the Def2-ECP effective core potential definition!

The simplest way to assign ECPs is by using the ECP keyword within the keyword line. The ECP keyword

itself assigns only the effective core potential, not a valence basis set!
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As an example for an explicitly named ECP you could use

This would assign the def2-SD ECP according to the definition given in the table above. Without the def2-SD
keyword ORCA would default to Def2-ECP. Other basis sets also have default ECP definitions - see the
footnotes under table 9.8.

6.4 Input priority and processing order

In more complicated calculations, the input can get quite involved. Therefore it is worth knowing how it is

internally processed by the program:

e First, all the simple input lines (starting with “!”) are collected into a single string.

e The program looks for all known keywords in a predefined order, regardless of the order in the input
file.

e An exception are basis sets: if two different orbital basis sets (e.g. | def2-SVP def2-TZVP) are given,
the latter takes priority. The same applies to auxiliary basis sets of the same type (e.g. ! def2/]
SARC/7).

e Some simple input keywords set multiple internal variables. Therefore, it is possible for one keyword to
overwrite an option, set by another keyword. We have tried to resolve most such cases in a reasonable
way (e.g. the more “specific” keyword should take precedence over a more “general” one) but it is
difficult to forsee every combination of options.

e Next, the block input is parsed in the order it is given in the input file.

e Most block input keywords control a single variable (although there are exceptions). If a keyword is
duplicated, the latter value is used.

Consider the following (bad) example:

Using the rules above, one can figure out why it is equivalent to this one:
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6.5 ORCA and Symmetry

For most of its life, ORCA did not take advantage of molecular symmetry. Starting from version 2.8.0 there
is at least limited use. On request, with the UseSym keyword, the program detects the point group, cleans up
the coordinates, orients the molecule and produces symmetry-adapted orbitals in SCF/CASSCF calculations.
Note however that the calculation time will not be reduced. Only Dy, and subgroups are currently supported.
The only correlation module that makes use of this information so far is the MRCI module. Here and in
CASSCEF calculations, the use of symmetry helps to control the calculation and the interpretation of the
results. More symmetry is likely to be implemented in the future, although it is unlikely that the program
will ever take advantage of symmetry in a very big way.

If the automatic symmetry detection fails to find the expected point group, the coordinates specified are not
absolutely symmetrical to that group, and one should take a careful look at the input coordinates, maybe
using a visualization program. A problem often encountered when using coordinates generated from other
jobs (e.g. geometry optimizations) is the detection of a “too low” symmetry because of numerical noise. This

can be solved by increasing the detection threshold using an input line which looks like this:

However, it is not recommended to run calculations on a very high threshold, since this may introduce some
odd behavior. Instead, a method to symmetrize the coordinates is to do a “fake” run with NoIter, XYZFile
and an increased threshold, and then to use the created .xyz file as input for the actual calculation. This
has the additional benefit that the input coordinates stored in your data are already symmetrical. To give
an example: the following coordinates for staggered ethane were obtained by geometry optimization NOT
using the symmetry module. They are, however, not recognized as D34 symmetrical due to numerical noise
and instead are found to be of C; symmetry (a subgroup of D34). To counter this, the detection threshold is

increased and a symmetry perfected coordinate file is produced by the following input:
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6.6 Jobs with Multiple Steps

ORCA supports input files with multiple jobs. This feature is designed to simplify series of closely related
calculations on the same molecule or calculations on different molecules. The objectives for implementing

this feature include:

e Calculate of a molecular property using different theoretical methods and/or basis sets for one molecule.
e Calculations on a series of molecules with identical settings.
e Geometry optimization followed by more accurate single points and perhaps property calculations.

e Crude calculations to provide good starting orbitals that may then be used for subsequent calculations

with larger basis sets.

For example consider the following job that in the first step computes the g-tensor of BO at the LDA level,
and in the second step using the BP86 functional.
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What happens if you use the $new_job feature is that all calculation flags for the actual job are transferred
from the previous job and that only the changes in the settings must be input by the user. Thus if you turn
on some flags for one calculation that you do not want for the next, you have to turn them off again yourself
(for example the use of the RI approximation)! In addition, the default is that the new job takes the orbitals
from the old job as input. If you do not want this you have to overwrite this default by specifying your

desired guess explicitly.

Changing the default BaseName

Normally the output files for MyJob.inp are returned in MyJob.xxx (any xxx, for example xxx=out).
Sometimes, and in particular in multistep jobs, you will want to change this behavior. To this end there is
the variable “%base” that can be user controlled. All filenames (also scratch files) will then be based on this

default name.
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Coordinates can be either specified directly in the input file or read from an external file, and they can be in

either Cartesian (“xyz”) or internal coordinate format (“Z-matrix”).

7.1 Reading coordinates from the input file

The easiest way to specify coordinates in the input file is by including a block like the following, enclosed by

star symbols:

Here CType can be one of xyz, int (or internal), or gzmt, which correspond to Cartesian coordinates,

internal coordinates, and internal coordinates in Gaussian Z-matrix format.

The input of Cartesian coordinates in the “xyz” option is straightforward. Each line consists of the label
for a given atom type and three numbers that specify the coordinates of the atom. The units can be either
Angstrom or Bohr. The default is to specify the coordinates in Angstroms (this can be changed through the

keyword line or via the variable Units in the %coords main block described below).

For example for CO™ in a S = 1/2 state (multiplicity = 2 x 1/2 4+ 1 = 2)
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Internal coordinates are specified in the form of the familiar “Z-matrix”. A Z-matrix basically contains
information about molecular connectivity, bond lengths, bond angles and dihedral angles. The program then

constructs Cartesian coordinates from this information. Both sets of coordinates are printed in the output

such that conversion between formats is facilitated. The input in that case looks like:

The rules for connectivity in the “internal” mode are as follows:

NA: The atom that the actual atom has a distance (RN) with.

NB: The actual atom has an angle (AN) with atoms NA and NB.

e NC: The actual atom has a dihedral angle (DN) with atoms NA, NB and NC. This is the angle between
the actual atom and atom NC when looking down the NA-NB axis.

e Note that - contrary to other parts in ORCA - atoms are counted starting from 1.

Angles are always given in degrees! The rules are compatible with those used in the well known MOPAC and
ADF programs.

Finally, gzmt specifies internal coordinates in the format used by the Gaussian program. This resembles the

following:

An alternative way to specify coordinates in the input file is through the use of the %coords block, which is

organized as follows:
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7.2 Reading coordinates from external files

It is also possible to read the coordinates from external files. The most common format is a .xyz file, which
can in principle contain more than one structure (see section 8.2.9 for this multiple XYZ feature):

A lot of graphical tools like Gabedit, molden or Jmol can write Gaussian Z-Matrices (.gzmt). ORCA can

also read them from an external file with the following

Note that if multiple jobs are specified in the same input file then new jobs can read the coordinates from
previous jobs. If no filename is given as fourth argument then the name of the actual job is automatically

used.



42

7 Input of Coordinates

In this way, optimization and single point jobs can be very conveniently combined in a single, simple input

file. Examples are provided in the following sections.

7.3 Special definitions

Dummy atoms are defined in exactly the same way as any other atom, by using “DA” as the atomic

symbol.
Ghost atoms are specified by adding “” right after the symbol of the element (see 8.1.6).
Point charges are specified with the symbol “Q”, followed by the charge (see 9.1.4).

Embedding potentials are specified by adding a “>” right after the symbol of the element (see
9.4.8).

Non-standard isotopes or nuclear charges are specified with the statements “M = ...” and “Z =
...7, respectively, after the atomic coordinate definition.

Fragments can be conveniently defined by declaring the fragment number a given atom belongs to in

parentheses “(n)” following the element symbol (see 9.1.1).
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8 Running Typical Calculations

Before entering the detailed documentation of the various features of ORCA it is instructive to provide a
chapter that shows how “typical” tasks may be performed. This should make it easier for the user to get
started on the program and not get lost in the details of how-to-do-this or how-to-do-that. We hope that the

examples are reasonably intuitive.

8.1 Single Point Energies and Gradients

8.1.1 Hartree-Fock

8.1.1.1 Standard Single Points

In general single point calculations are fairly easy to run. What is required is the input of a method, a basis

set and a geometry. For example, in order run a single point Hartree-Fock calculation on the CO molecule
with the SVP basis set type:

As an example consider this simple calculation on the cyclohexane molecule that may serve as a prototype

for this type of calculation.
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8.1.1.2 Basis Set Options

There is extensive flexibility in the specification of basis sets in ORCA. First of all, you are not only restricted
to the basis sets that are built in ORCA, but can also read basis set definitions from files. In addition there
is a convenient way to change basis sets on certain types of atoms or on individual atoms. Consider the

following example:

In this example the basis set is initialized as the Ahlrichs split valence basis. Then the basis set on all

atoms of type Cl is changed to DUNNING-DZP and finally the basis set for only the copper atom is changed
to the more accurate TZVPP set. In this way you could treat different atom types or even individual groups
in a molecule according to the desired accuracy. Similar functionality regarding per-element or per-atom

assignments exists for effective core potentials. More details are provided in section 9.4.
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Sometimes you will like to change the ordering of the starting orbitals to obtain a different electronic state in
the SCF calculation. For example, if we take the last input and want to converge to a ligand field excited

state this can be achieved by:

In the present case, MO 48 is the spin-down HOMO and MO49 the spin-down LUMO. Since we do a
calculation on a Cu(II) complex (d° electron configuration) the beta LUMO corresponds with the “SOMO”.
Thus, by changing the SOMO we proceed to a different electronic state (in this case the one with the “hole”
in the “d,,” orbital instead of the “d,2_,2” orbital). The interchange of the initial guess MOs is achieved by
the command rotate {48, 49, 90, 1, 1} end. What this does is the following: take the initial guess MOs
48 and 49 and rotate them by an angle of 90 degree (this just interchanges them). The two last numbers
mean that both orbitals are from the spin-down set. For RHF or ROHF calculations the operator would be 0.
In general you would probably first take a look at the initial guess orbitals before changing them.

8.1.1.3 SCF and Symmetry

Upon request, the SCF program produces symmetry adapted orbitals. This can help to converge the SCF
on specific excited states of a given symmetry. Take for example the cation HoOT: We first run the simple

job:

The program will recognize the Ca, symmetry and adapt the orbitals to this:
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The initial guess in the SCF program will then recognize and freeze the occupation numbers in each irreducible

representation of the Cs, point group.

The calculation converges smoothly to

With the final orbitals being:
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Suppose now that we want to converge on an excited state formed by flipping the spin-beta HOMO and
LUMO that have different symmetries.

The program now finds:

And converges smoothly to

Which is obviously an excited state of the Ho O™ molecule. In this situation (and in many others) it is an

advantage to have symmetry adapted orbitals.

SymRelax. Sometimes, one may want to obtain the ground state of a system but due to a particularly bad

initial guess, the calculation converges to an excited state. In such cases, the following option can be used:

This will allow the occupation numbers in each irreducible representation to change if and only if a virtual
orbital has a lower energy than an occupied one. Hence, nothing will change for the excited state of HoOF
discussed above. However, the following calculation
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which converges to a high-lying excited state:

would revert to the ground state with the SymRelax option.

8.1.1.4 SCF and Memory

As the SCF module cannot restrict its use of memory to MaxCore we introduced an estimation of the expected

memory consumption. If the memory needed is larger than MaxCore ORCA will abort.

To check, if a certain job can be run with a given amount of MaxCore, you can ask for the estimation of
memory requirements by
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ORCA will finish execution after having printed the estimated amount of memory needed.

If you want to run the calculation (if doable), and only are interested in the estimated memory consumption,

you can ask for the printing via

NOTE: The estimation is given per process. If you want to run a parallel job, you will need the estimated

memory x number of parallel processes.

8.1.2 MP2

8.1.2.1 MP2 and RI-MP2 Energies

You can do conventional or integral direct MP2 calculations for RHF, UHF or high-spin ROHF reference
wavefunctions. MP3 functionality is not implemented as part of the MP2 module, but can be accessed
through the MDCI module. Analytic gradients and Hessians are available for RHF and UHF. The frozen
core approximation is used by default. An extensive coverage of MP2 exists in the literature. [59-72]

NOTE:

e There are two algorithms for MP2 calculations without the RI approximation. The first one uses
main memory as much as possible. The second one uses more disk space and is usually faster (in
particular, if you run the calculations in single precision using ! FLOAT, UCFLOAT or CFLOAT). The
memory algorithm is used using Q10pt >0 and the disk based algorithm uses Q10pt = -1. Gradients
are presently only available for the memory based algorithm.
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The RI approximation to MP2 [69-72] is fairly easy to use, too. It results in a tremendous speedup of the

calculation, while errors in energy differences are very small. For example, consider the same calculation as

before:

Generally, the RI approximation can be switched on by setting RI true in the %MP2 block. Specification of
an appropriate auxiliary basis set (“/C”) for correlated calculations is required. Note that if the RIJCOSX
method (section 8.1.4.3) or the RI-JK method (section 8.1.4.4) is used to accelerate the SCF calculation, then
two basis sets should be specified: firstly the appropriate Coulomb (“/J”) or exchange fitting set (“/JK”),
and secondly the correlation fitting set (“/C”), as shown in the example below.

The MP2 module can also do Grimme’s spin-component scaled MP2 [73]. It is a semi-empirical modification
of MP2 which applies different scaling factors to same-spin and opposite-spin components of the MP2 energy.
Typically it gives a fair bit better results than MP2 itself.




52 8 Running Typical Calculations

rCH = 1.08
end
* int 0 1
000 0.00 0.0 0.00
100 {rCO} 0.0 0.00

120 {rCH} {ACOH} 0.00
1 2 3 {rCH} {ACOH} 180.00

m - O N

Energy differences with SCS-MP2 appear to be much better than from MP2 itself according to Grimme’s
detailed evaluation study. For the sake of efficiency, it is beneficial to make use of the RI approximation using
the RI-SCS-MP2 keyword. The opposite-spin and same-spin scaling factors can be modified using PS and PT
in the MP2-block, respectively. By default, PS = 6/5 and PT = 1/3.

NOTE

e In very large RI-MP2 runs you can cut down the amount of main memory used by a factor of two
if you use the keyword ! FLOAT. This is more important in gradient runs than in single point runs.
Deviations from double precision values for energies and gradients should be in the yEh and sub-pEh
range. However, we have met cases where this option introduced a large and unacceptable error, in
particular in transition metal calculations. You are therefore adviced to be careful and check things

out beforehand.

A word of caution is due regarding MP2 calculations with a linearly dependent basis. This can happen, for
example, with very diffuse basis sets (see 9.4.5 for more information). If some vectors were removed from the
basis in the SCF procedure, those redundant vectors are still present as ”virtual” functions with a zero orbital
energy in the MP2 calculation. When the number of redundant vectors is small, this is often not critical (and
when their number is large, one should probably use a different basis). However, it is better to avoid linearly
dependent basis sets in MP2 calculations whenever possible. Moreover, in such a situation the orbitals should

not be read with the MORead and NoIter keywords, as that is going to produce wrong results!

8.1.2.2 Frozen Core Options

In MP2 energy and gradient runs the Frozen Core (FC) approximation is applied by default. This implies that
the core electrons are not included in the perturbation treatment, since the inclusion of dynamic correlation

in the core electrons usually effects relative energies or geometry parameters insignificantly.

The frozen core option can be switched on or off with FrozenCore or NoFrozenCore in the simple input line.

Furthermore, frozen orbitals can be selected by means of an energy window:

%method FrozenCore FC_EWIN end
%mp2 ewin -1.5, 1.0e3 end

More information and the different options can be found in section 9.10
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8.1.2.3 Orbital Optimized MP2 Methods

By making the Hylleraas functional stationary with respect to the orbital rotations one obtains the orbital-
optimized MP2 method that is implemented in ORCA in combination with the RI approximation (OO-
RI-MP2). One obtains from these calculations orbitals that are adjusted to the dynamic correlation field
at the level of second order many-body perturbation theory. Also, the total energy of the OO-RI-MP2
method is lower than that of the RI-MP2 method itself. One might think of this method as a special form of
multiconfigurational SCF theory except for the fact that the Hamiltonian is divided into a 0*" order term

and a perturbation.

The main benefit of the OO-RI-MP2 method is that it “repairs” the poor Hartree-Fock orbitals to some
extent which should be particularly beneficial for systems which suffer from the inbalance in the Hartree-Fock
treatment of the Coulomb and the Exchange hole. Based on the experience gained so far, the OO-RI-MP2
method is no better than RI-MP2 itself for the thermochemistry of organic molecules. However, for reactions
barriers and radicals the benefits of OO-MP2 over MP2 are substantial. This is particularly true with respect
to the spin-component scaled variant of OO-RI-MP2 that is OO-RI-SCS-MP2. Furthermore, the OO-RI-MP2

method substantially reduces the spin contamination in UHF calculations on radicals.

Since every iteration of the OO-MP2 method is as expensive as a RI-MP2 relaxed density calculation, the
computational cost is much higher than for RI-MP2 itself. One should estimate about a factor of 10 increase
in computation time with respect to the RI-MP2 time of a normal calculation. This may still be feasible
for calculations in the range of 1000-2000 basis functions (the upper limit, however, implies very significant

computational costs). A full assessment of the orbital optimized MP2 method has been published. [74]

OO-RI-MP2 is triggered with ! 00-RI-MP2 or ! 00-RI-SCS-MP2 (with spin component scaling). The

method comes with new variables:

%mp2 OrbOpt true # turns on the orbital optimization
CalcS2 false # calculate the S**2 expectation value
# in spin-unrestricted calculations
MaxOrbIter 64 # Max. number of iterations
MP2Shift 0.1 # Level shift for the procedure
end

The solver is a simple DIIS type scheme with additional level shifting. We have found that it is not really
beneficial to first converge the Hartree-Fock equations. Thus it is sensible to additionally use the keyword !

noiter in order to turn off the standard Hartree-Fock SCF process before entering the orbital optimizations.

The OO-RI-MP2 method is implemented for RHF and UHF reference wavefunctions. Analytic gradients are

available.

The density does not need to be requested separately in OO-RI-MP2 calculations because it is automatically
calculated. Also, there is no distinction between relaxed and unrelaxed densities because the OO-RI-MP2
energy is fully stationary with respect to all wavefunction parameters and hence the unrelaxed and relaxed

densities coincide.
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8.1.2.4 MP2 and RI-MP2 Gradients and Hessians

Geometry optimization with MP2, RI-MP2, SCS-MP2 and RI-SCS-MP2 proceeds just as with any SCF
method. Frequencies can be calculated analytically in all-electron calculations. With frozen core orbitals,

second derivatives of any kind are currently only available numerically. The RIJCOSX approximation (section
8.1.4.3) is supported in RI-MP2 and hence also in double-hybrid DFT gradient runs. This leads to large

speedups in larger calculations, particularly if the basis sets are accurate.

This job results in:

Just to demonstrate the accuracy of RI-MP2, here is the result with RI-SCS-MP2 instead of SCS-MP2, with
the addition of def2-TZVP/C:
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Definition Oldval dE/dq Step FinalVal
1. B(O 1, O 1.2081 0.000487 -0.0003 1.2078
2. BH 2, 0O 1.1027 0.000009 -0.0000 1.1027
3. BH 3,C ©® 1.1027 0.000009 -0.0000 1.1027
4. ACO 1, ©06,H 3) 121.85 0.000026 -0.00 121.85
5. A(H 2,C O,H 3) 116.29 -0.000053 0.01 116.30
6. ACO 1, O,H 2) 121.85 0.000026 -0.00 121.85
7. I(0 1,H 3H 2, O -0.00 0.000000 -0.00 -0.00

You see that nothing is lost in the optimized geometry through the RI approximation thanks to the efficient
and accurate Rl-auxiliary basis sets of the Karlsruhe group (in general the deviations in the geometries
between standard MP2 and RI-MP2 are very small). Thus, RI-MP2 really is a substantial improvement in
efficiency over standard MP2.

Geometric gradients and Hessians can be calculated with RI-MP2 in conjunction with the RIJCOSX method.
They are called the same way as with a conventional SCF wave function, for example to perform a geometry

optimization with tight convergence parameters:

| RI-MP2 def2-TZVPP def2/] def2-TZVPP/C TightSCF RIJCOSX
| TightOpt

8.1.2.5 MP2 Properties, Densities and Natural Orbitals

The MP2 method can be used to calculate electric and magnetic properties such as dipole moments,
polarizabilities, hyperfine couplings, g-tensors or NMR, chemical shielding tensors. For this purpose, the
appropriate MP2 density needs to be requested - otherwise the properties are calculated using the SCF
density!

Two types of densities can be constructed - an "unrelaxed” density (which basically corresponds to the MP2
expectation value density) and a ”relaxed” density which incorporates orbital relaxation. For both sets
of densities a population analysis is printed if the SCF calculation also requested this population analysis.
These two densities are stored as JobName.pmp2ur.tmp and JobName.pmp2re. tmp, respectively. For the open
shell case case the corresponding spin densities are also constructed and stored as JobName.rmp2ur.tmp and
JobName.rmp2re. tmp.

In addition to the density options, the user has the ability to construct MP2 natural orbitals. If relaxed
densities are available, the program uses the relaxed densities and otherwise the unrelaxed ones. The natural
orbitals are stored as JobName.mp2nat which is a GBW type file that can be read as input for other jobs (for
example, it is sensible to start CASSCF calculations from MP2 natural orbitals). The density construction

can be controlled separately in the input file (even without running a gradient or optimization) by:
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Below is a calculation of the dipole and quadrupole moments of a water molecule:

Another example is a simple g-tensor calculation with MP2:

NMR chemical shielding as well as g-tensor calculations with GIAOs are only available for RI-MP2. The

input for NMR chemical shielding looks as follows:
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end

* int 0 1

00000 0 0
H100 1.1056 0 0
H120 1.1056 109.62 0
*

Note that by default core electrons are not correlated unless the NoFrozenCore keyword is present.

For details, see sections 9.11 and 9.36.3.5.

8.1.2.6 Explicitly correlated MP2 calculations

ORCA features an efficient explicit correlation module that is available for MP2 and coupled-cluster calculations

(section 8.1.3.6). It is described below in the context of coupled-cluster calculations.

8.1.2.7 Local MP2 calculations

Purely domain-based local MP2 methodology dates back to Pulay and has been developed further by Werner,
Schiitz and co-workers. ORCA features a local MP2 method (DLPNO-MP2) that combines the ideas of
domains and local pair natural orbitals, so that RI-MP2 energies are reproduced efficiently to within chemical
accuracy. Due to the intricate connections with other DLPNO methods, reading of the sections 8.1.3.8 and
and 9.12.4 is recommended. A full description of the method for RHF reference wave functions has been
published. [75]

Since DLPNO-MP2 employs an auxiliary basis set to evaluate integrals, its energies converge systematically
to RI-MP2 as thresholds are tightened. The computational effort of DLPNO-MP2 with default settings is
usually comparable with or less than that of a Hartree-Fock calculation. However, for small and medium-sized
molecules, RI-MP2 is even faster than DLPNO-MP2.

Calculations on open-shell systems are supported through a UHF treatment. While most approximations
are consistent between the RHF and UHF versions, this is not true for the PNO spaces. DLPNO-MP2
gives different energies for closed-shell molecules in the RHF and UHF formalisms. When
calculating reaction energies or other energy differences involving open-shell species, energies
of closed-shell species must also be calculated with UHF-DLPNO-MP2, and not with RHF-
DLPNO-MP2. As for canonical MP2, ROHF reference wave functions are subject to an ROMP2 treatment
through the UHF machinery. It is not consistent with the RHF version of DLPNO-MP2, unlike in the case of
RHF-/ROHF-DLPNO-CCSD.

Input for DLPNO-MP2 requires little specification from the user:
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# DLPNO-MP2 calculation with standard settings
# sufficient for most purposes
! def2-TZVP def2-TZVP/C DLPNO-MP2 TightSCF

# OR: DLPNO-MP2 with tighter thresholds
# May be interesting for weak interactions, calculations with diffuse basis sets etc.
! def2-TZVP def2-TZVP/C DLPNO-MP2 TightPNO TightSCF

%maxcore 2000

*xyz 0 1
(coordinates)

Noteworthy aspects of the DLPNO-MP2 method:

Both DLPNO-CCSD(T) and DLPNO-MP2 are linear-scaling methods (albeit the former has a larger
prefactor). This means that if a DLPNO-MP2 calculation can be performed, DLPNO-CCSD(T) is
often going to be within reach, too. However, CCSD(T) is generally much more accurate than MP2

and thus should be given preference.
A correlation fitting set must be provided, as the method makes use of the RI approximation.

Canonical RI-MP2 energy differences are typically reproduced to within a fraction of 1kcal/mol. The
default thresholds have been chosen so as to reproduce about 99.9 % of the total RI-MP2 correlation
energy.

The preferred way to control the accuracy of the method is by means of specifying “LoosePNO”,
“NormalPNO” and “TightPNO” keywords. “NormalPNO” corresponds to default settings and does not
need to be given explicitly. More details and an exhaustive list of input parameters are provided in
section 9.11.7. Note that the thresholds differ from DLPNO coupled cluster.

Results obtained from RI-MP2 and DLPNO-MP2, or from DLPNO-MP2 with different accuracy
settings, must never be mixed, such as when computing energy differences. In calculations involving

open-shell species, even the closed-shell molecules need to be subject to a UHF treatment.

Spin-component scaled DLPNO-MP2 calculations are invoked by using the ! DLPNO-SCS-MP2 keyword
instead of | DLPNO-MP2 in the simple input line. Weights for same-spin and opposite-spin contributions
can be adjusted as described for the canonical SCS-MP2 method. Likewise, there is a DLPNO-SOS-MP2
keyword to set the parameters defined by the SOS-MP2 method (but there is no Laplace transformation

involved).

The frozen core approximation is used by default. If core orbitals are involved in the calculation, they

are subject to the treatment described in section 9.11.7.
Calculations can be performed in parallel.

It may be beneficial to accelerate the Hartree-Fock calculation by means of the RIJCOSX method
(requiring specification of a second auxiliary set).
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Explicit correlation has been implemented in the DLPNO-MP2-F12 methodology for RHF reference wave
functions. [76] The available approaches are C (keyword ! DLPNO-MP2-F12) and the somewhat more approxi-
mate D (keyword ! DLPNO-MP2-F12/D). Approach D is generally recommended as it results in a significant
speedup while leading only to small errors relative to approach C. In addition to the MO and correlation

fitting sets, a CABS basis set is also required for both F12 approaches as shown below.

8.1.2.8 Local MP2 derivatives

Analytical gradients and the response density are available for the RHF variant of the DLPNO-MP2
method. [77,78] Usage is as simple as that of RI-MP2. For example, the following input calculates the

gradient and the natural orbitals:

The implementation supports spin-component scaling and can be used together with double-hybrid density
functionals. The latter are invoked with the name of the functional preceded by "DLPNO-". A simple geometry

optimization with a double-hybrid density functional is illustrated in the example below:
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For smaller systems, the performance difference between DLPNO-MP2 and RI-MP2 is not particularly large,
but very substantial savings in computational time over RI-MP2 can be achieved for systems containing more
than approximately 70-80 atoms.

Since MP2 is an expensive method for geometry optimizations, it is generally a good idea to use well-optimized
starting structures (calculated, for example, with a dispersion-corrected DFT functional). Moreover, it is
highly advisable to employ accurate Grids for RIJCOSX or the exchange-correlation functional (if applicable),
as the SCF iterations account only for a fraction of the overall computational cost. If calculating calculating
properties without requesting the gradient, Density Relaxed needs to be specified in the %¥MP2-block.
Only the Foster-Boys localization scheme is presently supported by the derivatives implementation. The
default localizer in DLPNO-MP2 is AHFB, and changing this setting is strongly discouraged, since tightly
converged localized orbitals are necessary to calculate the gradient.

8.1.3 Coupled-Cluster and Coupled-Pair Methods

8.1.3.1 Basics

The coupled-cluster method is presently available for RHF and UHF references. The implementation is fairly

efficient and suitable for large-scale calculations. The most elementary use of this module is fairly simple.
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NOTE

e The same FrozenCore options as for MP2 are applied in the MDCI module.

e Since ORCA 4.2, an additional term, called ”4th-order doubles-triples correction” is considered in

open-shell CCSD(T). To reproduce previous results, one should use a keyword,

The computational effort for these methods is high — O(N6) for all methods and O(N”) if the triples
correction is to be computed (calculations based on an unrestricted determinant are roughly 3 times more

expensive than closed-shell calculations and approximately six times more expensive if triple excitations
are to be calculated). This restricts the calculations somewhat: on presently available PCs 300400 basis
functions are feasible and if you are patient and stretch it to the limit it may be possible to go up to 500-600;
if not too many electrons are correlated may be even up to 800-900 basis functions (then using AO-direct
methods).

TIP

e For calculations on small molecules and large basis sets the MO-METHOD option is usually the most
efficient; say perhaps up to about 300 basis functions. For integral conventional runs the AO-METHOD
may even more efficient.

e For large calculations (>300 basis functions) the AO-METHOD option is a good choice. If, however,
you use very deeply contracted basis sets such as ANOs these calculations should be run in the integral
conventional mode.

e AOX-METHOD is usually slightly less efficient than MO-METHOD or AO-METHOD.

e RI-METHOD is seldom the most efficient choice. If the integral transformation time is an issue than
you can select %mdci trafotype trafo_ri or choose RI-METHOD and then %mdci kcopt kc_ao.



62 8 Running Typical Calculations

e Regarding the singles Fock keywords (RCSinglesFock, etc.), the program usually decides which method
to use to evaluate the singles Fock term. For more details on the nature of this term, and options

related to its evaluation, see 9.12.6.

To put this into perspective, consider a calculation on serine with the cc-pVDZ basis set — a basis on the
lower end of what it suitable for a highly correlated calculation. The time required to solve the equations is

listed in Table 8.1. We can draw the following conclusions:

e As long as one can store the integrals and the I/O system of the computer is not the bottleneck, the
most efficient way to do coupled-cluster type calculations is usually to go via the full transformation
(it scales as O(N®) whereas the later steps scale as O(N®) and O(N7) respectively).

e AO-based coupled-cluster calculations are not much inferior. For larger basis sets (i.e. when the ratio
of virtual to occupied orbitals is larger), the computation times will be even more favorable for the
AO based implementation. The AO direct method uses much less disk space. However, when you use
a very expensive basis set the overhead will be larger than what is observed in this example. Hence,

conventionally stored integrals — if affordable — are a good choice.

e AOX based calculations runs at essentially the same speed as AO based calculations. Since AOX
based calculations take four times as much disk space they are pretty much outdated and the AOX

implementation is only kept for historical reasons.

e RI based coupled-cluster methods are significantly slower. There are some disk space savings but the

computationally dominant steps are executed less efficiently.

e CCSD is at most 10% more expensive than QCISD. With the latest AO implementation the awkward

coupled-cluster terms are handled efficiently.

e CEPA is not much more than 20% faster than CCSD. In many cases CEPA results wil be better than
CCSD and then it is a real saving compared to CCSD(T), which is the most rigorous.

o If triples are included practically the same comments apply for MO versus AO based implementations
as in the case of CCSD.

ORCA is quite efficient in this type of calculation but it is also clear that the range of application of these
rigorous methods is limited as long as one uses canonical MOs. ORCA implements novel variants of the
so-called local Coupled-Cluster method which can calculate large, real-life molecules in a linear scaling time.
This will be addressed in Sec. 8.1.3.8.

Table 8.1: Computer times (minutes) for solving the coupled-cluster /coupled-pair equations for Serine (cc-
pVDZ basis set).

Method ‘ SCFMode ‘ Time (min) ‘
MO-CCSD Conv 38.2
AO-CCSD Conv 47.5
AO-CCSD Direct 50.8

AOX-CCSD Conv 48.7
RI-CCSD Conv 64.3
AO-QCISD Conv 44.8




8.1 Single Point Energies and Gradients 63

AO-CEPA/1 Conv 40.5
MO-CCSD(T) Conv 147.0
AO-CCSD(T) Conv 156.7

All of these methods are designed to cover dynamic correlation in systems where the Hartree-Fock determinant
dominates the wavefunctions. The least attractive of these methods is CISD which is not size-consistent and
therefore practically useless. The most rigorous are CCSD(T) and QCISD(T). The former is perhaps to
be preferred since it is more stable in difficult situations.! One can get highly accurate results from such
calculations. However, one only gets this accuracy in conjunction with large basis sets. It is perhaps not
very meaningful to perform a CCSD(T) calculation with a double-zeta basis set (see Table 8.2). The very
least basis set quality required for meaningful results would perhaps be something like def2-TZVP(-f) or
preferably def2-TZVPP (cc-pVTZ, ano-pVTZ). For accurate results quadruple-zeta and even larger basis sets
are required and at this stage the method is restricted to rather small systems.

Let us look at the case of the potential energy surface of the Ny molecule. We study it with three different
basis sets: TZVP, TZVPP and QZVP. The input is the following:

| RHF TZVPP CCSD(T)

%paras R= 1.05,1.13,8
end

* xyz 0 1

NO OO

N O 0 {R}

¥

For even higher accuracy we would need to introduce relativistic effects and - in particular - turn the core

correlation on. 2

Table 8.2: Computed spectroscopic constants of No with coupled-cluster methods.

Method Basis set

CCSD(T) SVP 111.2 2397 14.4
TZVP 110.5 2354 14.9
TZVPP 110.2 2349 14.1
QZVP 110.0 2357 14.3
ano-pVDZ 111.3 2320 14.9
ano-pVTZ 110.5 2337 14.4

!The exponential of the T1 operator serves to essentially fully relax the orbitals of the reference wavefunction. This
is not included in the QCISD model that only features at most a blinear T1T2 term in the singles residuum.
Hence, if the Hartree-Fock wavefunction is a poor starting point but static correlation is not the main problem,
CCSD is much preferred over QCISD. This is not uncommon in transition metal complexes.

ZNote that core correlation is not simply introduced by including the core orbitals in the correlation problem. In
addition, special correlation core-polarization functions are needed. They have been standardized for a few elements
in the cc-pCVxZ (X=D,T,Q,5,6) basis sets.
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Table 8.2: Computed spectroscopic constants of Ny with coupled-cluster methods.

ano-pVQZ 110.1 2351 14.5
CCSD QZVP 109.3 2437 13.5
Exp 109.7 2358.57 14.32

One can see from Table 8.2 that for high accuracy - in particular for the vibrational frequency - one needs
both - the connected triple-excitations and large basis sets (the TZVP result is fortuitously good). While this
is an isolated example, the conclusion holds more generally. If one pushes it, CCSD(T) has an accuracy (for
reasonably well-behaved systems) of approximately 0.2 pm in distances, <10 cm~! for harmonic frequencies
and a few kcal/mol for atomization energies.® It is also astonishing how well the Ahlrichs basis sets do in

these calculations — even slightly better than the much more elaborate ANO bases.
NOTE:

e The quality of a given calculation is not always high because it carries the label “Coupled-Cluster”.
Accurate results are only obtained in conjunction with large basis sets and for systems where the HF

approximation is a good 0" order starting point.

8.1.3.2 Coupled-Cluster Densities

If one is mainly accustomed to Hartree-Fock or DFT calculations, the calculation of the density matrix
is more or less a triviality and is automatically done together with the solution of the self-consistent field
equations. Unfortunately, this is not the case in coupled-cluster theory (and also not in MP2 theory). The
underlying reason is that in coupled-cluster theory, the expansion of the exponential T in the expectation

value

b (VIEY) (MWl Byl Vo)
<6T\Ifo|€T\I/0>

(U

only terminates if all possible excitation levels are exhausted, i.e., if all electrons in the reference determinant
U, (typically the HF determinant) are excited from the space of occupied to the space of virtual orbitals
(here D,,, denotes the first order density matrix, £l are the spin traced second quantized orbital replacement
operators, and T is the cluster operator). Hence, the straightforward application of these equations is far
too expensive. It is, however, possible to expand the exponentials and only keep the linear term. This
then defines a linearized density which coincides with the density that one would calculate from linearized
coupled-cluster theory (CEPA/0). The difference to the CEPA /0 density is that converged coupled-cluster
amplitudes are used for its evaluation. This density is straightforward to compute and the computational
effort for the evaluation is very low. Hence, this is a density that can be easily produced in a coupled-cluster

run. It is not, however, what coupled-cluster aficionados would accept as a density.

3However, in recent years it became more evident that even CCSD(T) achieves its high apparent accuracy through
error cancellations. The full CCSDT method (triples fully included) usually performs worse than CCSD(T). The
reason is that the (T) correction undershoots the effects of the triples to some extent and thereby compensates for
the neglect of connected quadruple excitations. For very high accuracy quantum chemistry, even these must be
considered. The prospects for treating chemically more relevant molecules with such methods is not particularly
bright for the foreseeable future. ..
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The subject of a density in coupled-cluster theory is approached from the viewpoint of response theory.
Imagine one adds a perturbation of the form

A A
HY = /\Zm h Bl

to the Hamiltonian. Then it is always possible to cast the first derivative of the total energy in the form:

dE response) 7, A
ar Z D 1(7q P )hpq
rq

This is a nice result. The quantity DZ()ffSPOnSQ)

is the so-called response density. In the case of CC theory
where the energy is not obtained by variational optimization of an energy functional, the energy has to be

replaced by a Lagrangian reading as follows:

L, s .
Lee = Enr + Z ZaiFai + 1 Z(UHabﬁZJb + Z zu{ulHeT |Wo)

ijab °w

Here u denotes any excited determinant (singly, doubly, triply, ....). There are two sets of Lagrange multipliers:
the quantities z,; that guarantee that the perturbed wavefunction fulfills the Hartree-Fock conditions by
making the off-diagonal Fock matrix blocks zero and the quantities z,, that guarantee that the coupled-cluster
projection equations for the amplitudes are fulfilled. If both sets of conditions are fulfilled then the coupled-
cluster Lagrangian simply evaluates to the coupled-cluster energy. The coupled-cluster Lagrangian can be
made stationary with respect to the Lagrangian multipliers z,; and z,. The response density is then defined

through:
dLCC response) 7, A
a ZD 1(711 ’ )hpq
pq

The density D,, appearing in this equation does not have the same properties as the density that would arise
from an expectation value. For example, the response density can have eigenvalues lower than 0 or larger

than 2. In practice, the response density is, however, the best “density” there is for coupled-cluster theory.

Unfortunately, the calculation of the coupled-cluster response density is quite involved because additional sets
of equations need to be solved in order to determine the z,; and z,. If only the equations for z, are solved one
speaks of an “unrelaxed” coupled-cluster density. If both sets of equations are solved, one speaks of a “relaxed”
coupled-cluster density. For most intents and purposes, the orbital relaxation effects incorporated into the
relaxed density are small for a coupled-cluster density. This is so, because the coupled-cluster equations
contain the exponential of the single excitation operator et = exp(d . t: £¢). This brings in most of the

effects of orbital relaxation. In fact, replacing the Ty operator by the operator & = > KL (ES — EL) would

provide all of the orbital relaxation thus leading to “orbital optimized coupled-cluster theory” (OOCC).

Not surprisingly, the equations that determine the coefficients z,, (the Z vector equations) are as complicated
as the coupled-cluster amplitude equations themselves. Hence, the calculation of the unrelaxed coupled-cluster
density matrix is about twice as expensive as the calculation of the coupled-cluster energy (but not quite as
with proper program organization terms can be reused and the Z vector equations are linear equations that

converge somewhat better than the non-linear amplitude equations).

ORCA features the calculation of the unrelaxed coupled-cluster density on the basis of the Z vector equations
for closed- and open-shell systems. If a fully relaxed coupled-cluster density is desired then ORCA still
features the orbital-optimized coupled-cluster doubles method (OOCCD). This is not exactly equivalent to
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the fully relaxed CCSD density matrix because of the operator # instead of Ti. However, results are very
close and orbital optimized coupled-cluster doubles is the method of choice if orbital relaxation effects are

presumed to be large.

In terms of ORCA keywords, the coupled-cluster density is obtained through the following keywords:

which will work together with CCSD or QCISD (QCISD and CCSD are identical in the case of OOCCD
because of the absence of single excitations). Note, that an unrelaxed density for CCSD(T) is NOT available.

Instead of using the density option “orbopt” in the mdci-block, OOCCD can also be invoked by using the
keyword:

8.1.3.3 Static versus Dynamic Correlation

Having said that, let us look at an “abuse” of the single reference correlation methods by studying (very
superficially) a system which is not well described by a single HF determinant. This already occurs for the
twisting of the double bond of CoHy. At a 90° twist angle the system behaves like a diradical and should be

described by a multireference method (see section 8.1.7)
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Figure 8.1: A rigid scan along the twisting coordinate of CoH4. The inset shows the T; diagnostic
for the CCSD calculation.
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As can be seen in Figure 8.1, there is a steep rise in energy as one approaches a 90° twist angle. The HF
curve is actually discontinuous and has a cusp at 90°. This is immediately fixed by a simple CASSCF(2,2)

calculation which gives a smooth potential energy surface. Dynamic correlation is treated on top of the
CASSCF(2,2) method with the MRACPF approach as follows:

This is the reference calculation for this problem. One can see that the RHF curve is far from the MRACPF
reference but the CASSCF calculation is very close. Thus, dynamic correlation is not important for this
problem! It only appears to be important since the RHF determinant is such a poor choice. The MP2
correlation energy is insufficient in order to repair the RHF result. The CCSD method is better but still falls
short of quantitative accuracy. Finally, the CCSD(T) curve is very close the MRACPF. This even holds for
the total energy (inset of Figure 8.2) which does not deviate by more than 2-3 mEh from each other. Thus,
in this case one uses the powerful CCSD(T) method in an inappropriate way in order to describe a system
that has multireference character. Nevertheless, the success of CCSD(T) shows how stable this method is
even in tricky situations. The “alarm” bell for CCSD and CCSD(T) is the so-called “T;-diagnostic”* that is
also shown in Figure 8.2. A rule of thumb says, that for a value of the diagnostic of larger than 0.02 the
results are not to be trusted. In this calculation we have not quite reached this critical point although the T;
diagnostic blows up around the 90° twist.

Tt is defined as ||T1|| /N'/? where T, are the singles amplitudes and N the number of correlated electrons. The
original reference is [79]
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Figure 8.2: Comparison of the CCSD(T) and MRACPF total energies of the CoHy along the twist-
ing coordinate. The inset shows the difference E(MRACPF)-E(CCSD(T)).

The computational cost (disregarding the triples) is such that the CCSD method is the most expensive
followed by QCISD (~10% cheaper) and all other methods (about 50% to a factor of two cheaper than
CCSD). The most accurate method is generally CCSD(T). However, this is not so clear if the triples are
omitted and in this regime the coupled pair methods (in particular CPF/1 and NCPF/1°) can compete with
CCSD.

Let us look at the same type of situation from a slightly different perspective and dissociate the single bond
of Fo. As is well known, the RHF approximation fails completely for this molecule and predicts it to be
unbound. Again we use a much too small basis set for quantitative results but it is enough to illustrate the

principle.

We first generate a “reference” PES with the MRACPF method:

5The “N” methods have been suggested by [80] and are exclusive to ORCA. Please note that our NCPF/1 is different
from the MCPF method in the literature [81]. The original CPF method — which we prefer — is from [82]; see
also [83] for a nice review about the coupled pair approaches and the underlying philosophy.
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Note that we scan from outward to inward. This helps the program to find the correct potential energy
surface since at large distances the o and ¢* orbitals are close in energy and fall within the desired 2 x 2
window for the CASSCF calculation (see section 8.1.7). Comparing the MRACPF and CASSCF curves it
becomes evident that the dynamic correlation brought in by the MRACPF procedure is very important and
changes the asymptote (loosely speaking the binding energy) by almost a factor of two. Around the minimum
(roughly up to 2.0 A) the CCSD(T) and MRACPF curves agree beautifully and are almost indistinguishable.
Beyond this distance the CCSD(T) calculation begins to diverge and shows an unphysical behavior while
the multireference method is able to describe the entire PES up to the dissociation limit. The CCSD curve
is qualitatively ok but has pronounced quantitative shortcomings: it predicts a minimum that is much too
short and a dissociation energy that is much too high. Thus, already for this rather “simple” molecule, the
effect of the connected triple excitations is very important. Given this (rather unpleasant) situation, the
behavior of the much simpler CEPA method is rather satisfying since it predicts a minimum and dissociation
energy that is much closer to the reference MRACPF result than CCSD or CASSCF. It appears that in this
particular case CEPA /1 and CEPA/2 bracket the correct result.

60 T T
s5.] —— MRACPF(2,2) ]
o] CASSCF(22) sttt

1 —-—CCSD(M) sl 7
6] —.—ccsp o .
40] —+— CEPAR S h
35_ —«— CEPAN /'/ Ad_‘.q-t-*'—q-q-q—d-q-q ]

12 14 16 18 20 22 24 26 28 30 32

Figure 8.3: Potential energy surface of the Fo molecule calculated with some single-reference meth-
ods and compared to the MRACPF reference.

As for MP2 calculations, the RI approximation can be introduced. It does not lead to spectacular performance
gains but easens the burden for the integral transformation in larger calculations. The error introduced by

the RI-approximation is usually negligible. For larger systems the AO or AOX methods are usually used.

8.1.3.4 Basis Sets for Correlated Calculations. The case of ANOs.

In HF and DFT calculations the generation and digestion of the two-electron repulsion integrals is usually

the most expensive step of the entire calculation. Therefore, the most efficient approach is to use loosely
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contracted basis sets with as few primitives as possible — the Ahlrichs basis sets (SVP, TZVP, TZVPP, QZVP,
def2-TZVPP, def2-QZVPP) are probably the best in this respect. Alternatively, the polarization-consistent
basis sets pc-1 through pc-4 could be used, but they are only available for H-Ar. For large molecules such

basis sets also lead to efficient prescreening and consequently efficient calculations.

This situation is different in highly correlated calculations such as CCSD and CCSD(T) where the effort
scales steeply with the number of basis functions. In addition, the calculations are usually only feasible for a
limited number of basis functions and are often run in the integral conventional mode since high angular
momentum basis functions are present and these are expensive to recomputed all the time. Hence, a different
strategy concerning the basis set design seems logical. It would be good to use as few basis functions as
possible but make them as accurate as possible. This is compatible with the philosophy of atomic natural
orbital (ANO) basis sets. Such basis sets are generated from correlated atomic calculations and replicate
the primitives of a given angular momentum for each basis function. Therefore, these basis sets are deeply
contracted and expensive but the natural atomic orbitals form a beautiful basis for molecular calculations.
In ORCA an accurate and systematic set of ANOs (ano-pVnZ, n = D, T, Q, 5 is incorporated). A related
strategy underlies the design of the correlation-consistent basis sets (cc-pVnZ, n =D, T, Q, 5, 6,...) that are
also generally contracted except for the outermost primitives of the “principal” orbitals and the polarization

functions that are left uncontracted.

Let us study this subject in some detail using the HoCO molecule at a standard geometry and compute the
SCF and correlation energies with various basis sets. In judging the results one should view the total energy
in conjunction with the number of basis functions and the total time elapsed. Looking at the data in the
Table below, it is obvious that the by far lowest SCF energies for a given cardinal number (2 for double-zeta, 3
for triple zeta and 4 for quadruple-zeta) are provided by the ANO basis sets. Using specially optimized ANO
integrals that is available since ORCA 2.7.0, the calculations are not even much more expensive than those
with standard basis sets. Obviously, the correlation energies delievered by the ANO bases are also the best of
all 12 basis sets tested. Hence, ANO basis sets are a very good choice for highly correlated calculations. The

advantages are particularly large for the early members (DZ/TZ).

Table 8.3: Comparison of various basis sets for highly correlated calculations

Basis set Nob;cli‘:s‘s E(SCF)  Ec(CCSD(T))  Eior(CCSD(T)) Total Time
cc-pVDZ 38 _113.876184 |  -0.34117952 -114.217364 2
ce-pVTZ 88 113.911871 | -0.42135475 “114.333226 40
cc-pVQZ 170 “113.920926 |  -0.44760332 ~114.368529 695
def2-SVP 38 113778427 | -0.34056109 “114.118988 2
def2- 90 113.917271 | -0.41990287 “114.337174 46
TZVPP

def2- 174 “113.922738 | -0.44643753 “114.369175 730
QZVPP

pe-1 38 113.840092 | -0.33918253 “114.179274 2
po-2 88 “113.914256 | -0.41321906 114327475 43
pc-3 196 S113.922543 | -0.44911659 114371660 1176
ano-pVDZ 38 113.910571 | -0.35822337 ~114.268795 12
ano-pVTZ 88 “113.920389 | -0.42772994 “114.348119 113
ano-pVQZ 170 113.922788 | -0.44995355 114.372742 960
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Figure 8.4: Error in mEh for various basis sets for highly correlated calculations relative to the
ano-pVQZ basis set.

Let us look at one more example in Table 8.4: the optimized structure of the Ny molecule as a function of
basis set using the MP2 method (these calculations are a bit older from the time when the ano-pVnZ basis

sets did not yet exist. Today, the ano-pVnZ would be prefered).

The highest quality basis set here is QZVP and it also gives the lowest total energy. However, this basis set
contains up to g-functions and is very expensive. The Bonn-ANO-TZ3P is of the same size as TZVPP and
gives the same result as QZVP for the geometry and an energy that is intermediate between TZVPP and
QZVP. To not use a set of f-functions has still a noticeable effect on the outcome of the calculations and leads
to an overestimation of the bond distance of 0.2 pm — a small change but for benchmark calculations of this
kind still significant. Among these spd-only basis sets the Bonn-ANO-TZ2P basis set gives a better result
than TZV(2d,2p) and a lower energy as well. In fact, similarly as for the Bonn-ANO-TZ3P, the distances is as
good as that from TZVPP and the energy is intermediate between TZV(2d,2p) and TZVPP(=TZV(2df,2pd)).
The error made by the TZVP basis set that lacks the second set of d-functions is surprisingly small even
though the deletion of the second d-set “costs” more than 20 mEh in the total energy.

A significant error on the order of 1 — 2 pm in the calculated distances is produced by smaller DZP type basis
sets which underlines once more that such basis sets are really too small for correlated molecular calculations
— the ANO-DZP basis sets are too strongly biased towards the atom and the “usual” molecule targeted
DZP basis sets like SVP have the d-set designed to cover polarization but not correlation (the correlating
d-functions are steeper than the polarizing ones). Among the three tested basis sets the Bonn-ANO-DZP
fares best in this test and cc-pVDZ fares worst. The relatively good energy of the Bonn-ANO-DZP basis
certainly comes from the good description of the atoms. The performance of the very economical SVP basis

set should be considered as very good.

Essentially the same picture is obtained by looking at the (uncorrected for ZPE) binding energy calculated
at the MP2 level — the largest basis set, QZVP gives the largest binding energy while the small basis set
underestimate it. The error of the DZP type basis sets is fairly large (= 2 €V) and therefore caution is
advisable when using such bases. In all cases it was found that the Bonn-ANO bases do slightly better than
the segmented contracted basis sets of the same size. This still holds for the calculated ionization potential of
the nitrogen atom. In principle, this is a worst case scenario for the ANO basis sets since they are supposedly

strongly biased towards the neutral atom. Yet, they fare no worse than the segmented contracted basis sets.
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Here, an error cancellation is likely: The ANO bases recover more correlation (larger for the neutral) but are
biased towards the neutral (underestimating the SCF energy for the cation). This bias perhaps shows up
most clearly for the ANO-DZP basis set which gives a calculated IP that is accidentally almost right. The
largest ANO-TZ3P even slightly overshoots relative to the QZVP basis set, which is expected.

Table 8.4: Comparison of various basis sets for correlated calculations.

Basis set Req (pm)  E(2N-N3) (eV) IP(N/NT) (eV) | E(MP2) (Eh) |
SVP 112.2 -9.67 14.45 -109.1677
cc-pVDZ 112.9 9.35 14.35 -109.2672
Bonn-ANO-DZP 112.1 9.45 14.58 -109.3098
TZVP 111.5 10.41 14.37 -109.3423
TZV(2d,2p) 111.4 10.61 14.49 -109.3683
Bonn-ANO-TZ2P 111.1 10.80 14.56 -109.3791
TZVPP 111.1 10.94 14.56 -109.3973
Bonn-ANO-TZ3P 110.9 11.18 14.65 -109.4108
QZVP 110.9 11.52 14.60 -109.4389

8.1.3.5 Automatic exptrapolation to the basis set limit

As eluded to in the previous section, one of the biggest problems with correlation calculations is the slow
convergence to the basis set limit. One possibility to overcome this problem is the use of explicitly correlated
methods. The other possibility is to use basis set extrapolation techniques. Since this involves some fairly
repetitive work, some procedures were hardwired into the ORCA program. So far, only energies are supported.
For extrapolation, a systematic series of basis sets is required. This is, for example, provided by the cc-pVnZ,
aug-cc-pVnZ or the corresponding ANO basis sets. Here n is the “cardinal number” that is 2 for the

double-zeta basis sets, 3 for triple-zeta, etc.

The convergence of the HF energy to the basis set limit is assumed to be given by:

X oo
Eé(n)«” = Eécg + Aexp (—a\/f) (8.1)

Here, Eég% is the SCF energy calculated with the basis set with cardinal number X, Eéocog is the basis set

limit SCF energy and A and « are constants. The approach taken in ORCA is to do a two-point extrapolation.
This means that either A or a have to be known. Here, we take A as to be determined and « as a basis set

specific constant.

The correlation energy is supposed to converge as:

o) XPEG) — YPEG
corr XB . YB

(8.2)

The theoretical value for § is 3.0. However, it was found by Truhlar and confirmed by us, that for 2/3

extrapolations § = 2.4 performs considerably better.

For a number of basis sets, we have determined the optimum values for o and g [84]:
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cc-pvVnZ 4.42 | 246 | 5.46 | 3.05

pc-n 7.02 | 2.01 | 9.78 | 4.09

def2 10.39 | 2.40 | 7.88 | 2.97

ano-pVnZ 541 | 243 | 448 | 2.97

saug-ano-pVnZ | 548 | 2.21 | 4.18 | 2.83
aug-ano-pVnZ 5.12 | 241

Since the 3 values for 2/3 are close to 2.4, we always take this value. Likewise, all 3/4 and higher extrapolations

are done with 8 = 3. However, the optimized values for a are taken throughout.

Using the keyword ! Extrapolate(X/Y,basis), where X and Y are the corresponding successive cardinal
numbers and basis is the type of basis set requested (= cc, aug-cc, cc-core, ano, saug-ano, aug-ano,
def2) ORCA will calculate the SCF and optionally the MP2 or MDCI energies with two basis sets and

separately extrapolate.

The keyword works also in the following way: ! Extrapolate(n,basis) where n is the is the number of
energies to be used. In this way the program will start from a double-zeta basis and perform calculations
with n cardinal numbes and then extrapolates the different pairs of basis sets. Thus for example the keyword
| Extrapolate(3,CC) will perform calculations with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets and then
estimate the extrapolation results of both cc-pVDZ/cc-pVTZ and ce-pVTZ/cc-pVQZ combinations.

Let us take the example of the H20 molecule at the B3LYP/TZVP optimized geometry. The reference values
have been determined from a HF calculation with the decontracted aug-cc-pV6Z basis set and the correlation

energy was obtained from the cc-pV5Z/cc-pV6Z extrapolation. This gives:

E(SCF,CBS) = -76.066958 Eh
EC(CCSD(T),CBS) = -0.30866 Eh
Etot(CCSD(T),CBS) = -76.37561 Eh

Now we can see what extrapolation can bring in:

1CCSD(T) Extrapolate(2/3) TightSCF Conv Bohrs
* int 0 1

0000 000

H100 1.819750 0

H120 1.81975 105.237 0

*

NOTE:

e The RI-JK and RIJCOSX approximations work well together with this option and RI-MP2 is also
possible. Auxiliary basis sets are automatically chosen and can not be changed.
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e All other basis set choices, externally defined bases etc. will be ignored — the automatic procedure
only works with the default basis sets!

e The basis sets with the “core” postfix contain core correlation functions. By default it is assumed
that this means that the core electrons are also to be correlated and the frozen core approximation is
turned off. However, this can be overriden in the method block by choosing, e.g. %method frozencore
fc_electrons end!

e So far, the extrapolation is only implemented for single points and not for gradients. Hence, geometry

optimizations cannot be done in this way.

e The extrapolation method should only be used with verytight SCF. For open shell methods, additional

caution is advised.

This gives:

Thus, the error in the total energy is indeed strongly reduced. Let us look at the more rigorous 3/4

extrapolation:

In our experience, the ANO basis sets extrapolate similarly to the cc-basis sets. Hence, repeating the entire

calculation with Extrapolate(3,ANO) gives:
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Which is within 1 mEh of the estimated CCSD(T) basis set limit energy in the case of the 3/4 extrapolation
and within 2 mEh for the 2/3 extrapolation.

For larger molecules, the bottleneck of the calculation will be the CCSD(T) calculation with the larger basis
set. In order to avoid this expensive (or prohibitive) calculation, it is possible to estimate the CCSD(T)
energy at the basis set limit as:

Bl *PY) & BELPR) 4 BOITe0) — EGIT0 (8.3)

This assumes that the basis set dependence of MP2 and CCSD(T) is similar. One can then extrapolate as
before. Alternatively, the standard way — as extensively exercised by Hobza and co-workers — is to simply
use:

Bigar O & By + BOISPMR0 4 BRIPE) — BIP) (8.4)

The appropriate keyword is:

This creates the following output:

The estimated correlation energy is not really bad — within 3 mEh from the basis set limit.

Using the ExtrapolateEP2(n/m,bas, [method, method-details]) keyword one can use a generalization
of the above method where instead of MP2 any available correlation method can be used as described in
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Ref. [85]. method is optional and can be either MP2 or DLPNO-CCSD(T), the latter being the default. In
case the method is DLPNO-CCSD(T) in the method-details option one can ask for LoosePNO, NormalPNO
or TightPNO.

EégSSD(T);CBS) ~ E(Egr(ESD(T);X) 4 E(Egﬁ«CBS) (X,X + 1) _ E(M;X) (85)

corr

Here M represents any correlation method one would like to use. For the previous water molecule the input
of a calculation that uses DLPNO-CCSD(T (that is the default now) instead of MP2 would look like:

and it would produce the following output:

which is less than 2 mEh from the basis set limit. Finally it was shown [85] that instead of extrapolating

the cheap method, M, using cardinal numbers X and X + 1 it is better to use cardinal numbers X + 1 and
X +2.

ELOCSD(TYOBS) oy p(OOSD(T):X) 4 p(MiCBS) (x4 1 X 4 2) — EOLX) (8.6)

corr corr

This can be done using the ExtrapolateEP3(bas, [method,method-details]) keyword:
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and the corresponding output would be:

For the ExtrapolateEP2, and ExtrapolateEP3 keywords the default cheap method is the DLPNO-CCSD(T)
with the NormalPNO thresholds. There also available options with MP2, and DLPNO-CCSD(T) with
LoosePNO and TightPNO settings.

8.1.3.6 Explicitly Correlated MP2 and CCSD(T) Calculations

A physically perhaps somewhat more satisfying alternative to basis set extrapolation is the theory of explicit
correlation. In this method terms are added to the wavefunction Ansatz that contain the interelectronic
coordinates explicitly (hence the name “explicit correlation”). Initially these terms were linear in the
interelectronic distances (“R12-methods”). However, it has later been found that better results can be
obtained by using other functions, such as an exponential, of the the interelectronic distance (“F12-methods”).
These methods are known to yield near basis set limit results for correlation energies in conjunction with

much smaller orbital basis sets.

In applying these methods several points are important:

e Special orbital basis sets are at least advantageous. The development of such basis sets is still in its
infancy. For a restricted range of elements the basis sets cc-pVnZ-F12 are available (where n = D, T,
Q) and are recommended. Note, that other than their names suggest, these are a fair bit larger than

regular double, triple or quadruple-zeta basis sets

e In addition to an orbital basis set, a near-complete auxiliary basis set must be specified. This is the
so-called “CABS” basis. For the three basis sets mentioned above these are called cc-pVnZ-F12-CABS.
If you have elements that are not covered you are on your own to supply a CABS basis set. CABS
basis sets can be read into ORCA in a way analogous to RI auxiliary basis sets (replace “AUX” by
“CABS” in the input
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e if the RI approximation is used in conjunction with F12, a third basis set is required - this can be the
regular auxiliary “/C” basis, but we recommend to step one level up in the auxiliary basis set (e.g. use
a cc-pVTZ/C fitting basis in conjunction with cc-pVDZ-F12)

o [t is perfectly feasible to use RIJCOSX or RI-JK at the same time. In this case, you should provide a
fourth basis set for the Coulomb fitting

e RHF and UHF are available, ROHF not. (Although, one can do a ROHF like calculation by using
QROs)

e Gradients are not available

Doing explicitly correlated MP2 calculations is straightforward. For example look at the following calculation

on the water molecule at a given geometry:

and similary in conjunction with the RI approximation:

The output is relatively easy to interprete:
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It consists of several parts. The first is the regular (RI-)MP2 correlation energy in the orbitals basis followed
by the additive MP2 correction that are combined to provide a MP2 correlation energy basis set limit estimate.
The second part consists of an estimate in the error in the underlying SCF energy. This is the “(2) CABS”
correction. The combination of the SCF energy with this correction yields an estimate of the SCF basis set
limit. The correction will typically undershoot somewhat, but the error is very smooth. Finally, the corrected
correlation energy and the corrected SCF energy are added to yield the F12 total energy estimate at the

basis set limit.

Let’s look at some results and compare to extrapolation:

It is obvious that extrapolated and F12 correlation energies converge to the same number (in this case around

300 mEh). The best extrapolated result is still below the F12 result (this would primarily be meaningful in
a variational calculation). However, first of all this was an expensive extrapolation and second, the small
residual F12 error is very smooth and cancels in energy differences. In any case, already the F12-double-zeta
(where “double zeta” is to be interpreted rather loosely) brings one into within 5 mEh of the basis set limit

correlation energy and the F12-triple-zeta calculation to within 1 mEh, which is impressive.

The additional effort for the F12 calculation is rather high, since five types of additional two-electron integrals
need to be calculated. Both, integrals in CABS space and in the original orbital (OBS) space must be
calculated and mixed Fock matrices are also required. Hence, one may wonder, whether a double-zeta F12
calculation actually saves any time over, say, a quadruple-zeta regular calculation. The actual answer to this
question is: “NO”. Given all possibilities of obtained approximate MP2 and SCF energies, we have investigated
the question of how to obtain MP2 basis set limit energies most efficiently in some detail. The results show

that in terms of timings, basis set extrapolation in combination with RI-JK is the method of choice in
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combination for MP2. [86] However, energy differences are more reliable with F12-MP2. In combination with

RI-JK or RIJCOSX F12-MP2 becomes also competitive in terms of computational efficiency.

This situation is different in the case of coupled-cluster methods, where F12 methods outperform extrapolation

and are the method of choice.

For coupled-cluster theory, everything works in a very similar fashion:

# the keywords

! F12-CCSD(T)

# and

! CCSD(T)-F12

# are equivalent

A special feature of ORCA that can use large amounts of time, is to use the RI approximation only for the
F12-part. The keyword here is:

! F12/RI-CCSD(T)
# or
I CCSD(T)-F12/RI

Everything else works as described for F12-MP2.

8.1.3.7 Frozen Core Options

In Coupled Cluster calculations the Frozen Core (FC) approximation is applied by default. This implies that
the core electrons are not included in the correlation treatment, since the inclusion of dynamic correlation in

the core electrons usually effects relative energies insignificantly.

The frozen core option can be switched on or off with ! FrozenCore or ! NoFrozenCore in the simple

input. More information and further options are given in section 9.10 and in section 9.12.4.1.

8.1.3.8 Local Coupled Pair and Coupled-Cluster Calculations

ORCA features a special set of local correlation methods. The prevalent local coupled-cluster approaches
date back to ideas of Pulay and have been extensively developed by Werner, Schiitz and co-workers. They
use the concept of correlation domains in order to achieve linear scaling with respect to CPU, disk and main
memory. While the central concept of electron pairs is very similar in both approaches, the local correlation

methods in ORCA follow a completely different and original philosophy.

In ORCA rather than trying to use sparsity, we exploit data compression. To this end two concepts are
used: (a) localization of internal orbitals, which reduces the number of electron pairs to be correlated since
the pair correlation energies are known to fall off sharply with distance; (b) use of a truncated pair specific
natural orbital basis to span the significant part of the virtual space for each electron pair. This guarantees

the fastest convergence of the pair wavefunction and a nearly optimal convergence of the pair correlation
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energy while not introducing any real space cut-offs or geometrically defined domains. These PNOs have
been used previously by the pioneers of correlation theory. However, as discussed in the original papers, the
way in which they have been implemented into ORCA is very different. For a full description of technical

details and numerical tests see:

e F. Neese, A. Hansen, D. G. Liakos: Efficient and accurate local approximations to the coupled-cluster

singles and doubles method using a truncated pair natural orbital basis. [84]

e F. Neese, A. Hansen, F. Wennmohs, S. Grimme: Accurate Theoretical Chemistry with Coupled
Electron Pair Models. [87]

e F. Neese, F. Wennmohs, A. Hansen:Efficient and accurate local approximations to coupled electron

pair approaches. An attempt to revive the pair-natural orbital method. [88]

e D. G. Liakos, A. Hansen, F. Neese: Weak molecular interactions studied with parallel implementations

of the local pair natural orbital coupled pair and coupled-cluster methods. [89]

e A. Hansen, D. G. Liakos, F. Neese: Efficient and accurate local single reference correlation methods for

high-spin open-shell molecules using pair natural orbitals. [90]

e C. Riplinger, F. Neese: An efficient and near linear scaling pair natural orbital based local coupled-cluster
method. [91]

e C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese: Natural triple excitations in local coupled-cluster

calculations with pair natural orbitals. [92]

e C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese: Sparse maps - A systematic infrastructure
for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital

coupled cluster theory. [93]

e D. Datta, S. Kossmann, F. Neese: Analytic energy derivatives for the calculation of the first-order

molecular properties using the domain-based local pair-natural orbital coupled-cluster theory [94]

e M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese: A new linear scaling, efficient and accurate,

open-shell domain based pair natural orbital coupled cluster singles and doubles theory. [95]

In 2013, the so-called DLPNO-CCSD method (“domain based local pair natural orbital”) was introduced. [91]
This method is near linear scaling with system size and allows for giant calculations to be performed. In 2016,
significant changes to the algorithm were implemented leading to linear scaling with system size concerning
computing time, hard disk and memory consumption. [93] The principle idea behind DLPNO is the following:
it became clear early on that the PNO space for a given electron pair (ij) is local and located in the same
region of space as the electron pair (ij). In LPNO-CCSD this locality was partially used in the local fitting
to the PNOs (controlled by the parameter TCutMKN). However, the PNOs were expanded in canonical
virtual orbitals which led to some higher order scaling steps. In DLPNO, the PNOs are expanded in the set

of projected atomic orbitals:

) = (1=3 10 Gl) ) (8.7)

where |u) is an atomic orbital and |i) refers to an occupied molecular orbital. Such projected orbitals are an

overcomplete representation of the virtual space. The projected orbital |i) is located in the same region of
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space as |u) and hence can be assigned to atomic centers. This has first been invented and used by Pulay and
Saebo [96] in their pioneering work on local correlation methods and widely exploited by Werner, Schiitz and
co-workers in their local correlation approaches. [97,98] DLPNO-CCSD goes one step further in expanding

the PNOs |a,;) of a given pair (ij) as:

’&ij> = Z d;ja i) (8.8)

aefij}

where fi € {ij} is the domain of atoms (range of i) that is associated with the electron pair ij. The advantage
of the PNO method is, that these domains can be chosen to be large (>15-20 atoms) without compromising

the efficiency of the method.

The comparison between LPNO-CCSD and DLPNO-CCSD is shown in Figure 8.5. It is obvious that
DLPNO-CCSD is (almost) never slower than LPNO-CCSD. However, its true advantages do become most
apparent for molecules with more than approximately 60 atoms. The triples correction, that was added with
our second paper from 2013, shows a perfect linear scaling, as is shown in part (a) of Figure 8.5. For large
systems it adds about 10%-20% to the DLPNO-CCSD computation time, hence its addition is possible for
all systems for which the latter can still be obtained. Since 2016, the entire DLPNO-CCSD(T) algorithm is
linear scaling. The improvements of the linear-scaling algorithm, compared to DLPNO2013-CCSD(T), start

to become significant at system sizes of about 300 atoms, as becomes evident in part (b) of Figure 8.5.
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Figure 8.5: a) Scaling behaviour of the canonical CCSD, LPNO-CCSD and DLPNO2013-CCSD(T)
methods. It is obvious that only DLPNO2013-CCSD and DLPNO2013-CCSD(T) can
be applied to large molecules. The advantages of DLPNO2013-CCSD over LPNO-
CCSD do not show before the system has reached a size of about 60 atoms. b) Scaling
behaviour of DLPNO2013-CCSD(T), DLPNO-CCSD(T) and RHF using RIJCOSX. It
is obvious that only DLPNO-CCSD(T) can be applied to truly large molecules, is faster
than the DLPNO2013 version, and even has a crossover with RHF at about 400 atoms.

Using the DLPNO-CCSD(T) approach it was possible for the first time (in 2013) to perform a CCSD(T)
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level calculation on an entire protein (Crambin with more than 650 atoms, Figure 8.6). While the calculation
using a double-zeta basis took about 4 weeks on one CPU with DLPNO2013-CCSD(T), it takes only about 4
days to complete with DLPNO-CCSD(T). With DLPNO-CCSD(T) even the triple-zeta basis calculation can
be completed within reasonable time, taking 2 weeks on 4 CPUs.

Figure 8.6: Structure of the Crambin protein - the first protein to be treated with a CCSD(T) level
ab initio method

The use of the LPNO (and DLPNO) methods is simple and requires little special attention from the user:

Using the well tested default settings, the LPNO-CEPA (LPNO-CPF, LPNO-VCEPA), LPNO-QCISD and
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LPNO-CCSD (LPNO-pCCSD) methods® can be run in strict analogy to canonical calculations and should
approximate the canonical result very closely. In fact, one should not view the LPNO methods as new model
chemistry - they are designed to reproduce the canonical results, including BSSE. This is different from the
domain based local correlation methods that do constitute a new model chemistry with properties that are

different from the original methods.

In some situations, it may be appropriate to adapt the accuracy of the calculation. Sensible defaults have
been determined from extensive benchmark calculations and are accessible via LoosePNO, NormalPNO and
TightPNO keywords in the simple input line. [99]

These keywords represent the recommended way to control the accuracy of DLPNO calculations as follows.

Manual changing of thresholds beyond these specifying these keywords is usually discouraged.

Since ORCA 4.0, the linear-scaling DLPNO implementation described in reference [93] is the default DLPNO
algorithm. However, for comparison, the firss DLPNO implementation from references [91] and [92] can still
be called by using the DLPNO2013 prefix instead of the DLPNO- prefix.

SAs a technical detail: The closed-shell LPNO QCISD and CCSD come in two technical variants - LPNO1-
CEPA/QCISD/CCSD and LPNO2-CEPA/CCSD/QCISD. The “2” variants consume less disk space but are also
slightly less accurate than the “1” variants. This is discussed in the original paper in the case of QCISD and CCSD.
For the sake of accuracy, the “1” variants are the default. In those cases, where “1” can still be performed, the
computational efficiency of both approaches is not grossly different. For LPNO CCSD there is also a third variant
(LPNO3-CCSD, also in the open-shell version) which avoids neglecting the dressing of the external exchange
operator. However, the results do not differ significantly from variant 1 but the calculations will become more
expensive. Thus it is not recommend to use variant 3. Variant 2 is not available in the open-shell version.
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* xyz 0 1
. (coordinates)

Until ORCA 4.0, the ”semi-canonical” approximation is used in the perturbative triples correction for
DLPNO-CCSD. It was found that the ”semi-canonical” approximation is a very good approximation for most
systems. However, the ”semi-canonical” approximation can introduce large errors in rare cases, whereas the
DLPNO-CCSD is still very accurate. To improve the accuracy of perturbative triples correction, since 4.1,
an improved perturbative triples correction for DLPNO-CCSD is available, DLPNO-CCSD(T1) [100]. In
DLPNO-CCSD(T1), the triples amplitudes are computed iteratively, which can reproduce more accurate
canonical (T) energies.

It is necessary to clearify the nomenclature used in ORCA input file. The keyword to invoke ”semi-canonical”
perturbative triples correction approximation is DLPNO-CCSD(T). While, the keyword of improved iterative
approximation is DLPNO-CCSD(T1). However, in our recent paper [100], the ”semi-canonical” perturbative
triples correction approximation is name DLPNO-CCSD(TO0), whereas the improved iterative one is called
DLPNO-CCSD(T). Note, the names used in our paper are different from that in ORCA input file. An
example input file to perform improved iterative perturbative triples correction for DLPNO-CCSD is given

below,

# DLPNO-CCSD(T1) calculation using the iterative triples correction
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T1)

%mdci
TNOSCALES 10.0 #TNO truncation scale for strong triples, TNOSCALES*TCutTNO.
Default setting is 10.0
TNOSCALEW 100.0 #TNO truncation scale for weak triples, TNOSCALEW*TCutTNO
Default setting is 100.0
%end
*xyz 0 1
. (coordinates)

Since ORCA 4.2, the improved iterative perturbative triples correction for open-shell DLPNO-CCSD is
available as well. The keyword of open-shell DLPNO-CCSD(T) is as same as that of closed-shell case.

Since ORCA 4.0, the high-spin open-shell version of the DLPNO-CISD/QCISD/CCSD implementations
have been made available on top of the same machinery as the 2016 version of the RHF-DLPNO-CCSD
code. The present UHF-DLPNO-CCSD is designed to be an heir to the UHF-LPNO-CCSD and serves
as a natural extension to the RHF-DLPNO-CCSD. A striking difference between UHF-LPNO and newly
developed UHF-DLPNO methods is that the UHF-DLPNO approach gives the identical results to that of the
RHF variant when applied to the closed-shell species while the UHF-LPNO does not. Usage of this program
is quite straightforward and shown below:
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# (1) In case of ROHF reference
! ROHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (2) In case of UHF reference, the QROs are constructed first and used for
# the open-shell DLPNO-CCSD computations
! UHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (3) In case that the UKS are specified, the QROs are constructed first and used as
# "unconverged" UHF orbitals for the open-shell DLPNO-CCSD computations.
! UKS CAM-B3LYP DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

Note that this implementation is dedicated to the closed-shell and high-spin open-shell species. For spin-
polarized systems, the UHF-LPNO-CCSD or Mk-LPNO-CCSD are available in addition to DLPNO-NEVPT2.
The same set of truncation parameters as the closed-shell DLPNO-CCSD is used also in case of open-shell
DLPNO. The open-shell DLPNO-CCSD produces more than 99.9 % of the canonical CCSD correlation energy
as in case of the closed-shell variant. This feature is certainly different from the UHF-LPNO methods because
the open-shell DLPNO-CCSD is re-designed from scratch on the basis of a new PNO ansatz which makes use
of the high-spin open-shell NEVPT framework. The computational timings of the UHF-DLPNO-CCSD and
RIJCOSX-UHF for linear alkane chains in triplet state are shown in Figure 8.7.
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Figure 8.7: Computational times of RIJCOSX-UHF and UHF-DLPNO-CCSD for the linear alkane
chains (CyHap42) in triplet state with def2-TZVPP basis and default frozen core set-
tings. 4 CPU cores and 128 GB of memory were used on a single cluster node.

Although those systems are somewhat idealized for the DLPNO method to best perform, it is clear that the
preceding RIJCOSX-UHF is the rate-determining step in the total computational time for large examples. In
the open-shell DLPNO implementations, SOMOs are included not only in the occupied space but also in the
PNO space in the preceding integral transformation step. This means the presence of more SOMOs may lead
to more demanding PNO integral transformation and DLPNO-CCSD iterations. The illustrative examples
include active site model of the [NiFe] Hydrogenase in triplet state and the oxygen evolving complex (OEC)
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in the high-spin state, which are shown in Figures 8.8 and 8.9, respectively. With def2-TZVPP basis set and
NormalPNO settings, a single point calculation on [NiFe] Hydrogenase (Figure 8.8) took approximately 45
hours on a single cluster node by using 4 CPU cores of Xeon E5-2670®. A single point calculation on the
OEC compound (Figure 8.9) with the same computational settings finished in 44 hours even though the
number of AO in this system is even fewer than the Hydrogenase: the Hydrogenase active site model and
OEC involve 4007 and 2606 AO basis functions, respectively. Special care should be taken if the system
possess more than ten SOMOs since inclusion of more SOMOs may drastically increase the prefactor of the
calculations. In addition, if the SOMOs are distributed over the entire molecular skeleton, each pair domain
may not be truncated at all; in this case speedup attributed to the domain truncation will not be achieved at
all.

Figure 8.8: Ni-Fe active center in the [NiFe] Hydrogenase in its second-coordination sphere. The
whole model system is composed of 180 atoms.
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Figure 8.9: A model compound for the OEC in the Sy state of photosystem II which is comprised
of 238 atoms. In its high-spin state, the OEC possesses 13 SOMOs in total.

Calculation of the orbital-unrelaxed density has been implemented for closed-shell DLPNO-CCSD. This
permits analytical computation of first-order properties, such as multipole moments or electric field gradients.
In order to reproduce conventional unrelaxed CCSD properties to a high degree of accuracy, tighter thresholds
may be needed than given by the default settings. Reading of the reference [94] is recommended. Calculation

of the unrelaxed density is requested as usual:

%MDCI Density Unrelaxed End

There are a few things to be noticed about (D)LPNO methods:

e The LPNO methods obligatorily make use of the RI approximation. Hence, a correlation fit set must

be provided.

e The DLPNO-CCSD(T) method is applicable to closed-shell or high-spin open-shell species. When
performing DLPNO calculations on open-shell species, it is always better to have UCO option: If
preceding SCF converges to broken-symmetry solutions, it is not guaranteed that the DLPNO-CCSD

gives physically meaningful results.

e Besides the closed-shell version which uses a RHF or RKS reference determinant there is an open-shell
version of the LPNO-CCSD for high-spin open-shell molecules (see original paper) using an UHF or
UKS reference determinant build from quasi-restricted orbitals (QROs, see section 9.12.3). Since the
results of the current open-shell version are slightly less accurate than that of the closed-shell version
it is mandatory to specify if you want to use the closed-shell or open-shell version for calculations of
closed-shell systems, i.e. always put the “RHF” (“RKS”) or “UHF” (“UKS”) keyword in the simple
keyword line. Open-shell systems can be of course only treated by the open-shell version. Do not mix
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results of the closed- and open-shell versions of LPNO methods (e.g. if you calculate reaction
energies of a reaction in which both closed- and open-shell molecules take part, you should use the
open-shell version throughout). This is because the open-shell LPNO results for the closed-shell species
certainly differ from those of closed-shell implementations. This drawback of the open-shell LPNO
methods has led to the development of a brand new open-shell DLPNO approach which converges
to the RHF-DLPNO in the closed-shell limit. Importantly, one can mix the results of closed-
and open-shell versions of DLPNO approaches.

e The open-shell version of the DLPNO approach uses a different strategy to the LPNO variant to define
the open-shell PNOs. This ensures that, unlike the open-shell LPNO, the PNO space converges to the
closed-shell counterpart in the closed-shell limit. Therefore, in the closed-shell limit, the open-shell
DLPNO gives identical correlation energy to the RHF variant up to at least the third decimal place.

The perturbative triples correction referred to as, (T), is also available for the open-shell species.

e When performing a calculation on the open-shell species with either of canonical/LPNO/DLPNO
methods on top of the Slater determinant constructed from the QROs, a special attention should be
paid on the orbitals energies of those QROs. In some cases, the orbitals energy of the highest SOMO
appear to be higher than that of the lowest VMO. Similarly to this, the orbital energy of the highest
DOMO may appear to higher than that of the lowest SOMOs. In such cases, the CEPA/QCISD/CCSD
iteration may show difficulty in convergence. In the worst case, it just diverges. Most likely, in such
cases, one has to suspect the charge and multiplicity might be wrong. If they are correct, you may

need much prettier starting orbitals and a bit of good luck!

e DLPNO-CCSD(T)-F12 is available for both closed- and open-shell cases. These methods employ
a perturbative F12 correction on top of the DLPNO-CCSD(T) correlation energy calculation. The
F12 part of the code uses the RI approximation in the same spirit as the canonical RI-F12 methods
(refer to section 8.1.3.6). The F12 correction takes only a fraction (usually 10-30%) of the total time
(excluding SCF) required to calculate the DLPNO-CCSD(T)-F12 correlation energy. Thus, the F12
correction scales the same (linear or near-linear) as the parent DLPNO method. Furthermore, no new
truncation parameters are introduced for the F12 procedure preserving the black-box nature of the
DLPNO method. The F12D approximation is highly recommended as it is computationally cheaper
than the F12C approach which involves a double RI summation. keywords: DLPNO-CCSD(T)-F12D,
DLPNO-CCSD(T)-F12, DLPNO-CCSD-F12D, DLPNO-CCSD-F12.

e Parallelization is done.

e There are three thresholds that can be user controlled that can all be adjusted in the %mdci block: (a)
TcutpNo controls the number of PNOs per electron pair. This is the most critical parameter and has a
default value of 3.33 x 107, (b) Tutpairs controls a perturbative selection of significant pairs and has a
default value of 107%. (c) Touwmxn is a technical parameter and controls the size of the fit set for each
electron pair. It has a default value of 1073, All of these default values are conservative. Hence, no
adjustment of these parameters is necessary. All DLPNO-CCSD truncations are bound to these three

truncation parameters and should not almost be touched (Hence they are also not documented :-)).

e The preferred way to adjust accuracy when needed is to use the “LoosePNO/NormalPNO/TightPNO”
keywords. In addition, “TightPNO” triggers the full iterative (DLPNO-MP2) treatment in the MP2
guess, whereas the other options use a semicanonical MP2 calculation. Tables 8.6 and 8.7 contain the

thresholds used by the current (2016) and old (2013) implementations, respectively.
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LPNO-VCEPA /n (n=1,2,3) methods are only available in the open-shell version yet.

LPNO variants of the parameterized coupled-cluster methods (pCCSD, see section 9.12.1) are also
available (e.g. LPNO-pCCSD/1a and LPNO-pC CSD/2a).

The LPNO methods reproduce the canonical energy differences typically better than 1 kcal/mol. This
accuracy exists over large parts of the potential energy surface. Tightening TCutPairs to le-5 gives

more accurate results but also leads to significantly longer computation times.

Potential energy surfaces are virtually but not perfectly smooth (like any method that involves cut-offs).

Numerical gradient calculations have been attempted and reported to have been successful.

The LPNO methods do work together with RIJCOSX, RI-JK and also with ANO basis sets and basis
set extrapolation. They also work for conventional integral handling.

The methods behave excellently with large basis sets. Thus, they stay efficient even when large basis
sets are used that are necessary to obtain accurate results with wavefunction based ab initio methods.

This is a prerequisite for efficient computational chemistry applications.

For LPNO-CCSD, calculations with about 1000 basis functions are routine, calculations with about
1500 basis functions are possible and calculations with 2000-2500 basis functions are the limit on
powerful computers. For DLPNO-CCSD much larger calculations are possible. There is virtually no
crossover and DLPNO-CCSD is essentially always more efficient than LPNO-CCSD. Starting from
about 50 atoms the differences become large. The largest DLPNO-CCSD calculation to date featured
>1000 atoms and more than 20000 basis functions!

Using large main memory is not mandatory but advantageous since it speeds up the initial integral

transformation significantly (controlled by “MaxCore” in the %mdci block, see section 9.12.4).
The open-shell versions are about twice as expensive as the corresponding closed-shell versions.
Analytic gradients are not available.

An unrelaxed density implementation is available for closed-shell DLPNO-CCSD, permitting calculation

of first-order properties.

Table 8.6: Accuracy settings for DLPNO coupled cluster (current version).

Setting ToutPairs  1CwtDO Touwpno  Tounvkn  MP2 pair treatment
LoosePNO 1073 2x1072 1.00x 1076 1073 semicanonical
NormalPNO  107* 1x1072 3.33x10°7 1073 semicanonical
TightPNO 107°  5x107% 1.00x1077 1073 full iterative

Table 8.7: Accuracy settings for DLPNO coupled cluster (deprecated 2013 version).

Setting TCutPairs TcutPNO TouMmMkN MP2 pair treatment
LoosePNO 1073 1.00 x 1076 1073 semicanonical
NormalPNO 1074 3.33 x 1077 1073 semicanonical

TightPNO 10®  1.00x10"7" 107* full iterative
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As an example, see the following isomerization reaction that appears to be particularly difficult for DFT:

Isomerizes to:

The results of the calculations (closed-shell versions) with the def2-TZVP basis set (about 240 basis functions)
are shown below:

Method Energy Difference (kcal/mol) | Time (min)
CCSD(T) 14.6 92.4
CCSD -18.0 55.3
LPNO-CCSD -18.6 20.0
CEPA/1 -12.4 42.2
LPNO-CEPA/1 -13.5 13.4

The calculations are typical in the sense that: (a) the LPNO methods provide answers that are within 1
kcal/mol of the canonical results, (b) CEPA approximates CCSD(T) more closely than CCSD. The speedups
of a factor of 2 — 5 are moderate in this case. However, this is also a fairly small calculation. For larger
systems, speedups of the LPNO methods compared to their canonical counterparts are on the order of a
factor >100-1000.
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8.1.3.9 Cluster in molecules (CIM)

Cluster in molecules (CIM) approach is a linear scaling local correlation method developed by Li and the
coworkers in 2002. [101] It was further improved by Li, Piecuch, Kéallay and other groups recently. [102—106]
The CIM is inspired by the early local correlation method developed by Forner and coworkers. [107] The
total correlation energy of a close-shell molecule can be considered as a summation of correlation energies of
each occupied LMOs.

occ occ

Eeorr = Z E; = Z i Z <ZjHCLb>TZg) (89)

A j,ab

For each occupied LMO, it only correlates with its nearby occupied LMOs and virtual MOs. To reproduce
the correlation energy of each occupied LMO, only a subset of occupied and virtual LMOs are needed in the
correlation calculation. Instead of doing the correlation calculation of the whole molecule, the correlation

energies of all LMOs can be obtained within various subsystems.

The CIM approach implemented in ORCA is following an algorithm proposed by Guo and coworkers with a
few improvements. [105, 106]

1. To avoid the real space cutoff, the differential overlap integral (DOI) is used instead of distance threshold.
There is only one parameter ’'CIMTHRESH’ in CIM approach, controlling the construction of CIM subsystems.
If the DOI between LMO ¢ and LMO j is larger than CIMTHRESH, LMO j will be included into the MO
domain of 4. By including all nearby LMO of 4, one can construct a subsystem for MO ¢. The default value of
CIMTHRESH is 0.001. If accurate results are needed, the tight CIMTHRESH must be used.

2. Since ORCA 4.1, the neglected correlations between LMO 4 and LMOs outside the MO domain of i are
considered as well. These weak correlations are approximately evaluated by dipole moment integrals. With
this correction, the CIM results of 3 dimensional proteins are significantly improved. About 99.8% of the

correlation energies are recovered.

The CIM can invoke different single reference correlation methods for the subsystem calculations. In ORCA
the CIM-RI-MP2, CIM-CCSD(T), CIM-DLPNO-MP2 and CIM-DLPNO-CCSD(T) are available. The CIM-
RI-MP2 and CIM-DLPNO-CCSD(T) have been proved to be very efficent and accurate methods to compute
correlation energies of very big molecules, containing a few thousand atoms. [106]

The usage of CIM in ORCA is simple. For CIM-RI-MP2,

#
# CIM-RI-MP2 calculation
#
! RI-MP2 cc-pVDZ cc-pVDZ/C CIM
%CIM
CIMTHRESH 0.0005 # Default value is 0.001
end

* xyzfile 0 1 CIM.xyz
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For CIM-DLPNO-CCSD(T),

The parallel efficiency of CIM has been significantly improved. [106] Except for few domain construction
sub-steps, the CIM algorithm can achieve very high parallel efficiency. Since ORCA 4.1, the parallel version
does not support Windows platform anymore due to the parallelization strategy. The generalization of CIM

from close-shell to open-shell (multi-reference) will also be implemented in near furture.

8.1.3.10 Arbitrary Order Coupled-Cluster Calculations

ORCA features an interface to Kallay’s powerful MRCC program. This program must be obtained separately.
The interface is restricted to single point energies but can be used for rigid scan calculations or numerical

frequencies.

The use of the interface is simple:

The Method string can be any of:
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It is not a good idea, of course, to use this code for CCSD or CCSD(T) or CISD. Its real power lies
in performing the higher order calculations. Open-shell calculations can presently not be done with the

interface.

8.1.4 Density Functional Theory

8.1.4.1 Standard Density Functional Calculations

Density functional calculations are as simple to run as HF calculations. In this case you may want to adjust
the integration grid and you almost certainly will want to use the RI-J approximation in case that you have
a LDA, GGA or meta-GGA functional (non-hybrid functional). For hybrid functionals, the RIJCOSX and
RI-JK approximations offer large speedups.

For example, consider this B3LYP calculation on the cyclohexane molecule.
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If you want an accurate single point energy then it is wise to choose “TightSCF”, select a basis set of at
least valence triple-zeta plus polarization quality (e.g. def2-TZVP) and also to move one step up in the DFT
integration grid (i.e. “Grid4”).

8.1.4.2 DFT Calculations with RI

DFT calculations that do not require the HF exchange to be calculated (non-hybrid DFT) can be very
efficiently executed with the RI-J approximation. It leads to very large speedups at essentially no loss of

accuracy. The use of the RI-J approximation may be illustrated for a medium sized organic molecule -

Penicillin:
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The job has 42 atoms and 430 contracted basis functions. Yet, it executes in just a few minutes elapsed time

on any reasonable personal computer.

NOTES:

e The RI-J approximation requires an “auxiliary basis set” in addition to a normal orbital basis set. For
the Karlsruhe basis sets there is the universal auxiliary basis set of Weigend that is called with the
name def2/] (all-electron up to Kr). When scalar relativistic Hamiltonians are used (DKH or ZORA)
along with all-electron basis sets, then a general-purpose auxiliary basis set is the SARC/J that covers

most of the periodic table. Other choices are documented in sections 6.3 and 9.4.

e For “pure” functionals the use of RI-J with the def2/] auxiliary basis set is the default.

Since DFT is frequently applied to open-shell transition metals we also show one (more or less trivial) example
of a Cu(II) complex treated with DFT.
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Cl 2.25 O 0
Cl -2.25 0 0
cl1 o 2.25 0
cl o -2.25 0

Although it would not have been necessary for this example, it shows a possible strategy how to converge such
calculations. First a less accurate but fast job is performed using the RI approximation, a GGA functional
and a small basis set without polarization functions. Note that a larger damping factor has been used in order
to guide the calculation (SlowConv). The second job takes the orbitals of the first as input and performs a
more accurate hybrid DFT calculation. A subtle point in this calculation on a dianion in the gas phase is the
command GuessMode CMatrix that causes the corresponding orbital transformation to be used in order to
match the orbitals of the small and the large basis set calculation. This is always required when the orbital

energies of the small basis set calculation are positive as will be the case for anions.

8.1.4.3 Hartree—Fock and Hybrid DFT Calculations with RIJCOSX

Frustrated by the large difference in execution times between pure and hybrid functionals, we have been
motivated to study approximations to the Hartree-Fock exchange term. The method that we have finally
come up with is called the “chain of spheres” COSX approximation and may be thought of as a variant
of the pseudo-spectral philosophy. Essentially, in performing two electron integrals, the first integration is
done numerically on a grid and the second (involving the Coulomb singularity) is done analytically.” Upon
combining this treatment with the Split-RI-J method for the Coulomb term (thus, you do need a Coulomb
fitting basis!), we have designed the RIJCOSX approximation that can be used to accelerate Hartree-Fock
and hybrid DFT calculations. Note that this introduces another grid on top of the DFT integration grid

which is usually significantly smaller.

In particular for large and accurate basis sets, the speedups obtained in this way are very large - we have
observed up to a factor of sixty! The procedure is essentially linear scaling such that large and accurate
calculations become possible with high efficiency. The RIJCOSX approximation is basically available
throughout the program. The errors are on the order of 1 kcal mol~! or less in the total energies as well as in
energy differences and can be made smaller with larger than the default grids or by running the final SCF
cycle without this approximation. The impact on bond distances is a fraction of a pm, angles are better than
a few tenth of a degree and soft dihedral angles are good to about 1 degree. To the limited extent to which it

has been tested, vibrational frequencies are roughly good to 2-10 wavenumbers with the default settings.

The use of RIJCOSX is very simple:

! B3LYP def2-TZVPP def2/] TightSCF RIJCOSX

"For algorithmic and theoretical details see: [108].
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One thing to be mentioned in correlation calculations with RIJCOSX is that the requirements for the SCF
and correlation fitting bases are quite different. We therefore now support two different auxiliary basis sets in

the same run:

! RI-MP2 def2-TZVPP def2/] def2-TZVPP/C TightSCF RIJCOSX

CAUTION:

e This feature does NOT work in multiple job inputs

8.1.4.4 Hartree—Fock and Hybrid DFT Calculations with RI-JK

An alternative algorithm for accelerating the HF exchange in hybrid DFT or HF calculations is to use the RI
approximation for both Coulomb and exchange. This is implemented in ORCA for SCF single point energies
but not for gradients.

! RHF def2-TZVPP def2/JK RI-JK

The speedups for small molecules are better than for RIJCOSX, for medium sized molecules (e.g. (gly)4)
similar, and for larger molecules RI-JK is less efficient than RIJCOSX. The errors of RI-JK are usually below
1 mEh and the error is very smooth (smoother than for RIJCOSX). Hence, for small calculations with large

basis sets, RI-JK is a good idea, for large calculations on large molecules RIJCOSX is better.

NOTES:

e For RI-JK you will need a larger auxiliary basis set. For the Karlsruhe basis set, the universal def2/JK
and def2/JKsmall basis sets are available. They are large and accurate.

e For UHF RI-JK is roughly twice as expensive as for RHF. This is not true for RIJCOSX.

e RI-JK is available for conventional and direct runs and also for ANO bases. There the conventional

mode is recommended.

A comparison of the RIJCOSX and RI-JK methods (taken from Ref. [109]) for the (gly)2, (gly)s and (gly)s is

shown below (wall clock times in second for performing the entire SCF):

Def2-SVP | Def2-TZVP(-df) | Def2-TZVPP Def2-QZVPP |

(gly)2 | Default 105 319 2574 27856
RI-JK 44 71 326 3072
RIJCOSX 70 122 527 3659

(gly)a | Default 609 1917 13965 161047
RI-JK 333 678 2746 30398
RIJCOSX 281 569 2414 15383

(gly)s | Default 3317 12505 82774
RI-JK 3431 5452 16586 117795
RIJCOSX 1156 2219 8558 56505
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It is obvious from the data that for small molecules the RI-JK approximation is the most efficient choice. For
(gly)4 this is already no longer obvious. For up to the def2-TZVPP basis set, RI-JK and RIJCOSX are almost
identical and for def2-QZVPP RIJCOSX is already a factor of two faster than RI-JK. For large molecules like
(gly)s with small basis sets RI-JK is not a big improvement but for large basis set it still beats the normal
4-index calculation. RIJCOSX on the other hand is consistently faster. It leads to speedups of around 10 for
def2-TZVPP and up to 50-60 for def2-QZVPP. Here it outperforms RI-JK by, again, a factor of two.

8.1.4.5 DFT Calculations with Second Order Perturbative Correction (Double-Hybrid

Functionals)

There is a family of functionals which came up in 2006 and were proposed by Grimme [110]. They consist
of a semi-empirical mixture of DF'T components and the MP2 correlation energy calculated with the DFT
orbitals and their energies. Grimme referred to his functional as B2PLYP (B88 exchange, 2 parameters that
were fitted and perturbative mixture of MP2 and LYP) — a version with improved performance (in particular
for weak interactions) is mPW2PLYP [111] and is also implemented. From the extensive calibration work,
the new functionals appear to give better energetics and a narrower error distribution than B3LYP. Thus, the
additional cost of the calculation of the MP2 energy may be well invested (and is quite limited in conjunction
with density fitting in the RI part). Martin has reported reparameterizations of B2PLYP (B2GP-PLYP,
B2K-PLYP and B2T-PLYP) that are optimized for “general-purpose”, “kinetic” and “thermochemistry”
applications. [112,113] In 2011, Goerigk and Grimme published the PWPB95 functional with spin-opposite-
scaling and relatively low amounts of Fock exchange, which make it promising for both main-group and

transition-metal chemistry. [114]

Among the best performing density functionals [115] are Martin’s “DSD”-double-hybrids, which use different
combinations of exchange and correlation potentials and spin-component-scaled MP2 mixing. Three of these
double-hybrids (DSD-BLYP, DSD-PBEP86 and DSD-PBEB95) [116-118] are available via simple input
keywords. Different sets of parameters for the DSD-double-hybrids are published, e.g. for the use with and
without D3. The keywords DSD-BLYP, DSD-PBEP86 and DSD-PBEB95 request parameters consistent with the
GMTKNS55 [115] benchmark set results. The keywords DSD-BLYP/2013 and DSD-PBEP86,/2013 request the
slightly different parameter sets used in the 2013 paper by Kozuch and Martin. [118] To avoid confusion, the

different parameters are presented in table 8.10

Table 8.10: DSD-DFT parameters defined in ORCA

Keywords ScalDFX ScalHFX ScalGGAC PS PT D3S6  D3S8 D3A2
DSD-BLYP 0.25 0.75 0.53 0.46  0.60

DSD-BLYP D3BJ 0.31 0.69 0.54 0.46 0.37 0.50 0.213 6.0519
DSD-BLYP/2013 D3BJ 0.29 0.71 0.54 0.47 0.40 0.57 0 5.4
DSD-PBEP86 0.28 0.72 0.44 0.51 0.36

DSD-PBEP86 D3BJ 0.30 0.70 0.43 0.53 0.25 0.418 0 5.65
DSD-PBEP86/2013 D3B] 0.31 0.69 0.44 0.52 0.22 048 0 5.6
DSD-PBEB95 0.30 0.70 0.52 0.48 0.22

DSD-PBEB95 D3BJ 0.34 0.66 0.55 0.46 0.09 0.61 0 6.2

Note that D3A1 is always 0 for these functionals.
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Three different variants of MP2 can be used in conjunction with these functionals. Just specifying the
functional name leads to the use of conventional MP2. Prepending "RI-" to the functional name, for example
RI-B2PLYP or RI-DSD-BLYP, results in using RI-MP2. In this case, an appropriate auxiliary basis set for
correlation fitting needs to be specified. It is very strongly recommended to use the RI variants instead
of conventional MP2, as their performance is vastly better. Indeed, there is hardly ever any reason to use
conventional MP2. More information can be found in the relevant sections regarding RI-MP2.

Finally, DLPNO-MP2 can be used as a component of double-hybrid density functionals. In that case, a
”DLPNO-" prefix needs to be added to the functional name, for example DLPNO-B2GP-PLYP or DLPNO-DSD-PBEP86.

Please refer to the relevant manual sections for more information on the DLPNO-MP2 method.

For each functional, parameters can be specified explicitly in the input file, e.g. for RI-DSD-PBEB95 with
D3BJ:

In this version of ORCA, double-hybrid DFT is available for single points, geometry optimizations [119],
dipole moments and other first order properties, magnetic second order properties (chemical shifts, g-tensors),
as well as for numerical polarizabilities and frequencies.

8.1.4.6 DFT Calculations with Atom-pairwise Dispersion Correction

It is well known that DFT does not include dispersion forces. It is possible to use a simple atom-pairwise
correction to account for the major parts of this contribution to the energy [1,2,120,121]. We have adopted
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the code and method developed by Stefan Grimme in this ORCA version. The method is parameterized
for many established functionals (e.g. BLYP, BP86, PBE, TPSS, B3LYP, B2PLYP).® For the 2010 model
the Becke-Johnson damping version (! D3BJ) is the default and will automatically be invoked by the simple
keyword ! D3. The charge dependent atom-pairwise dispersion correction (keyword ! D4) is using the
D4(EEQ)-ATM dispersion model [123], other D4 versions, using tight-binding partial charges, are currently

only available with the standalone DFT-D4 program.

In this example, a BLYP calculation without dispersion correction will show a repulsive potential between
the argon atom and the methane molecule. Using the D3 dispersion correction as shown above, the potential
curve shows a minimum at about 3.1—3.2 A. The atom-pairwise correction is quite successful and Grimme’s
work suggests that this is more generally true. For many systems like stacked DNA basepairs, hydrogen bond
complexes and other weak interactions the atom-pairwise dispersion correction will improve substantially the

results of standard functionals at essentially no extra cost.

8.1.4.7 DFT Calculations with Range-Separated Hybrid Functionals

All range-separated functionals in ORCA use the error function based approach according to Hirao and
coworkers. [124] This allows the definition of DFT functionals that dominate the short-range part by an
adapted exchange functional of LDA, GGA or meta-GGA level and the long-range part by Hartree-Fock
exchange.

8 For expert users: The keyword D2, D3ZERO, D3BJ and D4 select the empirical 2006, the atom-pairwise 2010 model,
respectively, with either zero-damping or Becke-Johnson damping, or the partial charge dependent atom-pairwise
2018 model. The default is the most accurate D3BJ model. The outdated model from 2004 [122] is no longer
supported and can only be invoked by setting DFTDOPT = 1. The C6-scaling coefficient can be user defined using
e.g. “%method DFTDScaleC6 1.2 end”
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CAM-B3LYP, [125] LC-BLYP [126] and members of the wB97-family of functionals have been implemented
into ORCA, namely wB97, wB97X [127], wB97X-D3 [128], wBI7X-V [129], wBI7TM-V [130], wBI7X-D3BJ and
wB97M-D3BJ. [131] (For more information on wB97X-V [129] and wB97M-V [130] see section 9.3.2.12) Some
of them incorporate fixed amounts of Hartree-Fock exchange (EXX) and/or DFT exchange and they differ
in the RS-parameter p. In the case of wB97X-D3, the proper D3 correction (employing the zero-damping
scheme) should be calculated automatically. The D3BJ correction is used automatically for wB97X-D3BJ
and wB97M-D3BJ (as well as for the meta-GGA B97M-D3BJ). The user is encouraged to check this.

Several restrictions apply to these functionals at the moment. They have only been implemented and tested
for use with the 1ibint integral package and for RHF and UHF single-point, ground state nuclear gradient,
ground state nuclear hessian, TDDFT, and TDDFT nuclear gradient calculations. Only the standard integral
handling (NORI), RIJONX, and RIJCOSX are supported. Do not use these functionals with any other

options.

8.1.4.8 DFT Calculations with Range-Separated Double Hybrid Functionals

For the specifics of the range-separated double-hybrid functionals the user is referred to sections 8.1.4.5,
8.1.4.7 and 8.4.4. In ORCA the functionals wB2PLYP and wB2GP-PLYP are available. [132] Both were
optimized for the calculation of excitation energies. They will soon be tested for ground-state properties, but

currently we advise to solely use them for the purpose for which they were developed.

8.1.5 Quadratic Convergence

Convergence in SCF calculations is not always easy to achieve. One way to go if the calculations converges
only slowly or “creeps” towards the end of the SCF cycles such that many almost useless cycles are being
performed is to switch on a powerful but somewhat expensive convergence helper — the full Newton-Raphson
method. In the neighbourhood of a stable SCF solution this method converges quadratically which means
that after 3-4 Newton-Raphson cycles the calculations are normally converged. However, each cycle consists
of microiterations which are roughly as expensive as one SCF iteration. Thus, each SCF iteration becomes

somewhat expensive but this may be more than compensated by the reduced number of cycles.

Consider the following example of a molecule with a small HOMO-LUMO gap (= 1 eV):

| PModel RKS BP86 RI SemiDirect SV(P) def2/] TightSCF

* xyz 0 1
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The first job converges as follows:




104 8 Running Typical Calculations

Thus, the job converges almost monotonically but it does so somewhat slowly towards the end. The second

job, however:

Thus, after reaching the threshold for initiating the Newton-Raphson procedure after nine iterations, the job
takes only three more iterations to converge to the correct solution. Since each micro-iteration in the CP-SCF
procedure roughly corresponds to the formation of one Fock-matrix the second job is still somewhat more
expensive. You cannot always expect the Newton-Raphson procedure to converge’ and it will not converge
at all if your SCF solution is not stable (i.e. if the orbital Hessian has negative eigenvalues) — still, it is a
powerfull technique to try if other alternatives do not do well. It is important, however, to bring the SCF
into the radius of convergence of the Newton-Raphson procedure for it to be efficient.

The implementation covers closed-shell and spin-unrestricted Hartree-Fock and DFT calculations.

9 For example try %scf nrstart 0.1 end end to turn on the NRSCF after two iterations in the example above — it
will run into trouble.
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8.1.6 Counterpoise Correction

In calculating weak molecular interactions the nasty subject of the basis set superposition error (BSSE) arises.
It consists of the fact that if one describes a dimer, the basis functions on A help to lower the energy of
fragment B and vice versa. Thus, one obtains an energy that is biased towards the dimer formation due to
basis set effects. Since this is unwanted, the Boys and Bernardi procedure aims to correct for this deficiency
by estimating what the energies of the monomers would be if they had been calculated with the dimer basis
set. This will stabilize the monomers relative to the dimers. The effect can be a quite sizeable fraction of the
interaction energy and should therefore be taken into account. The original Boys and Bernardi formula for

the interaction energy between fragments A and B is:

AE = E4E(AB) — E{(A) - EE(B) — [E4P(AB) - E4P(A) + E5”(AB) — E5" (B)] (8.10)

Here EY (Z) is the energy of fragment X calculated at the optimized geometry of fragment Y with the basis
set of fragment Z. Thus, you need to do a total the following series of calculations: (1) optimize the geometry
of the dimer and the monomers with some basis set Z. This gives you E45 (AB), E4 (A) and EE (B) (2)
delete fragment A (B) from the optimized structure of the dimer and re-run the single point calculation
with basis set Z. This gives you Ea® (B) and E4® (A). (3) Now, the final calculation consists of calculating
the energies of A and B at the dimer geometry but with the dimer basis set. This gives you EﬁB (AB) and
E4B (AB).

In order to achieve the last step efficiently, a special notation was put into ORCA which allows you to delete
the electrons and nuclear charges that come with certain atoms but retain the assigned basis set. This trick

W

consists of putting a “:” after the symbol of the atom. Here is an example of how to run such a calculation of

the water dimer at the MP2 level (with frozen core):
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You obtain the energies:

8.1.7 Complete Active Space Self-Consistent Field Method

8.1.7.1 Introduction

There are several situations where a complete-active space self-consistent field (CASSCF) treatment is a good

idea:

o Wavefunctions with significant multireference character arising from several nearly degenerate configu-

rations (static correlation)

e Wavefunctions which require a multideterminantal treatment (for example multiplets of atoms, ions,

transition metal complexes, ...)
e Situations in which bonds are broken or partially broken.
e Generation of orbitals which are a compromise between the requirements for several states.

e Generation of start orbitals for multireference methods covering dynamic correlation (NEVPT2, MRCI,
MREOM,...)

e Generation of genuine spin eigenfunctions for multideterminantal /multireference wavefunctions.

In all of these cases the single-determinantal Hartree-Fock method fails badly and in most of these cases DFT
methods will also fail. In these cases a CASSCF method is a good starting point. CASSCF is a special case of
multiconfigurational SCF (MCSCF) methods which specialize to the situation where the orbitals are divided
into three-subspaces: (a) the internal orbitals which are doubly occupied in all configuration state functions
(CSFs), (b) partially occupied (active) orbitals and (c) virtual (external) orbitals which are empty in all CSFs.
A fixed number of electrons is assigned to the internal subspace and the active subspace. If N-electrons are
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“active” in M orbitals one speaks of a CASSCF(N,M) wavefunctions. All spin-eigenfunctions for N-electrons in
M orbitals are included in the configuration interaction step and the energy is made stationary with respect
to variations in the MO and the CI coefficients. Any number of roots of any number of different multiplicities
can be calculated and the CASSCF energy may be optimized with respect to a user defined average of these

states.

The CASSCF method has the nice advantage that it is fully variational which renders the calculation of
analytical gradients relatively easy. Thus, the CASSCF method may be used for geometry optimizations and

numerical frequency calculations.

The price to pay for this strongly enhanced flexibility relative to the single-determinantal HF method is that
the CASSCF method requires more computational ressources and also more insight and planning from the
user side. The technical details are explained in section 9.13. Here we explain the use of the CASSCF method
by examples. In addition to the description in the manual, there is a separate tutorial for CASSCF with
many more examples in the field of coordination chemistry. The tutorial covers the design of the calculation,

practical tips on convergence as well as the computation of properties.

A number of properties are available in ORCA (g-tensor, ZFS splitting, CD, MCD, susceptibility, dipoles,
...). The majority of CASSCF properties such as EPR parameters are computed in the framework of the
quasi-degenerate perturbation theory. Some properties such as ZFS splittings can also be computed via
perturbation theory or rigorously extracted from an effective Hamiltonian. For a detailed description of the
available properties and options see section 9.13.2. All the aforementioned properties are computed within
the CASSCF module. An exception are Mdssbauer parameters, which are computed with the usual keywords
using the EPRNMR module (8.15.9).

8.1.7.2 A simple Example

One standard example of a multireference system is the Be atom. Let us run two calculations, a standard
closed-shell calculation (1s?2s?) and a CASSCF(2,4) calculation which also includes the (1s?2s!2p!) and
(1s225°2p?) configurations.

I TZVPP TightSCF
*xyz 0 1
Be 0 0 0

%

This standard closed-shell calculation yields the energy -14.56213241 Eh. The CASSCF calculation

I TZVPP TightSCF

%casscf nel 2
norb 4
end

* xyz 0 1



8.1 Single Point Energies and Gradients 109

yields the energy -14.605381525 Eh. Thus, the inclusion of the 2p shell results in an energy lowering of 43

mEh which is considerable. The CASSCF program also prints the composition of the wavefunction:

This information is to be read as follows: The lowest state is composed of 90% of the configuration which has
the active space occupation pattern 2000 which means that the first active orbital is doubly occupied in this
configuration while the other three are empty. The MO vector composition tells us what these orbitals are
(ORCA uses natural orbitals to canonicalize the active space).

Thus, the first active space orbital has occupion number 1.80121 and is the Be-2s orbital. The other three
orbitals are 2p in character and all have the same occupation number 0.06626. Since they are degenerate

in occupation number space, they are arbitrary mixtures of the three 2p orbitals. It is then clear that the
other components of the wavefunction (each with 3.31%) are those in which one of the 2p orbitals is doubly
occupied.

How did we know how to put the 2s and 2p orbitals in the active space? The answer is — WE DID NOT
KNOW! In this case it was “good luck” that the initial guess produced the orbitals in such an order that we
had the 2s and 2p orbitals active. IN GENERAL IT IS YOUR RESPONSIBILITY THAT THE
ORBITALS ARE ORDERED SUCH THAT THE ORBITALS THAT YOU WANT IN THE
ACTIVE SPACE COME IN THE DESIRED ORDER. In many cases this will require re-ordering
and CAREFUL INSPECTION of the starting orbitals.



110 8 Running Typical Calculations

ATTENTION:

e If you include orbitals in the active space that are nearly empty or nearly doubly occupied, convegence
problems are likely. The SuperCI(PT) [133] and Newton-Raphson method are less prone to these
problems.

8.1.7.3 Starting Orbitals

TIP

e In many cases natural orbitals of a simple correlated calculation of some kind provide a good starting
point for CASSCF.

Let us illustrate this principle with a calculation on the Benzene molecule where we want to include all six

m-orbitals in the active space. After doing a RHF calculation:

We can look at the orbitals around the HOMO/LUMO gap:
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We see that the occupied m-orbitals number 16, 19, 20 and the unoccupied ones start with 21 and 22. However,

the sixth high-lying 7*-orbital cannot easily be found. Thus, let us run a simple selected CEPA /2 calculation

and look at the natural orbitals.
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The calculation prints the occupation numbers:

From these occupation number it becomes evident that there are several natural orbitals which are not quite
doubly occupied MOs. Those with an occupation number of 1.95 and less should certainly be taken as active.
In addition the rather strongly occupied virtual MOs 21-23 should also be active leading to CASSCF(6,6).
Let us see what these orbitals are before starting CASSCF:
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Leading to:

This shows us that these six orbitals are precisely the 7/7* orbitals that we wanted to have active (you can
also plot them to get even more insight).

Now we know that the desired orbitals are in the correct order, we can do CASSCF":

To highlight the feature SwitchStep of the CASSCF program, we employ the the Newton-Raphson method

(NR) after a certain convergence has been reached (SwitchStep NR statement). In general, it is not

recommended to change the default convergence settings! The output of the CASSCF program is:
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First of all you can see how the program cycles between Cl-vector optimization and orbital optimization steps
(so-called unfolded two-step procedure). After 4 iterations, the program switches to the Newton-Raphson
solver which then converges very rapidly. Orbital optimization with the Newton-Raphson solver is somewhat
to the size of the molecules, as the program produces lengthy integrals and Hessian files. In the majority of
situations the default converger (SuperCI(PT)) is the preferred choice. [133]

8.1.7.4 CASSCF and Symmetry

The CASSCF program can make some use of symmetry. Thus, it is possible to do the CI calculations
separated by irreducible representations. This allows one to calculate electronic states in a more controlled
fashion.

Let us look at a simple example: CoHy. We first generate symmetry adapated MP2 natural orbitals. Since
we opt for initial guess orbitals, the computationally cheaper unrelaxed density suffices:

The program does the following. It first identifies the group correctly as Doy, and sets up its irreducible repre-
sentations. The process detects symmetry within SymThresh (10~*) and purifies the geometry thereafter:
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It then performs the SCF calculation and keeps the symmetry in the molecular orbitals.

The MP2 module does not take any advantage of this information but produces natural orbitals that are
symmetry adapted:
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From this information and visual inspection you will know what orbitals you will have in the active space:

These natural orbitals can then be fed into the CASSCF calculation. We perform a simple calculation in
which we keep the ground state singlet (A;, symmetry, irrep=0) and the first excited triplet state (B,
symmetry, irrep=7). In general the ordering of irreps follows standard conventions and in case of doubt you
will find the relevant number for each irrep in the output.

For example, here (using LargePrint):

We use the following input for CASSCF, where we tightened the integral cut-offs and the the convergence
criteria using !VeryTightSCF.
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And further in the CASCSF program:
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Note that the irrep occupations and active space irreps will be frozen to what they are upon entering the
CASSCF program. This helps to setup the CI problem.

After which it smoothly converges to give:

As well as:

8.1.7.5 RI, RIJCOSX and RIJK approximations for CASSCF

A significant speedup of CASSCF calculations on larger molecules can be achieved with the RI, RI-JK and
RIJCOSX approximations. [133] There are two independent integral generation and transformation steps in
a CASSCF procedure. In addition to the usual Fock matrix construction, that is central to HF and DFT
approaches, more integrals appear in the construction of the orbital gradient and Hessian. The latter are
approximated using the keyword trafostep RI, where an auxiliary basis (/C or the more accurate /JK
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auxiliary basis) is required. Note that auxiliary basis sets of the type /J are not sufficient to fit these integrals.
If no suitable auxiliary basis set is available, the AutoAux feature might be useful (see comment in the input
below). [134] We note passing, with ORCA 4.1 there are in principle three distinguished auxiliary basis slots,
that can be individually assigned in the %basis block (section 9.4). As an example, we recompute the bezene
ground state example from section 8.1.7.3 with a CAS(6,6).

The energy of this calculation is -230.590328 Eh compared to the previous result -230.590271 Eh. Thus,
the RI error is only 0.06 mEh which is certainly negligible for all intents and purposes. With the larger /JK
auxiliary basis the error is typically much smaller (0.02 mEh in this example). Even if more accurate results
are necessary, it is a good idea to pre-converge the CASSCF with RI. The resulting orbitals should be a much
better guess for the subsequent calculation without RI and thus save computation time.

The TrafoStep RI only affects the integral transformation in CASSCF calculations while the Fock operators
are still calculated in the standard way using four index integrals. In order to fully avoid any four-index
integral evaluation, you can significantly speed up the time needed in each iteration by specifying !RIJCOSX.
The keyword implies TrafoStep RI. The COSX approximation is used for the construction of the Fock
matrices. In this case, an additional auxiliary basis (/J auxiliary basis) is mandatory.
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The speedup and accuracy is similar to what is observed in RHF and UHF calculations. In this example
the RIJCOSX leads to an error of 1 mEh. The methodology performs better for the computation of energy
differences, where it profits from error cancellation. The RIJCOSX is ideally suited to converge large-scale
systems. Note that for large calculations the integral cut-offs and numerical grids should be tightened. See
section 9.3.2.7 for details. With a floppy numerical grid setting the accuracy as well as the convergence
behavior of CASSCF deteriorate. For systems that are large but still feasible for a conventional calculation it
is recommended to use the RIJK approximations instead (!RIJK conv). To exploit the conventional nature,
a single auxiliary basis must be provided that is sufficiently larger to approximate the Fock matrices
as well the gradient/Hessian integrals.

The RIJK methodology is more accurate and robust for CASSCF e.g. here the error is just 0.5 mEH.

Organic molecules with nearly double occupied orbitals can be challenge for the orbital optimization
process. We compare calculations done with/without the NR solver:

The NR variant takes 5 cylces to converge, whereas the default (SuperCI_PT) requires 8 cycles. In general,

first order methods, take more iterations compared to the NR method. However, first order methods are
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much cheaper than the NR and therefore it may pay off to do a few iterations more rather than switching
to the expensive second order methods. Moreoever, second order methods are less robust and may diverge
in certain circumstances (too far from convergence). When playing with the convergence settings, there is
always a trade-off between speed versus robustness. The default settings are chosen carefully. [133] Facing
convergence problems, it can be useful to use an alternative scheme (orbstep SuperCI and switchstep
DIIS) in conjunction with a level-shifts (ShiftUp, ShiftDn). Alternatively, changing the guess orbitals may

avoid convergence problems as well.

8.1.7.6 Breaking Chemical Bonds

Let us turn to the breaking of chemical bonds. As a first example we study the dissociation of the Hy molecule.
Scanning a bond, we have two potential setups for the calculation: a) scan from the inside to the outside or
b) from the outside to inside. Of course both setups yield identical results, but they differ in practical aspects
i.e. convergence properties. In general, scanning from the outside to the inside is the recommended
procedure. Using the default guess (PModel), starting orbitals are much easier indentified than at shorter
distances, where the antibonding orbitals are probably ‘impure’ and hence would require some additional
preparation. To ensure a smooth potential energy surface, in all subsequent geometry steps, ORCA reads the

converged CASSCF orbitals from the previous geometry step. In the following, TightSCF is used to tighten

the convergence settings of CASSCF.

The resulting potential energy surface (PES) is depicted in 8.10 together with PESs obtained from RHF and
broken-symmetry UHF calculations (input below).
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Figure 8.10: Potential Energy Surface of the Hy molecule from RHF, UHF and CASSCF(2,2) cal-
culations (SVP basis).

It is obvious, that the CASSCF surface is concise and yields the correct dissociation behavior. The RHF
surface is roughly parallel to the CASSCF surface in the vicinity of the minimum but then starts to fail badly
as the H-H bond starts to break. The broken-symmetry UHF solution is identical to RHF in the vicinity of
the minimum and dissociates correctly. It is, however, of rather mediocre quality in the intermediate region

where it follows the RHF surface too long too closely.

A more challenging case is to dissociate the N-N bond of the Ny molecule correctly. Using CASSCF with the
six p-orbitals we get a nice potential energy curve (The depth of the minimum is still too shallow compared
to experiment by some 1 eV or so. A good dissociation energy requires a dynamic correlation treatment on
top of CASSCF and a larger basis set).

One can use the Hy example to illustrate the state-averaging feature. Since we have two active electrons we
have two singlets and one triplet. Let us average the orbitals over these three states (we take equal weights
for all multiplicity blocks):
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Figure 8.11: Potential Energy Surface of the Ny molecule from CASSCF(6,6) calculations (SVP
basis).

which gives:
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Figure 8.12: State averaged CASSCF(2,2) calculations on Hy (two singlets, one triplet; SVP basis).
The grey curve is the ground state CASSCF(2,2) curve

One observes, that the singlet and triplet ground states become degenerate for large distances (as required)
while the second singlet becomes the ionic singlet state which is high in energy. If one compares the lowest
root of the state-averaged calculation (in green) with the dedicated ground state calculation (in grey) one

gets an idea of the energetic penalty that is associated with averaged as opposed to dedicated orbitals.

A more involved example is the rotation around the double bond in CoHy. Here, the m-bond is broken as one
twists the molecule. The means the proper active space consists of two active electron in two orbitals.

The input is (for fun, we average over the lowest two singlets and the triplet):
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Figure 8.13: State averaged CASSCF(2,2) calculations on CoHy (two singlets, one triplet; SV(P)
basis). The grey curve is the state averaged energy and the purple curve corresponds
to RHF.

We can see from this plot, that the CASSCF method produces a nice ground state surface with the correct
periodicity and degeneracy at the end points, which represent the planar ethylene molecule. At 90° one has
a weakly coupled diradical and the singlet and triplet states become nearly degenerate, again as expected.
Calculations with larger basis sets and inclusion of dynamic correlation would give nice quantitative results.
We have also plotted the RHF energy (in purple) which gives a qualitatively wrong surface and does not
return to the correct solution for planar ethylene. It is evident that even high quality dynamic correlation
treatments like CC or CI would hardly be able to repair the shortcomings of the poor RHF reference state.
In all these cases, CASSCF is the proper starting point for higher accuracy.

8.1.7.7 Excited States

As a final example, we do a state-average calculation on HoCO in order to illustrate excited state treatments.
We expect from the ground state (basically closed-shell) a n — 7* and a m — 7* excited state which we want
to describe. For the n— 7* we also want to calculate the triplet since it is well known experimentally. First
we take DFT orbitals as starting guess, which in this example produces the desired active space (n,7 and
7* orbitals) without further modification (e.g. swaping orbitals). In general it is adviced to verify the final
converged orbitals.
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The triplet n — 7* states is spot on with the experiment excitation energy of 3.5 eV. [135] Similarly,

the singlet n — 7* excited state is well reproduced compared to 3.79 eV and 4.07 eV reported in the
litterature. [135,136] Only the singlet 7 — 7* excited state stands out compared to the theoretical estimate
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of 9.84 eV computed with MR-AQCC. [137]. The good results are very fortuitous given the small basis set,
the minimal active space and the complete neglect of dynamical correlation.

The state-average procedure might not do justice to the different nature of the states (n — 7* versus
7 — 7). The agreement should be better with the orbitals optimized for each state. In ORCA, state-

speficic optimization are realized adjusting the weights i.e. for the second singlet excited root:

Second-Singlet:

%cassctf nel 4
norb 3
mult 1
nroots 3

weights[0] = 0,0,1 # weights for the roots in the first mult block (singlet)
end

Note, that state-specific orbital optimization are challenging to converge and often prone to root-flipping. [138]
In our particular case, no problems occur repeating the calculation for each state. Gathering the results from

the four independent calculations, we can manually compute the excitation energy:

Ground State : -113.8190890919 Eh
Mult=1 Root=1: -4.13 eV # n->pi*
Mult=1 Root=2: -11.28 eV # pi->pi*
Mult=2 Root=0: -3.76 eV # n->pi*

While the n — 7* excitation energies remain in good agreement, there is a palpable improvement for the
m — m" excitation state. From here, it is easy to enlarge the basis set and account for dynamical correlation

(e.g. NEVPT2) to further improve the excitation energies.

8.1.7.8 CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations

Consider the possibility that you are not sure about the orbital occupancy of your system. Hence you
carry out some CASSCF calculation for various states of the system in an effort to decide on the ground
state. You can of course follow the CASSCF by MR-MP2 or MR-ACPF or SORCI calculations to get a true
multireference result for the state ordering. Yet, in some cases you may also want to obtain a coupled-cluster
estimate for the state energy difference. Converging coupled-cluster calculation on alternative states in
a controlled manner is anything but trivial. Here a feature of ORCA might be helpful. The best single
configuration that resembles a given CASSCF state is built from the natural orbitals of this state. These
orbitals are also ordered in the right way to be input into the MDCI program. The convergence to excited

states is, of course, not without pitfalls and limitations as will become evident in the two examples below.
As a negative example consider first the following interesting dicarbene.

For this molecule we expect that we should use four active orbitals and four active electrons and that singlet,
triplet and quintet states might be accessible. We start with a simple CASSCF(4,4) optimization on the
lowest singlet state.
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Of course, one should also do optimizations on the the other two spin states (and with larger basis sets) but
for the sake of the argument, we stick to the singlet structure. Next, the natural orbitals for each state are
generated with the help of the MRCI module. To this end we run a state averaged CASSCF for the lowest
four singlet, two triplets and the quintet and pass that information on to the MRCI module that does a

CASCI only (e.g. no excitations):
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This produces the files: BaseName.bm_sn.nat where “m” is the number of the block (m=0,1,2 correspond to
singlet, triplet and quintet respectively) and “n” stands for the relevant state (n=0,1,2,3 for singlet, n=0,1
for triplet and n=0 for quintet).

These natural orbitals are then fed into unrestricted QCISD(T) calculations:

This produces the energies:

State | Energy (Eh) | Relative Energy (cm™1)

S0 -116.190768 0

S1 -116.067138 27133.0
S2 -116.067138 27133.0
S3 -116.067138 27133.0
TO -116.155421 7757.6
T1 -116.113969 16855.1
Qo -116.134575 12332.6

It is found that the calculations indeed converge to different states. The excited singlets all fall down to the
same state that is approximately 27,000 cm™! above the lowest solution. The triplets are distinct and the
quintet is unique anyways. Inspection of the coupled-cluster wavefunctions indicate that the singlet converged
to the closed-shell solution and the first doubly excited state respectively.

These energies can be compared with the genuine multireference calculation obtained from the SORCI
method:
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Which produces:

With the description of the wavefunctions:
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Thus, the singlet ground state is heavily multiconfigurational, the lowest triplet state is moderately multicon-
figurational and the lowest quintet state is of course a single configuration. Interstingly, the lowest singlet,
triplet and quintet do not form a regular spin ladder which might have been expected if one considers the
system of being composed of two interacting S=1 systems. Rather, the lowest singlet and triplet states are
close in energy while the lowest quintet is far away.

The energies are completely different from the QCISD(T) results. However, this is not unexpected based on
the composition of these wavefunctions. These are the limitations of single reference methods. Nevertheless,
this shows how such results can be obtained in principle.

As a more positive example, consider some ionized states of the water cation:

First the natural orbital generation:
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Then the SORCI reference calculation:

Then the three QCISD(T) calculations

we obtain the transition energies:
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Thus, in this example the agreement between single- and multireference methods is good and the unrestricted
QCISD(T) method is able to describe these excited doublet states. The natural orbitals have been a reliable

way to guide the CC equations into the desired solutions. This will work in many cases.

8.1.7.9 Large Scale CAS-SCF calculations using ICE-CI

The CASSCF procedure can be used for the calculation of spin-state energetics of molecules showing a
multi-reference character via the state-averaged CASSCF protocol as described in the CASSCF section 9.13.
The main obstacle in getting qualitatively accurate spin-state energetics for molecules with many transition
metal centers is the proper treatment of the static-correlation effects between the large number of open-shell
electrons. In this section, we describe how one can effectively perform CASSCF calculations on such systems

containing a large number of high-spin open-shell transition metal atoms.

As an example, consider the Iron-Sulfur dimer [Fe(I1I)2SR2]* molecule. In this system, the Fe(III) centers can
be seen as being made up mostly of S=5/2 local spin states (lower spin states such as 3/2 and 1/2 will have
small contributions due to Hunds’ rule.) The main hurdle while using the CASSCF protocol on such systems
(with increasing number of metal atoms) is the exponential growth of the Hilbert space although the physics
can be effectively seen as occuring in a very small set of configuration state functions (CSFs). Therefore, in
order to obtain qualitatively correct spin-state energetics, one need not perform a Full-CI on such molecules
but rather a CIPSI like procedure using the ICE-CI solver should give chemically accurate results. In the
case of the Fe(III) dimer, one can imagine that the ground singlet state is composed almost entirely of the

CSF where the two Fe(III) centers are coupled antiferromagnetically. Such a CSF is represented as follows:

(w5=0) = [1,1,1,1,1, -1, ~1,-1,~1,~1] (8.11)

In order to make sense of this CSF representation, one needs to clarify a few points which are as follows:

e First, in the above basis the 10 orbitals are localized to 5 on each Fe center (following a high-spin
UHF /UKS calculation.)

e Second, the orbitals are ordered (as automatically done in ORCA _LOC) such that the first five orbitals

lie on one Fe(III) center and the last five orbitals on the second Fe(III) center.

Using this ordering, one can read the CSF shown above in the following way: The first five I represent the
five electrons on the first Fe(III) coupled in a parallel fashion to give a S=5/2 spin. The next five -1 represent

two points:

e First, the five consecutive -1 signify the presence of five ferromagnetically coupled electrons on the

second Fe(III) center resulting in a local S=5/2 spin state.

e Second, the second set of spins are coupled to the first I via anti-parallel coupling as signified by the

-ve sign of the last five -1s.

Therefore, we can see that using the CSF representation, one can obtain an extremely compact representation
of the wavefunction for molecules consisting of open-shell transition metal atoms. This protocol of using
localized orbitals in a specified order to form compact CSF representations for transition metal systems can

be systematically extended for large molecules.
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We will use the example of the Iron-Sulfur dimer [Fe(III)QSR2]2' to demonstrate how to prepare a reference
CSF and perfom spin-state energetics using the state-averaged CASSCF protocol. In such systems, often one
can obtain an estimate of the energy gap between the singlet-state and the high-spin states from experiment.

Ab initio values for this gap be obtained using the state-averaged CASSCF protocol using the input shown
below.
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The main keyword that needs to be used here (unlike in other CAS-SCF calculations) is the actorbs keyword.
Since we are using a local basis with a specific ordering of the orbitals, in order to represent our wavefunction
it is imperetive to preseve the local nature of the orbitals as well as the orbital ordering. Therefore, we do not
calculate natural orbitals at the end of the CASSCF calculation (as is traditionally done) instead we impose
the orbitals to be as similar to the input orbitals as possible. This is automatically enabled for intermediate
CASSCF macroiterations. The resulting CASSCEF calculation provides a chemically intuitive and simple

wavefunction and transition energy as shown below:

As we can see from the output above, 98% of the wavefunction for the singlet-state is given by a single CSF

which we gave as a reference CSF. This CSF has a very simple chemical interpretation representing the
anti-parallel coupling between the two high-spin Fe(III) centers. Since Iron-Sulfur molecules show a strong
anti-ferromagnetic coupling, we expect the singlet state to be lower in energy than the high-spin (S=5) state.
The CASCSCF transition energies show essentially this fact. The transition energy is about 2000 ¢m™' which
is what one expects from a CASSCF calculation on such sulfide bridged transition-metal molecules.
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8.1.8 N-Electron Valence State Perturbation Theory (NEVPT2)

NEVPT?2 is an internally contracted multireference perturbation theory, which applies to CASSCF type
wavefunctions. The NEVPT2 method as described in the original papers of Angeli et al comes in two
flavor the strongly contracted NEVPT2 (SC-NEVPT2) and the so called partially contracted NEVPT2
(PC-NEVPT2). [139-141] In fact, the latter employs a fully internally contracted wavefunction and should
more appropriately called FIC-NEVPT2. Both methods produces energies of similar quality as the CASPT?2
approach. [142,143]

The SC-NEVPT2 and FIC-NEVPT?2 are implemented in ORCA together with a number of approximations
that makes the methodology very attractive for large scale applications. In conjunction with the RI
approximation systems with active space of to 16 active orbitals and 2000 basis functions can be computed.
With the newly developed DLPNO version of the FIC-NEVPT2 the size of the molecules does not matter
anymore. [144] For a more complete list of keywords and features, we refer to detailed documation section
9.14.

Besides corrections to the correlation energy, ORCA features UV, IR, CD and MCD spectra as well as
EPR parameters for NEVPT2. These properties are computed using the “quasi-degenerate perturbation
theory” that is described in section 9.13.2. The NEVPT2 corrections enter as “improved diagonal energies”
in this formalism. ORCA also features the multi-state extension (QD-NEVPT?2) for the strongly contracted
NEVPT2 variant. [145] Here, the reference wavefunction is revised in the presence of dyanmical correlation.

For systems, where such reference relaxation is important, the computed spectroscopic properties will improve.

As a simple example for NEVPT2, consider the ground state of the nitrogen molecule Ny . After defining the
computational details of our CASSCF calculation, we insert “!NEVPT2” as simple input or specify “PTMethod
SC_NEVPT2” in the %casscf block. The SC-NEVPT?2 has been the workhorse of our own group for a long
time and is thus the program default. There are more optional settings, which are described in section 9.14

of this manual.
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For better control of the program flow it is advised to split the calculation into two parts. First converge
the CASSCF calculation and then in a second step read the converged orbitals and execute the actual
NEVPT2.

Introducing dynamic correlation with NEVPT2 lowers the energy by 150 mEh. ORCA also prints the
contribution of each “excitation class V” to the NEVPT2 correction. We note that in the case of a single
reference wavefunction the V0_ij,ab excitation class produces the exact MP2 correlation energy. Different
from the ORCA 3.0, the default setting of NEVPT2 calculation uses the frozen core approximation. If one
need to reproduce the NEVPT2 energies of ORCA 3.0 calculation, the keyword ”nofrozencore” should be
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added. In our opinion, the frozen core should be avoided. The savings in computation time are fairly small
and do not justify the loss in accuracy.

In chapter 8.1.7.6 the dissociation of the Ny molecule has been investigated with the CASSCF method.
Inserting PTMethod SC_NEVPT2 into the %casscf block we obtain the NEVPT2 correction as additional

information.

N DISSOCIATION (NEVPT2)

~107.50 A

~107.75 4

—108.00

—109.25 A — CASSCF
= SC-NEVTPT2

0.50 0.75 1.00 1.10 1.25 1.50 175 2.00 225 2.50
R(A]

Figure 8.14: Potential Energy Surface of the Ny molecule from CASSCF(6,6) and NEVPT2 calcu-
lations (def2-SVP).

All of the options available in CASSCF can in principle be applied to NEVPT2. Since NEVPT2 is implemented
as a submodule of CASSCF, it will inherit all settings from CASSCF (!tightscf, !UseSym, !RIJCOSX,

).
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NOTE

e NEVPT?2 analytic gradients are not available, but numerical gradients are!

8.1.9 Complete Active Space Peturbation Theory (CASPT2)

The fully internally contracted CASPT2 (FIC-CASPT?2) approach shares its wave function ansatz with the
FIC-NEVPT2 approach mentioned in the previous section. [146] The two approach differ in the definition of
the zero’th order Hamiltonian. The CASPT2 approach employs the generalized Fock-operator, which may
result in intruder states problems (singularities in the perturbation expression). Real and imaginary level
shifting techniques are introduced to avoid intruder states. [147,148] Note that both level shifts are mutually
exclusive. Since level shifts in general affect the total energies, they should be avoided or chosen as small as
possible.

The CASPT2 methodology is called in complete analogy to the NEVPT2 branch in ORCA and can be
combined with the resolution of identity (RI) approximation.

%cassct

PTMethod FIC_CASPT2 # fully internally contracted CASPT2
# Optional settings
PTSettings
CASPT2_rshift 0.0 # (default) real level shift
CASPT2_ishift 0.0 # (default) imaginary level shift
CASPT2_IPEAshift 0.0 # (default) IPEA shift
end

end

The RI approximated results are comparable to the CD-CASPT2 approach presented elswhere. [149] For
a general discussion of the RI and CD approximation, we refer to the litterature. [150] Many of the input
parameter are shared with the FIC-NEVPT2 approach. A list with the available options is presented in
section 9.15. We note passing, that the ORCA implementation is validated against OpenMOLCAS. [151]
The ORCA version differs in the implementation of the IPEA shifts and thus yields different results. [152].
The IPEA shift, A, is added to the matrix elements of the internally contracted CSFs ®27 = EPET|W0 >

with the generalized Fock operator

SWARDN ’o0 X >\ . .
<@L IF|O8 > + =< BLL|N > -2 (49 — g 97— ),

where 7% =< WY|EP|¥° > is the expectation value of the spin-traced excitation operator. [153] The labels
p,q,1,s refer to general molecular orbitals (inactive, active and virtual). Irrespective of ORCA implementation,
the validity of the IPEA shift in general remains questionable and is thus by default disabled. [154]

In this short section, we add the CASPT2 results to the previously computed NEVPT2 potential energy
surface of the Ny molecule.



8 Running Typical Calculations

The CASPT2 output repeats the settings prior computation. The printed reference weights should be checked.
Small reference weights are indicate intruder states. Along the lines, the program also prints the smallest
denominators in the perturbation expression (highlighted in the snippet below). Small denominator may
lead to intruder states.
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Note that program prints the CASPT2-D results prior entering the CASPT?2 iterations. In case of intruder

states, the residual equation may not converge. The program will not abort. Hence, it is important to check

convergence for every CASPT2 run.

N DISSOCIATION (NEVPT2)

~107.50 A

-107.75 4

—108.00 A

—108.25 4

Energy [Eh]
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—108.75 A

~109.00 4

== CASSCF
—10925 = FIC-NEVTPT2
= FIC-CASPT2

0.50 0.75 1.00 1.25 1.50 175 2.00 225 250

Figure 8.15: Potential Energy Surface of the No molecule from CASSCF(6,6) and CASPT2 calcu-
lations (def2-SVP).

The potential energy surface in Figure 8.1.9 is indeed very similar to the FIC-NEVPT2 approach, which is
more efficient (no iterations) and robust (absence of intruder states). Despite its flaws, the CASPT2 method

is of historical importance and remains a popular methodology. In the future we might consider further
extension such as the (X)MS-CASPT2. [155]

8.1.10 2nd order Dynamic Correlation Dressed Complete Active Space method
(DCD-CAS(2))

Nondegenerate multireference perturbation theory (MRPT) methods like NEVPT2 have the Oth order part
of the wavefunction fixed by a preceding CASSCF calculation, which can be a problem if the CASSCF states
are biased towards a wrong state composition in terms of electron configurations. DCD-CAS(2) constructs a

dressed CASCI matrix whose diagonalization yields correlated energies and Oth order states that are remixed
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in the CASCI space under the effect of dynamic correlation. [156] The basic usage is very simple: One just
needs a %casscf block and the simple input keyword !DCD-CAS(2). The following example is a calculation
on the LiF molecule. It possesses two singlet states that can be qualitatively described as ionic (LiT and F™)
and covalent (neutral Li with electron in 2s orbital and neutral F with hole in 2p, orbital). At distances
close to the equilibrium geometry, the ground state is ionic, while in the dissociation limit the ground state is
neutral. Somewhere in between, there is an avoided crossing of the adiabatic potential energy curves where
the character of the two states quickly changes (see figure 9.5 for potential energy curves for this system at
the (QD)NEVPT?2 level). At the CASSCF level, the neutral state is better described than the ionic one, with
the result that the latter is too high in energy and the avoided crossing occurs at a too small interatomic
distance. In the region where the avoided crossing actually takes place, the CASSCF states are then purely
neutral or purely ionic. DCD-CAS(2) allows for a remixing of the states in the CASCI space under the effect

of dynamic correlation, which will lower the ionic state more in energy than the neutral one. The input file is

as follows:

Since none of the standard guesses (!PAtom, !PModel, etc.) produces the correct active orbitals (Li 2s and
F 2p,), we read them from the file casorbs.gbw. We also use the actorbs locorbs option to preserve the
atomic character of the active orbitals and make it easier to interpret the states in terms of neutral and ionic

components. The following is the state composition for the above example (5.5 angstrom distance) at the
CASSCEF level and at the DCD-CAS(2) level.
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One can clearly see that while the CASSCF states are purely neutral (dominated by CFG 11) or purely ionic
(dominated by CFG 82), the DCD-CAS(2) states are mixtures of neutral and ionic contributions, indicating
that we performed the calculation for an interatomic distance that is in the avoided crossing region. We
should note that the energies that are printed together with the DCD-CAS(2) state composition are the
ones that are obtained from diagonalization of the DCD-CAS(2) dressed Hamiltonian. For excited states,
these energies suffer from what we call ground state bias (see the original paper for a discussion [156]). A
perturbative correction has been devised to overcome this problem. Our standard choice is first-order bias
correction. The corrected energies are also printed in the output file and those energies should be used in
production use of the DCD-CAS(2) method:

Last but not least, spin orbit coupling (SOC) and spin spin coupling (SSC) are implemented in conjunction
with the DCD-CAS(2) method in a QDPT-like procedure and a variety of different magnetic and spectroscopic

properties can be calculated. We refer to the detailed documentation (section 9.16) for further information.

WARNING: Note that the computational cost of a DCD-CAS(2) calculation scales as roughly
the 3rd power of the size of the CASCI space. This makes calculations with active spaces

containing more than a few hundred CSF's very expensive!
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8.1.11 Full Configuration Interaction Energies and Properties

The MRCI and CASSCF modules may be used to produce energies and properties (g-tensors, zero-field
splitting, etc) at the level of full configuration interaction (FCI). Larger molcular system naturally require
more computational resources and time. For the CASSCF module, the limit of still feasible calculations is
around 14 electrons in 14 orbitals using configuration state functions (CSF) for the CI expansion. Larger
active spaces may be computed in the framework of the Density Matrix Renormalization Group (DMRG),
which may be selected by CIStep in the CASSCF module. Similarly, the iteractive configuration expansion
CI (ICE-CI) can be selected as CIStep in CASSCF or called directly using the ICE block as described in
9.19. The ICE-CI offers a more traditional approach to get approximate full CI results. These options and
modules have their own sections in the manual with a detailed documentation on their usage and the available

properties.

Moreover, ORCA interfaces a determinant-based FCI toy-code, which is described here. Besides energies, the
program can compute dipole moments, g-tensors, hyperfine and quadrupole splittings in the framework of

linear response theory. For response properties, it is assumed that the basis set does not depend on the given

perturbation. To call the program prepare a simple SCF input and add the keyword !FCI on top.

By default, energies and properties are computed for the ground state. For the g-tensor computation, the
origin is chosen as the center of electronic charge, while for dipoles it is the center of mass. The default
settings may be edited in the FCI block:

The input and output resembles the ORCA standard format from the EPRNMR module and should thus be
familiar. However, it is much more limited in the number of available options and the size of molecules that
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can be treated. Currently it can only be used in serial mode and in combination with the nofrozencore

option.

8.1.12 Scalar Relativistic SCF

Scalar relativistic all-electron calculations can be performed with a variety of relativistic approximations.
However, these need to be combined with a suitable basis set since relativity changes the shapes of orbitals
considerably. We have defined scalar relativistic contracted versions of the QZV, TZV and SV basis sets up
to Hg for HF and DFT computations (but not yet for RI-MP2). They are requested by putting "DKH-" or
"ZORA-" in front of the usual basis set name. For other basis sets you have to take care of the recontraction
yourself but note that this is an expert issue. All scalar relativistic models can be used for geometry

optimization as well.

CAUTION:

e For geometry optimizations we apply a one-center relativistic correction. This slightly
changes the energies — so DO NOT MIX single-point calculations without the one-center
approximation with geometry optimization energies that DO make use of this feature.

The impact of the one-center approximation on the geometries is very small.

8.1.12.1 Douglas-Kroll-Hess

ORCA has implemented the standard second-order DKH procedure that is normally satisfactory for all
intents and purposes. The scalar relativistic DKH treatment is compatible with any of the SCF methods and

will also be transferred over to the correlation treatments.

We rather strongly recommend the use of the SV, TZV and QZV basis sets with or without “def2” and
appropriate polarization functions. For these basis sets we have developed segmented relativistic all electron
basis sets for almost the entire periodic table. The basis sets are tested and perform very well in an acceptably

economic fashion.

The use of the code is very simple:

! UHF DKH-TZV DKH

NOTE: You should have the basis set and ZORA or DKH commands in the same input line!

8.1.12.2 ZORA and IORA

In addition to the DKH method the 0'" order regular approximation (ZORA; pioneered by van Lenthe
et al., see Ref. [157] and many follow up papers by the Amsterdam group) is implemented into ORCA in
an approximate way (section 9.18) which facilitates the calculation of analytical gradients. Our ZORA
implementation essentially follows van Wiillen [158] and solves the ZORA equations with a suitable model
potential which is derived from accurate atomic ZORA calculations. At this point the elements up to atomic

number 86 are available with more to come. The ZORA method is highly dependent on numerical integration
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and it is very important to pay attention to the subject of radial integration accuracy (vide infra)! If the
relevant precautions are taken, the use of the ZORA or IORA methods is as easy as in the DKH case. For

example:

! UHF ZORA-TZVP ZORA
# for more detail use
%rel method ZORA # or IORA
modelpot 1,1,1,1
modeldens rhoZORA
velit 137.0359895 # speed of light used
end

ATTENTION

e The scalar relativistic module has many options which allow you to considerably finetune the calculations.
Details are in section 9.18.

e The scalar relativistic treatment requires flexible basis sets, in particular in the core region. Only SV,
TZV and QZV basis sets have been recontracted in the ZORA and DKH models (and the attached
polarization functions of course). Alternatively, one choice that you have is to uncontract your basis
set using the Decontract keyword but it is likely that you also need additional steep primitives.

e Scalar relativistic calculations may need larger integration grids in the radial part. Consider to use
a higher IntAcc parameter or at least to increase the radial integration accuracy around the heavy
atoms using SpecialGridAtoms and SpecialGridIntAcc.

e The calculation of properties in relativistic treatments is not straightforward since the influence of the
“small component” in the Dirac equation is neglected in the calcuation of expectation values. ORCA

takes these “picture change” effects to some extent into account. Please refer to individual sections.

8.1.13 Efficient Calculations with Atomic Natural Orbitals

Atomic natural orbitals are a special class of basis sets. They are represented by the orthonormal set of
orbitals that diagonalizes a spherically symmetric, correlated atomic density. The idea is to put as much
information as possible into each basis functions such that one obtains the best possible result with the given
number of basis functions. This is particularly important for correlated calculations where the number of

primitives is less an issue than the number of basis functions.

Usually, ANO basis sets are “generally contracted” which means that for any given angular momentum all
primitives contribute to all basis functions. Since the concept of ANOs only makes sense if the underlying set
of primitives is large, the calculations readily become very expensive unless special precaution is taken in the
integral evaluation algorithms. ORCA features special algorithms for ANO basis sets together with accurate
ANO basis sets for non-relativistic calculations. However, even then the integral evaluation is so expensive

that efficiency can only be realized if all integrals are stored on disk and are re-used as needed.
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In the first implementation, the use of ANOs is restricted to the built-in ANO basis sets (ano-pVnZ, saug-
ano-pVnZ, aug-ano-pVnZ, n = D, T, Q, 5). These are built upon the cc-pV6Z primitives and hence, the

calculations take significant time.

NOTE:

o Geometry optimizations with ANOs are discouraged; they will be very inefficient.

The use of ANOs is recommended in the following way:

This yieds:

Compare to the cc-pVTZ value of:

Thus, the ANO-based SCF energy is ca. 89 mEh lower and the correlation energy almost 2 mEh lower than
with the cc-basis set of the same size. Usually, the ANO results are much closer to the basis set limit than

the cc-results. Also, ANO values extrapolate very well (see section 8.1.3.5)

Importantly, the integrals are all stored in this job. Depending on your system and your patience, this
may be possible up to 300-500 basis functions. The ORCA correlation modules have been rewritten such
that they deal efficiently with these stored integrals. Thus, we might as well have used ! MO-CCSD(T) or
I AO-CCSD(T), both of which would perform well.

Yet, the burden of generating and storing all four-index integrals quickly becomes rather heavy. Hence,
the combination of ANO basis sets with the RI-JK technique is particularly powerful and efficient. For

example:
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! ano-pVTZ cc-pVTZ/IK RI-JK Conv TightSCF RI-CCSD(T)

For the SCF, this works very well and allows for much larger ANO based calculations to be done efficiently.
Also, RI-MP2 can be done very efficiently in this way. However, for higher order correlation methods such
as CCSD(T) the logical choice would be RI-CCSD(T) which is distinctly less efficient than the AO or MO
based CCSD(T) (roughly a factor of two slower). Hence, ORCA implements a hybrid method where the RI

approximation is used to generate all four index integrals. This is done via the “RI-AO” keyword:

! ano-pVTZ cc-pVTZ/IK RI-AO Conv TightSCF AO-CCSD(T)

In this case either AO-CCSD(T) or MO-CCSD(T) would both work well. This does not solve the storage
bottleneck with respect to the four index integrals of course. If this becomes a real issue, then RI-CCSD(T)

is mandatory. The error in the total energy is less than 0.1 mEh in the present example.

NOTE:

e With conventional RI calculations the use of a second fit basis set is not possible and

inconsistent results will be obtained. Hence, stick to one auxiliary basis!

8.1.14 Local-SCF Method

The Local-SCF (LSCF) method developed by X. Assfeld and J.-L. Rivail ( [159]) allows to optimize a single
determinant wave function under the constraint of keeping frozen (i.e. unmodified) a subset of orbitals. Also,
optimized orbitals fulfill the condition of orthogonality with the frozen ones. The LSCF method can be
applied to restricted /unrestricted Hartree-Fock or DFT Kohn-Sham wavefunctions. An example of the use of

the LSCF method can be found in the 8.15.11 with the decomposition of the magnetic exchange coupling.

To use the LSCF method, one chooses the spin-up and spin-down frozen orbitals with the ”LSCFalpha” and
"LSCFbeta” keywords, respectively. Frozen orbitals are specified using intervals of orbital indexes. In the
following example, the selection 70,4,5,6,10,10” for the alpha frozen orbitals means that the orbitals ranging
from 0 to 4 (0,4,5,6,10,10), 5 and 6 (0,4,5,6,10,10) and the orbital 10 (0,4,5,6,10,10) will be frozen. In the
case of the beta orbitals, the orbitals with indexes 0, 1, 2, 3 and 5 will be frozen. Up to 5 intervals (2*5

numbers) are allowed.

#

# Example of LSCF Calculation

#

! UKS B3LYP/G SVP TightSCF Grid4 NoFinalGrid
%sct

LSCFalpha 0,4,5,6,10,10
LSCFbeta 0,3,5,5
end
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For the sake of user-friendliness, two other keywords are available within the LSCF method. They can be
used to modify the orbital first guess, as read from the gbw file with the same name or another gbw file with
the "MOInp” keyword.

The "LSCFCopyOrbs” keyword allows to copy one orbital into another one. The input works by intervals
like the LSCFalpha/LSCFbeta selections. However, be aware that spin-up orbital indexes range from 0 to
M-1 (where M is the size of the basis set), while spin-down orbital indexes range from M to 2M-1. In the
following example, with M=11, the user copies the fifth spin-up orbital in the fifth spin-down orbital.

%sct

LSCFalpha 0,4,5,6,10,10
LSCFbeta @,3,5,5
LSCFCopyOrbs 4,15

end

The second keyword is "LSCFSwapOrbs” and allows to swap the indexes of subsets made of two orbitals.
In the following example, still with M=11, the user swaps the fifth spin-up orbital with the fifth spin-down
orbital.

%sct

LSCFalpha 0,4,5,6,10,10
LSCFbeta 0,3,5,5
LSCFSwapOrbs 4,15

end

CAUTION: During the LSCF procedure, frozen occupied orbitals energies are fixed at -1000
Hartrees and frozen virtual orbitals energies at 1000 Hartrees. This means that the frozen
occupied orbitals and the frozen virtual orbitals are placed respectively at the beginning and

at the end of the indexation.

8.2 Geometry Optimizations, Surface Scans, Transition States,
MECPs, Conical Intersections, IRC, NEB

The usage of analytic gradients is necessary for efficient geometry optimization. In ORCAA4.2, the following

methods provide analytic first derivatives
e Hartree-Fock (HF) and DFT (including the RI, RIJK and RIJCOSX approximations)
e MP2, RI-MP2 and DLPNO-MP2
o TD-DFT for excited states

e CAS-SCF
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When the analytic gradients are not available, it is possible to evaluate the first derivatives numerically by
finite displacements. This is available for all methods.

The coordinate system chosen for geometry optimization affects the convergence rate, with redundant internal

coordinates being usually the best choice.

Some methods for locating transition states (TS) require second derivative matrices (Hessian), implemented
analytically for HF, DFT and MP2. Additionally, several approaches to construct an initial approximate
Hessian for TS optimization are available. A very useful feature for locating complicated TSs is the Nudged-
Elastic Band method in combination with the TS finding algorithm (NEB-TS, ZOOM-NEB-TS). An essential
feature for chemical processes involving excited states is the conical intersection optimizer. Another interesting
feature are MECP (Minimum Energy Crossing Point) optimizations.

For very large systems ORCA provides a very efficient L-BFGS optimizer, which makes use of the orca_md

module. It can also be invoked via simple keywords described at the end of this section.

8.2.1 Geometry Optimizations

Optimizations are fairly easy as in the following example:

An optimization with the RI method (the BP functional is recommend) would simply look like:

An optimization of the first excited state of ethylene:
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8.2.2 Numerical Gradients

If the analytic gradient is not available, the numerical gradient can simply be requested via:

as in the following example:

NOTE

e Be aware that the numerical gradient is quite expensive. The time for one gradient calculation is equal

to 6 x (number of atoms) x (time for one single point calculation).

e The numerical gradient can be calculated in a multi-process run, using a maximum of three times the

number of atoms (see section 5.2).

More details on various options, geometry convergence criteria and the like are found in section 9.21.
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8.2.3 Some Notes and Tricks

NOTE

e TightSCF in the SCF part is set as default to avoid the buildup of too much numerical noise in the

gradients.
TIP

e If you want to be on the safe side with DFT it is probably advisable to use the settings ! Grid4
NoFinalGrid although the defaults should also be o.k.

e In rare cases the redundant internal coordinate optimization fails. In this case, you may try to use
COPT (optimization in Cartesian coordinates). If this optimization does not converge, you may try the
desperate choice to use ZOPT, GDIIS-COPT or GDIIS-ZOPT. This will likely take many more steps to

converge but should be stable.

e For optimizations in Cartesian coordinates the initial guess Hessian is constructed in internal coordinates
and thus these optimizations should converge only slightly slower than those in internal coordinates.
Nevertheless, if you observe a slow convergence behaviour, it may be a good idea to compute a Hessian

initially (perhaps at a lower level of theory) and use InHess read in order to improve convergence.

e At the beginning of a TS optimization more information on the curvature of the PES is needed than
a model Hessian can give. The best choice is analytic Hessian, avialable for HF, DFT and MP2. In
other cases (e.g. CAS-SCF), the numerical evaluation is necessary. Nevertheless you do not need to
calculate the full Hessian when starting such a calculation. With ORCA we have good experience
with approximations to the exact Hessian. Here it is recommended to either directly combine the
TS optimization with the results of a relaxed surface scan or to use the Hybrid Hessian as the initial
Hessian, depending on the nature of the TS mode. Note that these approximate Hessians do never
replace the exact Hessian at the end of the optimization, which is always needed to verify the minimum

or first order saddle point nature of the obtained structure.

8.2.4 Initial Hessian for Minimization

The convergence of a geometry optimization crucially depends on the quality of the initial Hessian. In the
simplest case it is taken as a unit matrix (in redundant internal coordinates we use 0.5 for bonds, 0.2 for
angles and 0.1 for dihedrals and improper torsions). However, simple model force-fields like the ones proposed
by Schlegel, Lindh, Swart or Almlof are available and lead to much better convergence. The different guess
Hessians can be set via the InHess option which can be either unit, Almloef, Lindh, Swart or Schlegel in
redundant internal coordinates. Since version 2.5.30, these model force-fields (built up in internal coordinates)

can also be used in optimizations in Cartesian coordinates.

For minimizations we recommend the Almloef Hessian, which is the default for minimizations. The Lindh
and Schlegel Hessian yield a similar convergence behaviour. From version 4.17, there is also the option
for the Swart model hessian, which is less parametrized and should improve for weakly interacting and/or
unusual structures. Of course the best Hessian is the exact one. Read may be used to input an exact Hessian
or one that has been calculated at a lower level of theory (or a “faster” level of theory). From version 2.5.30

on this option is also available in redundant internal coordinates. But we have to point out that the use
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of the exact Hessian as initial one is only of little help, since in these cases the convergence is usually only
slightly faster, while at the same time much more time is spent in the calculation of the initial Hessian.

To sum it up: we advise to use one of the simple model force-fields for minimizations.

8.2.5 Coordinate Systems for Optimizations

The coordinate system for the optimization can be chosen by the coordsys variable that can be set to
cartesian, or redundant_new, or redundant, or redundant_old) %geom block. The default is the redundant
internal coordinate system. (redundant_old is the coordinate set that was used as default redundant internal
coordinates before version 2.4.30). If the optimization with redundant fails, redundant_old can still be used
as an alternative, and in cases where the internal coordinate systems lead to problems, you can still try
cartesian. If the optimization is then carried out in Cartesian displacement coordinates with a simple model
force-field Hessian, the convergence will be only slightly slower. With a unit matrix initial Hessian very slow

convergence will result.

A job that starts from a semi-empirical Hessian is shown below:
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cCoo00 0 00
0100 1.300
H120 1.1 1100
H123 1.1 110 180

NOTE:

TIP

The guess PModel is chosen for the second job since DFT or HF calculations cannot be started from

semi-empirical orbitals

GDIIS has been turned off and the number of gradients used in the quasi-Newton method has been

enhanced. This is advisable if a good starting Hessian is available.

For transition metal complexes MNDO, AM1 or PM3 Hessians are not available. You can use ZINDO/1
or NDDO/1 Hessians instead. They are of lower quality than MNDO, AM1 or PM3 for organic

molecules but they are still far better than the standard unit matrix choice.

If the quality of the initial semi-empirical Hessian is not sufficient you may use a “quick” RI-DFT job
(e.g. BP Def-1 NoFinalGrid)

In semi-empirical geometry optimizations on larger molecules or in general when the molecules become
larger the redundant internal space may become large and the relaxation step may take a significant

fraction of the total computing time.

For condensed molecular systems and folded molecules (e.g. a U-shaped carbon chain) atoms can get very close

in space, while they are distant in terms of number of bonds connecting them. As damping of optimization

steps in internal coordinates might not work well for these cases, convergence can slow down. ORCA’s

automatic internal coordinate generation takes care of this problem by assigning bonds to atom pairs that

are close in real space, but distant in terms of number of bonds connecting them.

%geom
AddExtraBonds true # switch on/off assigning bonds to atom pairs that are
# connected by more than <Max_Length> bonds and are less
# than <MaxDist> Ang. apart (default true)
AddExtraBonds_MaxLength 10 # cutoff for number of bonds connecting the two
# atoms (default 10)
AddExtraBonds_MaxDist 5 # cutoff for distance between two atoms (default 5 Ang.)
end

For solid systems modeled as embedded solids the automatically generated set of internal coordinates might

become very large, rendering the computing time spent in the optimization routine unnecessarily large.

Usually, in such calculations the cartesian positions of outer atoms, coreless ECPs and point charges are

constrained during the optimization - thus most of their internal coordinates are not needed. By requesting:
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only the required needed internal coordinates (of the constrained atoms) are generated.

8.2.6 Constrained Optimizations

You can perform constrained optimizations which can, at times, be extremely helpful. This works as shown

in the following example:

NOTE:

e Like for normal optimizations you can use numerical gradients (see 8.2.2.) for constrained optimizations.
In this case the numerical gradient will be evaluated only for non-constrained coordinates, saving a lot

of computational effort, if a large part of the structure is constrained.

e “value” in the constraint input is optional. If you do not give a value, the present value in the structure
is constrained. For cartesian constraints you can’t give a value, but always the initial position is

constrained.
e [t is recommended to use a value not too far away from your initial structure.

e It is possible to constrain whole sets of coordinates:
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e For Cartesian constraints entire lists of atoms can be defined:

e If there are only a few coordinates that have to be optimized you can use the invertConstraints option:

e In some cases it is advantageous to optimize only the positions of the hydrogen atoms and let the

remaining molecule skeleton fixed:

NOTE:

e In the special case of a fragment optimization (see next point) the optimizehydrogens keyword does
not fix the heteroatoms, but ensures that all hydrogen positions are relaxed.

8.2.7 Constrained Optimizations for Molecular Clusters (Fragment Optimization)

If you want to study systems, which consist of several molecules (e.g. the active site of a protein) with
constraints, then you can either use cartesian constraints (see above) or use ORCA’s fragment constraint
option. ORCA allows the user to define fragments in the system. For each fragment one can then choose
separately whether it should be optimized or constrained. Furthermore it is possible to choose fragment pairs
whose distance and orientation with respect to each other should be constrained. Here, the user can either
define the atoms which make up the connection between the fragments, or the program chooses the atom pair
automatically via a closest distance criterion. ORCA then chooses the respective constrained coordinates
automatically. An example for this procedure is shown below.

The coordinates are taken from a crystal structure [PDB-code 2FRJ]. In our gas phase model we choose only
a small part of the protein, which is important for its spectroscopic properties. Our selection consists of a
heme-group (fragment 1), important residues around the reaction site (lysine (fragment 2) and histidine
(fragment 3)), an important water molecule (fragment 4), the NO-ligand (fragment 5) and part of a histidine



162 8 Running Typical Calculations

Bt

(fragment 6) coordinated to the heme-iron. In this constrained optimization we want to maintain the position
of the heteroatoms of the heme group. Since the protein backbone is missing, we have to constrain the
orientation of lysine and histidine (fragments 2 and 3) side chains to the heme group. All other fragments
(the ones which are directly bound to the heme-iron and the water molecule) are fully optimized internally

and with respect to the other fragments. Since the crystal structure does not reliably resolve the hydrogen

positions, we relax also the hydrogen positions of the heme group.
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NOTE:

e You can divide a molecule into several fragments.

You have to connect the fragments in such a way that the whole system is connected.

e Since the initial Hessian for the optimization is based upon the internal coordinates: Connect the

fragments in a way that their real interaction is reflected.

e This option can be combined with the definition of constraints, scan coordinates and the optimizeHy-
drogens option (but: its meaning in this context is different to its meaning in a normal optimization

run, relatively straightforward see section 9.21).

e Can be helpful in the location of complicated transition states (with relaxed surface scans).

8.2.8 Relaxed Surface Scans

A final thing that comes in really handy are relaxed surface scans, i.e. you can scan through one variable

while all others are relaxed. It works as shown in the following example:
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In the example above the value of the bond length between C and O will be changed in 12 equidistant steps
from 1.35 down to 1.10 Angstroms and at each point a constrained geometry optimization will be carried
out.

NOTE:

e If you want to perform a geometry optimization at a series of values with non-equidistant steps you

can give this series in square brackets, [ ]. The general syntax is as follows:

e In addition to bond lengths you can also scan bond angles and dihedral angles:

TIP

e As in constrained geometry optimization it is possible to start the relaxed surface scan with a different
scan parameter than the value present in your molecule. But keep in mind that this value should not

be too far away from your initial structure.

A more challenging example is shown below. Here, the H-atom abstraction step from CHy to OH-radical is

computed with a relaxed surface scan (vide supra). The job was run as follows:
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It is obvious that the reaction is exothermic and passes through an early transition state in which the

hydrogen jumps from the carbon to the oxygen. The structure at the maximum of the curve is probably a

very good guess for the true transition state that might be located by a transition state finder.

You will probably find that such relaxed surface scans are incredibly useful but also time consuming. Even
the simple job shown below required several hundred single point and gradient evaluations (convergence
problems appear for the SCF close to the transition state and for the geometry once the reaction partners
actually dissociate — this is to be expected). Yet, when you search for a transition state or you want to get
insight into the shapes of the potential energy surfaces involved in a reaction it might be a good idea to
use this feature. One possibility to ease the burden somewhat is to perform the relaxed surface scan with a
“fast” method and a smaller basis set and then do single point calculations on all optimized geometries with
a larger basis set and/or higher level of theory. At least you can hope that this should give a reasonable
approximation to the desired surface at the higher level of theory — this is the case if the geometries at the

lower level are reasonable.
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Figure 8.16: Relaxed surface scan for the H-atom abstraction from CHy by OH-radical
(B3LYP/SV(P)).
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8.2.8.1 Multidimensional Scans

After several requests from our users ORCA now allows up to three coordinates to be scanned within one

calculation.

NOTE:

e For finding transition state structures of more complicated reaction paths ORCA now offers its very
efficient NEB-TS implementation (see section 9.22.2).

e 2-dimensional or even 3-dimensional relaxed surface scans can become very expensive - e.g. requesting

10 steps per scan, ORCA has to carry out 1000 constrained optimizations for a 3-D scan.

e The results can depend on the direction of the individual scans and the ordering of the scans.

8.2.9 Multiple XYZ File Scans

A different type of scan is implemented in ORCA in conjunction with relaxed surface scans. Such scans
produce a series of structures that are typically calculated using some ground state method. Afterwards
one may want to do additional or different calculations along the generated pathway such as excited state
calculations or special property calculations. In this instance, the “multiple XYZ scan” feature is useful. If
you request reading from a XYZ file via:

this file could contain a number of structures. The format of the file is:
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Thus, the structures are simply of the standard XYZ format, separated by a “>” sign. After the last structure
no “>” should be given but a blank line instead. The program then automatically recognizes that a multiple
XY7Z scan run is to be performed. Thus, single point calculations are performed on each structure in sequence
and the results are collected at the end of the run in the same kind of trajectory.dat files as produced from
trajectory calculations.

In order to aid in using this feature, the relaxed surface scans produce a file called MyJob.allxyz that is of

the correct format to be re-read in a subsequent run.

8.2.10 Transition States

8.2.10.1 Introduction to Transition State Searches

If you provide a good estimate for the structure of the transition state (TS) structure, then you can find the
respective transition state with the following keywords (in this example we take the structure with highest
energy of the above relaxed surface scan):
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NOTE:

e You need a good guess of the TS structure. Relaxed surface scans can help in almost all cases (see also
example above).

e For TS optimization (in contrast to geometry optimization) an exact Hessian, a Hybrid Hessian or a
modification of selected second derivatives is necessary.

e Analytic Hessian evaluation is available for HF and SCF methods, including the RI and RIJCOSX
approximations and canonical MP2.

e Check the eigenmodes of the optimized structure for the eigenmode with a single imaginary frequency.
You can also visualize this eigenmode with orca_pltvib (section 8.15.3.5) or any other visualization
program that reads ORCA output files.

e If the Hessian is calculated during the T'S optimization, it is stored as basename.001.hess, if it is
recalculated several times, then the subsequently calculated Hessians are stored as basename.002.hess,
basename.003.hess, ...

e If you are using the Hybrid Hessian, then you have to check carefully at the beginning of the TS
optimization (after the first three to five cycles) whether the algorithm is following the correct mode
(see TIP below). If this is not the case you can use the same Hybrid Hessian again via the inhess read

keyword and try to target a different mode (via the TS Mode keyword, see below).

In the example above the TS mode is of local nature. In such a case you can directly combine the relaxed

surface scan with the TS optimization with the

command, as used in the following example:
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NOTE:

e The algorithm performs the relaxed surface scan, aborts the Scan after the maximum is surmounted,
chooses the optimized structure with highest energy, calculates the second derivative of the scanned

coordinate and finally performs a TS optimization.

e If you do not want the scan to be aborted after the highest point has been reached but be carried out

up to the last point, then you have to type:

As transition state finder we implemented the quasi-Newton like hessian mode following algorithm. [160-168]
This algorithm maximizes the energy with respect to one (usually the lowest) eigenmode and minimizes with

respect to the remaining 3N — 7(6) eigenmodes of the Hessian.

TIP

e You can check at an early stage if the optimization will lead to the “correct” transition state. After
the first optimization step you find the following output for the redundant internal coordinates:
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Every Hessian eigenmode can be represented by a linear combination of the redundant internal coordinates.
In the last column of this list the internal coordinates, that represent a big part of the mode which is followed
uphill, are labelled. The numbers reflect their magnitude in the TS eigenvector (fraction of this internal
coordinate in the linear combination of the eigenvector of the TS mode). Thus at this point you can already
check whether your TS optimization is following the right mode (which is the case in our example, since we
are interested in the abstraction of H1 from CO by O5.

e If you want the algorithm to follow a different mode than the one with lowest eigenvalue, you can

either choose the number of the mode:

or you can give an internal coordinate that should be strongly involved in this mode:

TIP

e If you look for a TS of a breaking bond the respective internal coordinate might not be included in the
list of redundant internal coordinates due to the bond distance being slightly too large, leading to slow
or even no convergence at all. In order to prevent that behavior a region of atoms that are active in the
TS search can be defined, consisting of e.g. the two atoms of the breaking bond. During the automatic
generation of the internal coordinates the bond radii of these atoms (and their neighbouring atoms) are

increased, making it more probable that breaking or forming bonds in the TS are detected as bonds.

by 50%)

=1
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8.2.10.2 Hessians for Transition State Calculations

For transition state (TS) optimization a simple initial Hessian, which is used for minimization, is not sufficient.
In a TS optimization we are looking for a first order saddle point, and thus for a point on the PES where the
curvature is negative in the direction of the TS mode (the TS mode is also called transition state vector, the
only eigenvector of the Hessian at the TS geometry with a negative eigenvalue). Starting from an initial
guess structure the algorithm used in the ORCA TS optimization has to climb uphill with respect to the TS
mode, which means that the starting structure has to be near the T'S and the initial Hessian has to account
for the negative curvature of the PES at that point. The simple force-field Hessians cannot account for this,

since they only know harmonic potentials and thus positive curvature.

The most straightforward option in this case would be (after having looked for a promising initial guess
structure with the help of a relaxed surface scan) to calculate the exact Hessian before starting the TS
optimization. With this Hessian (depending on the quality of the initial guess structure) we know the T'S
eigenvector with its negative eigenvalue and we have also calculated the exact force constants for all other
eigenmodes (which should have positive force constants). For the HF, DFT methods and MP2, the analytic

Hessian evaluation is available and is the best choice, for details see section Frequencies (8.3).

When only the gradients are available (most notably the CASSCF), the numerical calculation of the exact
Hessian is very time consuming, and one could ask if it is really necessary to calculate the full exact Hessian
since the only special thing (compared to the simple force-field Hessians) that we need is the TS mode with a

negative eigenvalue.

Here ORCA provides two different possibilities to speed up the Hessian calculation, depending on the nature
of the TS mode: the Hybrid Hessian and the calculation of the Hessian value of an internal coordinate. For
both possibilities the initial Hessian is based on a force-field Hessian and only parts of it are calculated
exactly. If the TS mode is of very local nature, which would be the case when e.g. cleaving or forming a bond,
then the exactly calculated part of the Hessian can be the second derivative of only one internal coordinate,
the one which is supposed to make up the TS mode (the formed or cleaved bond). If the TS mode is more
complicated and more delocalized, as e.g. in a concerted proton transfer reaction, then the hybrid Hessian,
a Hessian matrix in which the numerical second derivatives are calculated only for those atoms, which are
involved in the TS mode (for more details, see section 9.21), should be sufficient. If you are dealing with
more complicated cases where these two approaches do not succeed, then you still have the possibility to

start the TS optimization with a full exact Hessian.

Numerical Frequency calculations are quite expensive. You can first calculate the Hessian at a lower level of

theory or with a smaller basis set and use this Hessian as input for a subsequent TS optimization:

%geom inhess  Read # this command comes with:
InHessName "yourHessian.hess" # filename of Hessian input file
end

Another possibility to save computational time is to calculate exact Hessian values only for those atoms which
are crucial for the T'S optimization and to use approximate Hessian values for the rest. This option is very
useful for big systems, where only a small part of the molecule changes its geometry during the transition and
hence the information of the full exact Hessian is not necessary. With this option the coupling of the selected

atoms are calculated exactly and the remaining Hessian matrix is filled up with a model initial Hessian:
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For some molecules the PES near the TS can be very far from ideal for a Newton-Raphson step. In such a

case ORCA can recalculate the Hessian after a number of steps:

Another solution in that case is to switch on the trust radius update, which reduces the step size if the
Newton-Raphson steps behave unexpected and ensures bigger step size if the PES seems to be quite
quadratic:

8.2.10.3 Special Coordinates for Transition State Optimizations

e If you look for a TS of a breaking bond the respective internal coordinate might not be included in
the list of redundant internal coordinates (but this would accelerate the convergence). In such a case
(and of course in others) you can add coordinates to or remove them from the set of autogenerated

redundant internal coordinates (alternatively check the TS_Active_Atoms keyword):
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8.2.11 MECP Optimization

There are reactions where the analysis of only one spin state of a system is not sufficient, but where the
reactivity is determined by two or more different spin states (Two- or Multi-state reactivity). The analysis of
such reactions reveals that the different PESs cross each other while moving from one stationary point to the
other. In such a case you might want to use the ORCA optimizer to locate the point of lowest energy of the

crossing surfaces (called the minimum energy crossing point, MECP).

As an example for such an analysis we show the MECP optimization of the quartet and sextet state of
[FeO]*.

e For further options for the MECP calculation, see section 9.21.3.

TIP: You can often use a minimum or TS structure of one of the two spin states as initial guess for your
MECP-optimization. If this doesn’t work, you might try a scan to get a better initial guess.

The results of the MECP optimization are given in the following output. The distance where both surfaces
cross is at 1.994 A. In this simple example there is only one degree of freedom and we can also locate the
MECP via a parameter scan. The results of the scan are given in Figure for comparison. Here we see that

the crossing occurs at a Fe-O-distance of around 2 A.

For systems with more than two atoms a scan is not sufficient any more and you have to use the MECP

optimization.
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Figure 8.17: Parameter scan for the quartet and sextet state of [FeO]™ (B3LYP/SV(P)).

A more realistic example with more than one degree of freedom is the MECP optimization of a structure

along the reaction path of the CH30 <+ CH5OH isomerization.

NOTE:
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e To verify that a stationary point in a MECP optimization is a minimum, you have to use an adapted
frequency analysis, called by SurfCrossNumFreq (see section 9.21.3).

8.2.12 Conical Intersection Optimization

A conical intersection (CI) is the molecular geometry at which two (or more) potential energy surfaces are
degenerate and the non-adiabatic couplings between these states are non-vanishing. Locating these geometries
is essential for chemical processes that are governed by non-adiabatic events, as e.g. photoisomerization,

photostability - similar to locating transition states for chemical reactions.

As an example for such an analysis we show the conical intersection optimization of the ground and first

excited state of singlet ethylene.

e For further options for the conical intersection calculation, see section 9.21.4.

TIP: You can often use a structure between the optimized structures of both states for your Cl-optimization.

If this doesn’t work, you might try a scan to get a better initial guess.

The results of the Cl-optimization are given in the following output. The energy difference between the
ground and excited state is printed as E diff. (CI), being reasonabley close for a conical intersection. For a

description of the calculation of the non-adiabatic couplings at this geometry, see sections 8.4.7 and 8.4.8.
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NOTE

e The first state (ground or excited) is defined via the general ORCA input (multiplicity; tddft or casscf
blocks for excited states).

e The second state (again ground or excited, same or different multiplicity as the first state) is defined

via the conical block.
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e From our experience best performance is obtained for CI optimizations of ground and excited state,
but other combinations are possible as well (excited state and excited state; for same or different

multiplicities). For more information on the available options see section 9.21.4.

8.2.13 Constant External Force - Mechanochemistry

Constant external force can be applied on the molecule within the EFEI formalism [169] by pulling on the
two defined atoms. To apply the external force, use the POTENTIALS in the geom block. The potential

type is C for Constant force, indexes of two atoms (zero-based) and the value of force in nN.

The results are seen in the output of the SCF procedure, where the total energy already contains the force

term.

8.2.14 Intrinsic Reaction Coordinate

The Intrinsic Reaction Coordinate (IRC) is a special form of a minimum energy path, connecting a transition
state (TS) with its downhill-nearest intermediates. A method determining the IRC is thus useful to determine
whether a transition state is directly connected to a given reactant and/or a product.

ORCA features its own implementation of Morokuma and coworkers’ popular method. [170] The IRC method
can be simply invoked by adding the IRC keyword as in the following example.
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For more information and further options see section 9.22.1.

NOTE

e The same method and basis set as used for optimization and frequency calculation should be used for
the IRC run.

e The IRC keyword can be requested without, but also together with OptTS, ScanTS, NEB-TS, AnFreq
and NumFreq keywords.

e In its default settings the IRC code checks whether a Hessian was computed before the IRC run. If
that is not the case, and if no Hessian is defined via the %irc block, a new Hessian is computed at the
beginning of the IRC run.

e A final trajectory (_IRC_Full_trj.xyz) is generated which contains both directions, forward and backward,
by starting from one endpoint and going to the other endpoint, visualizing the entire IRC. Forward
(IRC_F_trj.xyz and IRC_F.xyz) and backward (IRC_B_trj.xyz and _IRC_B.xyz) trajectories and xyz
files contain the IRC and the last geometry of that respective run.

8.2.15 Printing Hessian in Internal Coordinates

When a Hessian is available, it can be printed out in redundant internal coordinates as in the following

example:
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NOTE
e The Hessian in internal coordinates is (for the input printHess.inp) stored in the file printHess_internal.hess
e The corresponding lists of redundant internals is stored in printHess.opt .

e Although the !Opt keyword is necessary, an optimization is not carried out. ORCA exits after storing
the Hessian in internal coordinates.

8.2.16 Geometry Optimizations using the L-BFGS optimizer

Optimizations using the L-BFGS optimizer are done in Cartesian coordinates. They can be invoked quite
simple as in the following example:

Using this optimizer systems with 100s of thousands of atoms can be optimized. Of course, the energy and

gradient calculations should not become the bottleneck for such calculations, thus MM or QM /MM methods
should be used for such large systems.

Only the hydrogen positions can be optimized with the following command:

But also other elements can be exclusively optimized with the following command:

When fragments are defined for the system, each fragment can be optimized differently (similar to the
fragment optimization described above). The following options are available:

FixFrags Freeze the coordinates of all atoms of the specified fragments.

RelaxHFrags Relax the hydrogen atoms of the specified fragments. Default for all atoms if !L-OptH is
defined.
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RelaxFrags Relax all atoms of the specified fragments. Default for all atoms if !L-Opt is defined.

RigidFrags Treat each specified fragment as a rigid body, but relax the position and orientation of these
rigid bodies.

NOTE:
e The fragments have to be defined after the coordinate input.

A more complex example is depicted in the following:

! L-OptH
Jermm
ORCAFFFILENAME "CHMH.ORCAFF.prms"
end
*pdbfile ® 1 CHMH.pdb
%geom
Frags
2 {8168:8614} end
3 {8615:8699} end
4 {8700:8772} end
5 {8773:8791} end
RelaxFrags {2} end # Fragment 2 is fully relaxed

First the fragments need to be defined
Note that all other atoms belong to
fragment 1 by default

RigidFrags {3 4 5} end # Fragments 3, 4 and 5 are treated as rigid bodies each.
end

8.2.17 Nudged Elastic Band Method

The Nudged Elastic Band (NEB) method is used to find a minimum energy path (MEP) connecting given
reactant and product state minima on the energy surface. An initial path is generated and represented by a
discrete set of configurations of the atoms, referred to as images of the system. The number of images is
specified by the user and has to be large enough to obtain sufficient resolution of the path. The implementation
in ORCA is described in detail in the article by Asgeirsson et. al. [171] and in section 9.22.2 along with
the input options. The most common use of the NEB method is to find the highest energy saddle point
on the potential energy surface specifying the transition state for a given initial and final state. Rigorous
convergence to a first order saddle point can be obtained with the climbing image NEB (CI-NEB), where
the highest energy image is pushed uphill in energy along the tangent to the path while relaxing downhill
in orthogonal directions. Another method for finding a first order saddle point is the NEB-TS which uses
the CI-NEB method with a loose tolerance to begin with and then switches over to the OptTS method to
converge on the saddle point. This combination can be a good choice for calculations of complex reactions
where the ScanTS method fails or where 2D relaxed surface scans are necessary to find a good initial guess
structure for the OptTS method. The zoomNEB variants are a good choice in case of very complex transition
states with long tails. For more and detailed information on the various NEB variants implemented in ORCA

please consult section 9.22.2.
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In their simplest form NEB, NEB-CI and NEB-TS only require the reactant and product state configurations

(one via the xyz block, and the other one via the keyword neb_end xyzfile):

Below is an example of an NEB-TS run involving an intramolecular proton transfer within acetic acid. The

simplest input is

Where the final.xyz structure contains the corresponding structure with the proton on the other oxygen.

The initial path is reasonable and the CI calculation can be switched on after five NEB iterations.

The CI run converges after another couple of iterations:
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Subsequently a summary of the MEP is printed:

Additionally, detailed information on the highest energy image (or the CI) is printed:
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Finally, a TS optimization is started, after which the MEP information is updated by including the TS
structure:

Note that here both TS and CI are printed for comparison.

8.3 Vibrational Frequencies

Vibrational frequency calculations are available through analytical differentiation of the SCF energy as well
as one- or two-sided numerical differentiation of analytical gradients, i.e. for Hartree-Fock and DFT models.
For methods without analytical gradient a numerically calculated gradient can be used (keyword NumGrad)

for numerical frequencies. Please note, that this will be a very time consuming calculation.

The use of vibrational frequency calculations is fairly simple:
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The user has full controll over approximations involved in the Hessian calculation. Hess2E1Flags(iy, is,
i3, i4), where ig (i, = 0 to 2) adjust the use of the RI and COSX approximations. In case iy = 0 no
approximation in the 2-electron integrals is introduced. iz = 1 means the RI approximation in the Coulomb
part is in use. i = 2 corresponds to COSX algorithm in the HF exchange. i1 corresponds to explicit Fock
matrix derivatives, io - Fock matrix depended on pseudo density, i3 - solution of the CP-SCF equations, iy -

explicit integral second derivative.

In the introduced notation the RIJDX default flags are (1, 1, 1, 1), the RIJCOSX are (1, 2, 2, 1). Analytical
frequency calculations are also implemented at MP2 level. Please note, that the Hess2E1Flags are ignored
by the MP2 module. Furthermore, MP2 frequency calculations are very time-consuming and need a lot of
disk space.

At the end of the frequency job you get an output like this:
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1: 0.00 cm**-1
2: 0.00 cm**-1
3: 0.00 cm**-1
4: 0.00 cm**-1
5: 0.00 cm**-1
6: 311.78 cm**-1
7: 887.65 cm**-1
8: 1225.38 cm**-1
9: 1394.81 cm**-1
10: 3624.88 cm**-1
11: 3635.73 cm**-1

This output consists of the calculated vibrational frequencies, the vibrational modes and the thermochemical
properties at 298.15 K. In the example above there are six frequencies which are identically zero. These
frequencies correspond to the rotations and translations of the molecule. They have been projected out of
the Hessian before the calculation of the frequencies and thus, the zero values do not tell you anything about
the quality of the Hessian that has been diagonalized. The reliability of the calculated frequencies has to
be judged by comparison of calculations with different convergence criteria, increments, integration grids
etc. The numerical error in the frequencies may reach 50 cm™! but should be considerably smaller in most
cases. Significant negative frequencies indicate saddle points of the energy hypersurface and prove that the

optimization has not resulted in an energy minimum.

Mass dependencies: Of course the calculated frequencies depend on the masses used for each atom.
While this can be influenced later through the orca_vib routine (see Section 8.15.3.6 for more detail) and
individually for each atom in the geometry input, one might prefer using a set of precise atomic masses
rather than the set of atomic weights (which are set as default). This can be achieved through the 'Mass2016
keyword, which triggers Orca to use those atomic masses representing either the most abundant isotope or
the most stable isotope (if all isotopes are unstable) of a certain element (e.g. the mass of 33Cl for chlorine or
the mass of 8 Tc).

NOTE: The calculation of numerical frequencies puts rather high demands on both computer time and

accuracy. In order to get reliable frequencies make sure that:

e Your SCF is tightly converged. A convergence accuracy of at least 10~7 Eh in the total energy and
1079 in the density is desirable.

o Grids of at least Grid4 or preferably larger are recommended.

e The use of two-sided (i.e. central) differences increases the computation time by a factor of two but

gives more accurate and reliable results.

e Small auxiliary basis sets like DGauss/J or DeMon/J may not result in fully converged frequencies
(up to 40 cm~! difference compared to frequencies calculated without RI). The def2/J universal
auxiliary basis sets of Weigend that are now the default in ORCA (or the SARC/J for scalar relativistic
calculations) are thought to give sufficiently reliable results.
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e Possibly, the convergence criteria of the geometry optimization need to be tightened in order to get

fully converged results.

e If you can afford it, decrease the numerical increment to 0.001 Bohr or so. This puts even higher
demands on the convergence characteristics of the SCF calculation but should also give more accurate

numerical second derivatives. If the increment is too small or too high inaccurate results are expected.

The calculation of analytical frequencies is memory consuming. To control memory consumption the %maxcore
parameter must be set. For example %maxcore 8192 - use 8 Gb of memory per processor for the calculation.
The user should provide the value according to the computer available memory. The batching based on

%maxcore parameter will be introduced automatically to overcome probable memory shortage.

Numerical frequency calculations are restartable (but analytical frequency calculations are not). If the
numerical frequencies job died for one reason or another you can simply continue from where it stopped as in

the following example:

! RHF STO-3G
! NumFreq
%freq Restart true # restart an old calculation
# this requires a .hess file to be present
end
* int 0 1
C 000 O0.0000 00
C 1001.216060 0 0
H 120 1.083 180 0
H 213 1.683 180 O

NOTE

e You must not change the level of theory, basis set or any other detail of the calculation. Any change

will produce an inconsistent, essentially meaningless Hessian.

e The geometry at which the Hessian is calculated must be identical. If you followed a geometry
optimization by a frequency run then you must restart the numerical frequency calculation from the

optimized geometry.

e Numerical frequencies can be performed in multi-process mode. Please see section 5.2 (“Hints on the

use of parallel ORCA”) for more information.

e In multi-process mode the restart will take off from the locally calculated Hessians (.procmyid.hess,
e.g. .proc®.hess, .procl.hess) where myid is the process id of some local process. Please make sure
that all these local Hessians get copied to your compute directory. If restart is set and no local files to
be found, ORCA will try to restart on the global Hessian file.

e The Hessian file will contain a joblist, showing which displacements have been performed. You can

recalculate a single (or more) displacements by changing the 1 (“done”-) entry to 0 (“to-be-done”).
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e The Hessian can be transformed to redundant internal coordinates. More information can be found in
section 8.2.15.

8.4 Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT

ORCA features a module to perform TD-DFT, single-excitation CI (CIS) and RPA. The module works
with either closed-shell (RHF or RKS) or unrestricted (UHF or UKS) reference wavefunctions. For DET
models the module automatically chooses TD-DFT and for HF wavefunctions the CIS model. If the RI
approximation is used in the SCF part it will also be used in the excited states calculation. A detailed

documentation is provided in section 9.23.

8.4.1 General Use

In its simplest form it is only necessary to provide the number of roots sought:

The MaxDim parameter controls the maximum number of expansion vectors in the iterative solution of the
CI equations. The default is the smallest possible choice. The triplets parameter is only valid for closed-shell
references. If chosen as true the program will also determine the triplet excitation energies in addition to the
singlets.

8.4.2 Use of TD-DFT for the Calculation of X-ray Absorption Spectra

In principle X-ray absorption spectra are “normal” absorption spectra that are just taken in a special
high-energy wavelength range. Due to the high energy of the radiation employed (several thousand eV),
core-electrons rather than valence electrons are excited. This has two consequences: a) the method becomes
element specific because the core-level energies divide rather cleanly into regions that are specific for a given
element. b) the wavelength of the radiation is so short that higher-order terms in the expansion of the

light-matter interaction become important. Most noticeably, quadrupole intensity becomes important.
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X-ray absorption spectra can be generally divided into three regions: a) the pre-edge that corresponds to
transitions of core electrons into low lying virtual orbitals that lead to bound states. b) the rising edge that
corresponds to excitations to high-lying states that are barely bound, and ¢) the extended X-ray absorption
fine structure region (EXAFS) that corresponds to electrons being ejected from the absorber atom and

scattered at neighbouring atoms.

With the simple TD-DFT calculations described here, one focuses the attention on the pre-edge region.
Neither the rising edge nor the EXAFS region are reasonably described with standard electronic structure
methods and no comparison should be attempted. In addition, these calculations are restricted to K-edges as
the calculation of L-edges is much more laborious and requires a detailed treatment of the core hole spin

orbit coupling.

It is clearly hopeless to try to calculate enough states to cover all transitions from the valence to the pre-edge
region. Hence, instead one hand-selects the appropriate donor core orbitals and only allows excitations out of
these orbitals into the entire virtual space. This approximation has been shown to be justified. [172] One
should distinguish two situations: First, the core orbital in question may be well isolated and unambiguously
defined. This is usually the case for metal 1s orbitals if there is only one metal of the given type in the
molecule. Secondly, there may be several atoms of the same kind in the molecule and their core orbitals
form the appropriate symmetry adapted linear combinations dictated by group theory. In this latter case
special treatment is necessary: The sudden approximation dictates that the excitations occurs from a local
core orbital. In previous versions of the program you had to manually localize the core holes. In the present
version there is an automatic procedure that is described below.

A typical example is TiCly. If we want to calculate the titanium K-edge, the following input is appropriate:

NOTE:

e The absolute transition energies from such calculations are off by a few hundred electron volts due
to the shortcomings of DFT. The shift is constant and very systematic for a given element. Hence,
calibration is possible and has been done for a number of edges already. Calibration depends on the

basis set!
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e Quadrupole contributions (and magnetic dipole contributions) have been invoked with DoQuad true,
which is essential for metal edges. For ligand edges, the contributions are much smaller.

e OrbWin is used to select the single donor orbital (in this case the metal 1s). The LUMO (45) and
last orbital in the set (174) are selected automatically if “-1” is given. This is different from previous

program versions where the numbers had to be given manually.

The output contains standard TD-DFT output but also:

This section contains the relevant output since it combines electric dipole, electric quadrupole and magnetic
dipole transition intensities into the final spectrum. Importantly, there is a gauge issue with the quadrupole
intensity: the results depend on the where the origin is placed. We have proposed a minimization procedure

that guarantees the fastest possible convergence of the multipole expansion. [173]

The spectra are plotted by calling

Starting from ORCA version 4.1 one may obtain exact origin independent transition moments which can be
combined with the multipole moments up to 2nd order to regenerate the electric dipole, electric quadrupole
and magnetic dipole contributions in either length or the velocity representations. This requires in addition to
the electric dipole (D), electric quadrupole (Q) and magnetic dipole (m) intensities the corresponding electric
dipole - magnetic quadrupole (DM) and the electric dipole - electric octupole (DO) intensities. [174] [175].
See also section 9.24.1.

These spectra are requested by:

Resulting in:
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The Exact transition moments spectra are plotted by calling:

Although the multipole moments up to 2nd order:

e Only approximate origin independence is achieved by using the length approximation for distances

from the excited atom up to about 5 Angstrom.
e Can form negative intensities which can be partly cured by using larger basis sets.
The exact transition moments:
e Behave like the multipole expansion in the velocity representation.

e They are by definition origin independent they do not suffer from artificial negative values like the

multipole moments beyond 1st order.

e They are used with the multipole moments up to 2nd order to regenerate the electric dipole, electric

quadrupole and magnetic dipole contributions in either length or the velocity representation.
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Now, let us turn to the Cl K-edge. Looking at the output of the first calculation, we have:

And looking at the energy range or the orbital composition, we find that orbitals 1 through 4 are Cl 1s-orbitals.
They all have the same energy since they are essentially non-interacting. Hence, we can localize them without
invalidating the calculation. To this end, you can invoke the automatic localization for XAS which modifies
the input to:

o This localizes the orbitals 1 through 4 of operator 0 (the closed-shell) and then allows excitations

(arbitrarily) from core hole 1 only. You could choose any of the three other localized 1s orbitals instead
without changing the result. You could even do all four core holes simultaneously (they produce
identical spectra) in which case you have the entire ligand K-edge intensity and not just the one
normalized to a single chlorine (this would be achieved with OrbWin[®] = 1,4,-1,-1).
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e If you have a spin unrestricted calculation, you need to give the same XASLoc and OrbWin information

for the spin-down orbitals as well.

Quite nice results have been obtained for a number of systems in this way. [176]

8.4.3 Excited State Geometry Optimization

For RPA, CIS, TDA and TD-DFT the program can calculate analytic gradients. With the help of the
IRoot keyword, a given state can be selected for geometry optimization. Note however, that if two states
cross during the optimization it may fail to converge or fail to converge to the desired excited state (see
section 8.4.3.1 below)! If you want to follow a triplet state instead of the singlet, please set IROOTMULT to
TRIPLET.

! RHF SVP TightSCF Opt

%tddft NRoots 1

IRoot 1
end
* int O 1
C(l1) 000 0.00 0.0 0.00
0(2) 100 1.20 0.0 0.00
H(3) 120 1.08 120 0.00

H(3) 12 3 1.08 120 180.00

Note that this example converges to a saddle point as can be verified through a numerical frequency calculation
(which is also possible with the methods mentioned above). The excited state relaxed density matrix is
available from such gradient runs (MyJob.cisp when using the KeepDens keyword) and can be used for

various types of analysis. Note that the frozen core option is available starting from version 2.8.0.

8.4.3.1 Root Following Scheme for Difficult Cases

In case there is a root flipping after a step during the geometry optimization, it might be impossible to converge
an excited state geometry using the regular methods. To help in those cases, the flag FOLLOWIROOT might
be set to TRUE. Then, the total overlap between the excited state wavefunctions will be calculated and
compared with the previous from TROOT. The flag IROOT will be thus adjusted to follow the maximum

overlap.

It is important to stress that this will not necessarily solve all problems (root flipping can be particularly bad
if the system is highly symmetric), for the excited states may change too much during the optimization. If
that happens, it is advisable to restart the calculation after some steps and check which TROOT you still
want. This can also be used when calculating numerical gradients and Hessians, in case you suspect of root

flipping after the displacements.
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8.4.4 Doubles Correction

For CIS (and also for perturbatively corrected time-dependent double-hybrid functionals) the program can
calculate a doubles correction to the singles-only excited states. The theory is due to Head-Gordon and

co-workers.

%cis dcorr n # n=1,2,3,4 are four different algorithms that
# lead to (essentially) the same result but differ
# in the way the rate-limiting steps are handled

NOTE:

e CIS(D) is often a quite big improvement over CIS.

e The cost of the (D) correction is O(N®) and therefore comparable to RI-MP2. Since there are quite a
few things more to be done for (D) compared to RI-MP2, expect the calculations to take longer. In

the most elementary implementation the cost is about two times the time for RI-MP2 for each root.

e The (D) correction is compatible with the philosophy of the double-hybrid density functionals and
should be used if these functionals are combined with TD-DFT. The program takes this as the default
but will not enforce it. The (D) correction can be used both in a TD-DFT and TDA-DFT context.

e In our implementation it is only implemented together with the RI approximation and therefore you

need to supply an appropriate (“/C”) fitting basis.

e The program will automatically put the RI-MP2 module into operation together with the (D) correction.
This will result in the necessary integrals becoming available to the CIS module.

8.4.5 Spin-orbit coupling

It also possible to include spin-orbit coupling between singlets and triplets calculated from TD-DFT by using
quasi-degenerate perturbation theory (please refer to the relevant publication [177]), similarly to what is done
in ROCIS. In order to do that, the flag DOSOC must be set to TRUE. The reduced matrix elements are
printed and the new transition dipoles between all SOC coupled states are also printed after the regular ones.
This option is currently still not compatible with double hybrids, but works for all other cases including
CPCM. All the options regarding the SOC integrals can be altered in the %rel block, as usual.

%cis dosoc true

Please have in mind that, as it is, you can only calculate the SOC between excited singlets and the spin-
adapted triplets. There is no SOC starting from a UHF /UKS wavefunction. If you want more information
printed such as the full SOC matrix or triplet-triplet couplings, please set a higher PRINTLEVEL.



8.4 Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT 195

8.4.5.1 Geometry Optimization of SOC States

If you want to compute geometries for the SOC states, just choose SOCGRAD TRUE and a given IROOT.
The weigthed “unrelaxed” gradient will then be calculated after selecting the CIS/TD-DFT states with
contribution larger than 0.01%. Each gradient will be calculated separately and, after that, the final SOC
gradient will be computed as a weighted sum. Setting IROOT 0 in this case corresponds to ask for the SOC
ground state, which is NOT necessarily equal to the ground state from HF/DFT.

8.4.6 Transient spectra

If one wants to compute transient spectra, or transition dipoles starting from a given excited state, the option
DOTRANS must be set to TRUE and an IROOT should be given for the initial state (the default is 1). If
DOTRANS ALL is requested instead, the transition dipoles between all states are computed. The transient
transition dipoles will then be printed after the normal spectra. This option is currently only available for
CIS/TDA and is done usng the expectation value formalism, as the other transition dipole moments in
ORCA.

%cis dotrans true
#or
dotrans all

8.4.7 Hellmann-Feyman non-adiabatic couplings

The CIS module can also compute the Hellmann-Feyman non-adiabatic couplings between ground and
an excited state given by an IROOT, (\IJGS|%|\IIIROOT>. In the HF approach, that is calculated as

Ve
(Pas| IR,

using an atom centered basis and are strictly exact only on the complete basis set limit. In our experience, a

Urroor). As discussed in the recent literature [178], these are missing all the Pulay terms when

large basis such as aug-cc-pVTZ can already reach good results. For exact, but costlier calculations, please
check the NumNACME flag for the numerical ones (see below).

%cis HFNacme true

8.4.8 Numerical non-adiabatic coupling matrix elements

The exact non-adiabatic coupling matrix elements between ground and excited states from CIS/TD-DFT can

be calculated in a numerical fashion, by setting the NumNACME flag on the main input line:

! NumNACME

ORCA will then calculate both the NACMESs and the numerical gradient for a given IROOT at the same
cost. Please be careful with the SCF options and GRID sizes since there are displacements involved, for more

information check 8.2.2. All options regarding step size and so on can be changed from %ZNUMGRAD.
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These are current implemented in both RHF /RKS and UHF /UKS, but only for CIS/TDA and RPA/TD-DFT,
no multireference methods yet. For the latter case, the overlap of the | X —Y') vector is used [178].

8.4.9 Restricted Open-shell CIS

In addition to the CIS/TD-DFT description of excited states, ORCA features the orca_rocis module to
perform configuration interaction with single excitations calculations using a restricted open-shell Hartree—
Fock (ROHF) reference. It can be used to calculate excitation energies, absorption intensities and CD
UHFintensities. In general, ROCIS calculations work on restricted open-shell HF reference functions but
in this implementation it is possible to enter the calculations with RHF (only for closed-shell molecules) or
UHF reference functions as well. If the calculation starts with an UHF /UKS calculation, it will automatically

produce the quasi-restricted orbitals which will then be used for the subsequent ROCIS calculations. Note
that if the reference function is a RHF/RKS function the method produces the CIS results. The module is
invoked by providing the number of roots sought in the %rocis block of the input file:

In this example the MaxDim parameter is given in addition to the number of roots to be calculated. It controls
the maximum dimension of the expansion space in the Davidson procedure that is used to solve the CI

problem.

The use of ROCIS is explained in greater detail in section 9.24.

8.5 SCF Stability Analysis

The SCF stability will give an indication whether the SCF solution is at a local minimum or a saddle
point. [179,180] It is available for RHF/RKS and UHF/UKS. In the latter case, the SCF is restarted by
default using new unrestricted start orbitals if an instability was detected. For a demonstration, consider the

following input:



8.6 Excited States for Open-Shell Molecules with CASSCF Linear Response (MC-RPA) 197

The HCORE guess leads to a symmetric/restricted guess, which does not yield the unrestricted solution.
The same is often true for other guess options. For more details on the stability analysis, see section 9.9.

8.6 Excited States for Open-Shell Molecules with CASSCF Linear
Response (MC-RPA)

ORCA has the possibility to calculate excitation energies, oscillator and rotatory strengths for CASSCF
wave functions within the response theory (MC-RPA) formalism. [?,181,182] The main scope of MC-RPA is
to simiulate UV /Vis and ECD absorption spectra of open-shell molecules like transition metal complexes
and organic radicals. MC-RPA absorption spectra are usually more accurate than those obtained from the
state-averaged CASSCF ansatz as orbital relaxation effects for excited states are taken into account. The
computational costs are ususally larger than those of SA-CASSCF and should be comparable to a TD-DFT
calculation for feasible active space sizes.

8.6.1 General Use

MC-RPA needs a converged state-specific CASSCF calculation of the electronic ground state. The only
necessary information that the user has to provide is the desired number of excited states (roots). All other
keywords are just needed to control the Davidson algorithm or post process the results. A minimal input for

calculating the four lowest singlet excited states of ethylene could like the following:
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After the residual norm is below a user-given threshold TolR we get the following information

and the absorption and ECD spectrum
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8.6.2 Capabilities

At the moment, we can simulate UV /Vis and ECD absorption spectra by computing excitation energies,
oscillator and rotatory strengths. The code is parallelized and the computational bottleneck is the integral
direct AO-Fock matrix construction. All intermediates that depend on the number of states are stored on
disk, which makes the MC-RPA implementation suitable for computing many low-lying electronic states of
larger molecules. So far, point-group symmetry cannot be exploited in the calculation. Moreover, there are
no calculations of spin-flip excitations possible at the moment. That means all excited states will have the

same spin as the reference state, which is specified in the %casscf input block.

It is also possible to analyze and visualize the ground-to-excited-state transitions by means of natural
transition orbitals [183] (NTO), which is explained in more detail in section 9.25.

For further details, please study our recent publications [184,185].

8.7 lonized Excited states with IPROCI

Unlike IPEOMCC, the Ionization Potential from Restricted Open-shell Configuration Interaction (IPROCI)
method can be applied to open shell and it produces spin adapted open shell excitations, while it retains
some of the disadvantages of CI type wavefunctions. Nevertheless with an appropriate shift in ionization
potentials, IPROCI can be used to compute core level ionization potentials and thus reproduce the basic
features of XPS spectra as well.

8.7.1 General Use

Since IPROCI is intended mainly to compute core ionization potentials, the default is to compute the lowest

core orbital. The minimal input for performing IPROCI looks like
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IPROCI is implemented within the autoci module and its parameters have to be set in the corresponding
module. Note the use of the nofrozencore option for calculations. The IPROCI output section begins with

some initial information about the specific calculation as shown below:

At the end of the calculation, the lowest core IP and the corresponding amplitudes are printed, where -1 is

interpreted as continuum orbital or infinity:
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The number of roots can also be increased using the keyword NRoots and the XPSORB vector can be used to
specify the orbitals from which the electron is removed. For open shells, the electron may be removed from
a DOMO alpha or beta or from a SOMO alpha orbital. This choice can be specified using the RootType
keyword.

8.7.2 Capabilities

The TPROCI method is able to calculate all types of IP in closed shell and high-spin open-shell molecules.
Currently, the module is essentially serial, although some steps make use of parallelization. For larger
calculations, the PNO and RIJCOSX features are available to accelerate calculations. The detailed description
of these keywords and others is provided in a later section (9.26), along with examples of plotting XPS
spectra. Please visit the literature [186] for further details.

8.8 Excited States with EOM-CCSD

The methods described in the previous section are all based on the single excitation framework. For a
more accurate treatment, double excitations should also be considered. The equation of motion (EOM)
CCSD method (and the closely related family of linear response CC methods) provides an accurate way of

describing excited, ionized and electron attached states based on singles and doubles excitations within the
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coupled-cluster framework. In this chapter, the typical usage of the EOM-CCSD routine will be described,
along with a short list of its present capabilities. A detailed description will be given in 9.27.

8.8.1 General Use

The simplest way to perform an EOM calculation is via the usage of the EOM-CCSD keyword, together with

the specification of the desired number of roots:

The above input will call the EOM routine with default settings. The main output is a list of excitation
energies, augmented with some further state specific data. For the above input, the following output is

obtained:
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The IP and EA versions can be called using the keywords IP-EOM-CCSD and EA-EOM-CCSD respectively.
For open-shell systems (UHF reference wavefunction), IP/EA-EOM-CCSD calculations require the use of
additional keywords. Namely, an IP/EA calculation involving the removal/attachment of an « electron is
requested by setting the DoAlpha keyword to true in the %mdci block, while setting the DoBeta keyword
to true selects an IP/EA calculation for the removal/attachment of a 8 electron. Note that DoAlpha and
DoBeta cannot simultaneously be true and that the calculation defaults to one in which DoAlpha is true if no
keyword is specified on input. A simple example of the input for a UHF IP-EOM-CCSD calculation for the
removal of an « electron is given below.
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8.8.2 Capabilities

At present, the EOM routine is able to perform excited, ionized and electron attached state calculations, for
both closed- or open-shell systems, using RHF or UHF reference wavefunctions, respectively. It can be used
for serial and parallel calculations. In the closed-shell case (RHF), a lower scaling version can be invoked by
setting the CCSD2 keyword to true in the %mdci section. For the time being, the most useful information
provided is the list of the excitation energies, the ionization potentials or the electron affinities. The ground to

excited state transition moments are also available for the closed-shell implementation of EE-EOM-CCSD.

8.9 Excited States with STEOM-CCSD

The STEOM-CCSD method provides an efficient way to calculate excitation energies, with an accuracy

comparable to the EOM-CCSD approach, at a nominal cost. A detailed description will be given in 9.28.

8.9.1 General Use

The simplest way to perform a STEOM calculation is via the usage of the STEOM-CCSD keyword, together

with the specification of the desired number of roots:

The above input will call the STEOM routine with default settings. The main output is a list of excitation
energies, augmented with some further state specific data. The STEOMCC approach in ORCA uses state-
averaged CIS natural transition orbitals(NTO) for the selection of the active space. For the above input, the

following output is obtained:




8.9 Excited States with STEOM-CCSD
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The first set of excitation amplitudes, printed for each root, have been calculated in the CIS NTO (Natural

Transition Orbitals) basis. The second set of amplitudes have been evaluated in the RHF canonical basis.

8.9.2 Capabilities

At present, the STEOM routine is able to calculate excitation energies, for both closed- or open-shell systems,
using an RHF or UHF reference function, respectively. It can be used for both serial and parallel calculations.
In the closed-shell case (RHF), a lower scaling version can be invoked by setting the CCSD2 keyword to true

in the %mdci section. The transition moments can also be obtained for closed- and open-shell systems.

8.10 Excited States with PNO based coupled cluster methods

The methods described in the previous section are performed over a canonical CCSD or MP2 ground state.
The use of canonical CCSD amplitudes restricts the use of EOM-CC and STEOM-CC methods to small
molecules. The use of MP2 amplitudes is possible (e.g. the EOM-CCSD(2) or STEOM-CCSD(2) approaches),
but it seriously compromises the accuracy of the method.

The bt-PNO-EOM-CCSD methods gives an economical compromise between accuracy and computational
cost by replacing the most expensive ground state CCSD calculation with a DLPNO based CCSD calculation.
The typical deviation of the results from the canonical EOM-CCSD results is around 0.01 eV. A detailed
description will be given in 9.29.
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8.10.1 General Use
The simplest way to perform a PNO based EOM calculation is via the usage of the bt-PNO-EOM-CCSD

keyword, together with the specification of the desired number of roots. The specification of an auxilary basis

set is also required, just as for ground state DLPNO-CCSD calculations.

The output is similar to that from a canonical EOM-CCSD calculation:
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The IP and EA versions can be called by using the keywords bt-PNO-IP-EOM-CCSD and bt-PNO-EA-
EOM-CCSD, respectively. Furthermore, the STEOM version can be invoked by using the keywords bt-PNO-
STEOM-CCSD.
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8.10.2 Capabilities

All of the features of canonical EOM-CC and STEOM-CC are available in the PNO based approaches for
both closed- and open-shell systems.

8.11 Excited States with DLPNO based coupled cluster methods

The b-PNO-STEOM-CCSD method scales as non-iterative O(N®). To reduce the scaling further one need to
rewrite the IP and EA EOM-CCSD steps needs to be re-written in DLPNO-framework. The overall scaling
of the method STEOM-DLPNO-CCSD is non-iterative O(N°®).

8.11.1 General Use

The simplest way to perform a DLPNO based STEOM calculation is via the usage of the STEOM-DLPNO-
CCSD keyword, together with the specification of the desired number of roots. The specification of an

auxilary basis set is also required, just as for ground state DLPNO-CCSD calculations.

The output is similar to that from a canonical STEOM-CCSD calculation:
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-0.168210 6 > 13
0.465575 7 > 10
-0.135840 7 > 17

IROOT= 6: 0.379862 au 10.337 eV 83370.0 cm**-1
Amplitude Excitation

0.984054 4 > 8
0.155885 7 > 8
Percentage Active Character 99.53
Amplitude Excitation in Canonical Basis
-0.951880 4 > 8
0.234713 4 -> 13
0.156620 7 > 8

The IP and EA versions can be called by using the keywords IP-EOM-DLPNO-CCSD and EA-EOM-DLPNO-
CCSD, respectively. As in canonical STEOM-CCSD, the first set of excitatio amplitudes, printed for each
root, are calculated in the CIS NTO (Natural Transition Orbitals) basis, while the second set is evaluated in
the RHF canonical basis.

8.11.2 Capabilities

Only energies and STEOM-DLPNO-CCSD transition moments are available for STEOM-DLPNO-CCSD.

8.12 Multireference Configuration Interaction and Pertubation Theory

8.12.1 Introductory Remarks

ORCA contains a multireference correlation module designed for traditional (uncontracted) approaches
(configuration interaction, MR~CI, and perturbation theory, MR-PT). For clarification, these approaches have
in common that they consider excitations from each and every configuration state function (CSF) of the
reference wavefunction. Hence, the computational cost of such approaches grows rapidly with the size of
the reference space (e.g. CAS-CI). Internally contracted on the other hand define excitations with respect
to the entire reference wavefunction and hence do not share the same bottlenecks. ORCA also features
internally contracted approaches (perturbation theory, NEVPT2 and configuration interaction, FIC-MRCI),
which are described elsewhere in the manual. The following chapter focuses on the traditional multi-reference

approaches as part of the orcamrci module.

Although there has been quite a bit of experience with it, this part of the program is still somewhat hard to
use and requires patience and careful testing before the results should be accepted. While we try to make
your life as easy as possible, you have to be aware that ultimately any meaningful multireference ab initio
calculation requires more insight and planning from the user side than standard SCF or DFT calculation
or single reference correlation approaches like MP2 — so don’t be fainthearted! You should also be aware

that with multireference methods it is very easy to let a large computer run for a long time and still to



212 8 Running Typical Calculations

not produce a meaningful result — your insight is a key ingredient to a successful application! Below a few

examples illustrate some basic uses of the orca_mrci module.

Rl-approximation

First of all, it is important to understand that the default mode of the MR-CI module in its present
implementation performs a full integral transformation from the AO to the MO basis. This becomes very
laborious and extremely memory intensive beyond approximately 200 MOs that are included in the CI.
Alternatively, one can construct molecular electron-electron repulsion integrals from the resolution of the
identity (RI) approximation. Thus a meaningful auziliary basis set must be provided if this option is chosen.
We recommend the fitting bases developed by the TurboMole developers for MP2 calculations. These give
accurate transition energies; however, the error in the total energies is somewhat higher and may be on the
order of 1 mEh or so. Check IntMode to change the default mode for the integral transformation. Note that
in either way, the individually selecting MRCI module requires to have all integrals in memory which sets a

limit on the size of the molecule that can be studied.

Individual Selection

Secondly, it is important to understand that the MR-CI module is of the individually selecting type. Thus,
only those excited configuration state functions (CSFs) which interact more strongly than a given threshold
(Tse1) with the 0" order approximations to the target states will be included in the variational procedure. The

effect of the rejected CSF's is estimated using second order perturbation theory. The 0"

order approximations
to the target states are obtained from the diagonalization of the reference space configurations. A further
approximation is to reduce the size of this reference space through another selection — all initial references
which contribute less than a second threshold (Tpre) to the 0 order states are rejected from the reference

space.

Single excitations

One important aspect concerns the single excitations. If the reference orbitals come from a CASSCF
calculation the matrix elements between the reference state and the single excitations vanishes and the singles
will not be selected. However, they contribute to fourth and higher orders in perturbation theory and may
be important for obtaining smooth potential energy surfaces and accurate molecular properties. Hence, the
default mode of the MRCI module requires to include all of the single excitations via the flag A11Singles

=true. This may lead to lengthy computations if the reference spaces becomes large!

Reference Spaces

Third, the reference spaces in the MR-CI module can be of the complete active space (CAS(n-electrons,m-
orbitals)) or restricted active space (RAS, explained later) type. It is important to understand that the
program uses the orbitals around the HOMO-LUMO gap as provided by the user to build up the reference
space! Thus, if the orbitals that you want to put in the active space are not coming “naturally” from your

SCF calculation in the right place you have to reorder them using the “moread” and “rotate” features
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together with the NoIter directive. To select the most meaningful and economic reference space is the most
important step in a multireference calculation. It always requires insight from the user side and also care

and, perhaps, a little trial and error.

Size Consistency

Fourth, it is important to understand that CI type methods are not size consistent. Practically speaking
the energy of the supermolecule A-B with noninteracting A and B fragments is not equal to the energies
of isolated A and isolated B. There are approximate ways to account for this (ACPF, AQCC and CEPA
methods) but the effect will be present in the energies, the more so the more electrons are included in the
treatment. The same is not true for the perturbation theory based methods which are size consistent as long

as the reference wavefunction is.

Performance

There are many flags that control the performance of the MR-CI program. Please refer to chapter 0 for a
description of possible flags, thresholds and cut-offs. The most important thresholds are Tge; and Tpye, and
for SORCI also Tpat.

For some methods, like ACPF, it is possible to compare the performance of the MRCI module with the
performance of the MDCI module. The MDCI module has been written to provide optimum performance
if no approximations are introduced. The MRCI module has ben written more with the idea of flexibility
rather than the idea of performance. Let us compare the performance of the two programs in a slightly
nontrivial calculation — the zwitter-ionic form of serine. We compare the selecting MRCI approach with the
approximation free MDCI module. The molecular size is such that still all four index integrals can be stored

in memory.

Table 8.12: Comparison of the performance of the MRCI and MDCI modules for a single reference calculation
with the bn-ANO-DZP basis set on the zwitter-ionic form of serine (14 atoms, 133 basis functions).

Module ‘ Method ‘ Tse1(Eh) Time (sec) ‘ Energy (Eh) ‘
MRCI | ACPF 107¢ 3277 -397.943250
MDCI | ACPF 0 1530 -397.946429
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MDCI CCSD 0 2995 -397.934824
MDCI CCSD(T) 0 5146 -397.974239

The selecting ACPF calculation selects about 15% of the possible double excitations and solves a secular
problem of size ~ 360,000 CSFs. The MDCI module ACPF calculation optimizes approximately 2.5 million
wavefunction amplitudes — and this is not a large molecule or a large basis set! Despite the fact that the
MDCIT module makes no approximation, it runs twice as fast as the selected MRCI module and an estimated
50 times faster than the unselected MRCI module! This will become even more pronounced for the larger
and more accurate basis sets that one should use in such calculations anyways. The error of the selection
is on the order of 3 mEh or 2 kcal/mol in the total energy. One can hope that at least part of this error

10" The more rigorous CCSD calculation takes about a factor of two

cancels upon taking energy differences.
longer than the ACPF calculation which seems reasonable. The triples add another factor of roughly 2 in
this example but this will increase for larger calculations since it has a steeper scaling with the system size.
The ACPF energy is intermediate between CCSD and CCSD(T) which is typical — ACPF overshoots the

effects of disconnected quadruples which partially compensates for the neglect of triples.

These timings will strongly depend on the system that you run the calculation on. Nevertheless, what you

should take from this example are the message that if you can use the MDCI module, do it.

The MDCI module can avoid a full integral transformation for larger systems while the MRCI module can use
selection and the RI approximation for larger systems. Both types of calculation will become very expensive

very quickly! Approximate MDCI calculations are under development.

Symmetry

The MRCI program really takes advantage of symmetry adapted orbitals. In this case the MRCI matrix
can be blocked according to irreducible representations and be diagonalized irrep by irrep. This is a big
computational advantage and allows one to converge on specific excited states much more readily than if

symmetry is not taken into account.

The syntax is relatively easy. If you specify:

newblock 1 *
nroots 8
refs cas(4,4) end
end

Then the “*” indicates that this is to be repeated in each irrep of the point group. Thus, in Cs, the program
would calculate 8 singlet roots in each of the four irreps of the Cg, point group thus leading to a total of 32

states.

10 Depending on whether one wants to take a pessimistic or an optimistic view one could either say that this result
shows what can be achieved with a code that is dedicated to a single determinant reference. Alternatively one
could (and perhaps should) complain about the high price one pays for the generality of the MRCI approach. In
any case, the name of the game would be to develop MR approaches that are equally efficient to single reference
approaches. See FIC-MRCI chapter for more information.
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Alternatively, you can calculate just a few roots in the desired irreps:

In this example, we would calculate 3 singlet roots in the irrep “0” (which is A;), then five roots in irrep “2”
(which is B1) and then 1 triplet root in irrep 1 (which is Bg).

Obviously, the results with and without symmetry will differ slightly. This is due to the fact that without
symmetry the reference space will contain references that belong to “wrong” symmetry but will carry with
them excited configurations of “right” symmetry. Hence, the calculation without use of symmetry will have
more selected CSFs and hence a slightly lower energy. This appears to be unavoidable. However, the effects
should not be very large for well designed reference spaces since the additional CSFs do not belong to the

first order interacing space.

8.12.2 A Tutorial Type Example of a MR Calculation

Perhaps, the most important use of the MR-CI module is for the calculation of transition energies and optical
spectra. Let us first calculate the first excited singlet and triplet state of the formaldehyde molecule using
the MR-CI method together with the Davidson correction to approximately account for the effect of unlinked
quadruple substitutions. We deliberately choose a somewhat small basis set for this calculation which is

already reasonable since we only look at a valence excited state and want to demonstrate the principle.

Suppose that we already know from a ground state calculation that the HOMO of HoCO is an oxygen lone
pair orbitals and the LUMO the 7* MO. Thus, we want to calculate the singlet and triplet n— 7* transitions

and nothing else. Consequently, we only need to correlate two electrons in two orbitals suggesting a CAS(2,2)

reference space.
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This input — which is much more than what is really required - needs some explanations: First of all, we
choose a standard RHF calculation with the SVP basis set and we assign the SV/C fitting basis although it
is not used in the SCF procedure at all. In the %mrci block all details of the MR-CI procedure are specified.
First, EWin (%method frozencore fc_ewin) selects the MOs within the given orbital energy range to be

included in the correlation treatment. The CIType variable selects the type of multireference treatment.

Numerous choices are possible and MRCI is just the one selected for this application.

e NOTE: The CIType statement selects several default values for other variables. So it is
a very good idea to place this statement at the beginning of the MR-CI block and possibly
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overwrite the program selected defaults later. If you place the CIType statement after one of

the values which it selects by default your input will simply be overwritten!

The variables EUnselOpt and DavidsonOpt control the corrections to the MR-CI energies. EUnselOpt specifies
the way in which the MR-CI energies are extrapolated to zero threshold Tge. Here we choose a full MR-MP2
calculation of the missing contributions to be done after the variational step, i.e. using the relaxed part of
the reference wavefunction as a 0" order state for MR-PT. The DavidsonOpt controls the type of estimate
made for the effect of higher substitutions. Again, multiple choices are possible but the most commonly
used one (despite some real shortcomings) is certainly the choice Davidsonl. The flag UseIVOs instructs the
program to use “improved virtual orbitals”. These are virtual orbitals obtained from a diagonalization of
the Fock operator from which one electron has been removed in an averaged way from the valence orbitals.
Thus, these orbitals “see” only a N — 1 electron potential (as required) and are not as diffuse as the standard
virtual orbitals from Hartree-Fock calculations. If you input DFT orbitals in the MR-CI moldule (which is
perfectly admittable and also recommened in some cases, for example for transition metal complexes) then
it is recommended to turn that flag off since the DFT orbitals are already o.k. in this respect. The two
thresholds Tsel and Tpre are already explained above and represent the selection criteria for the first order
interacting space and the reference space respectively. Tsel is given in units of Eh and refers to the second
order MR-MP2 energy contribution from a given excited CSF. 107 Eh is a pretty good value. Reliable
results for transition energies start with ~ 107°; however, the total energy is converging pretty slowly with
this parameter and this is one of the greatest drawbacks of individually selecting CI procedures! (see below).
Tpre is dimensionless and refers to the weight of a given initial reference after diagonalization of the the
given initial reference space (10~%is a pretty good value and there is little need to go much lower. Aggressive
values such as 102 only select the truly leading configurations for a given target state which can be time
saving. Intermediate values are not really recommended). The parameters MaxMemInt and MaxMemVec tell
the program how much memory (in MB) it is allowed to allocate for integrals and for trial and sigma-vectors

respectively.

The flag IntMode tells the program to perform a full integral transformation. This is possible for small cases
with less than, say, 100-200 MOs. In this case that it is possible it speeds up the calculations considerably.
For larger molecules you have to set this flag to RITrafo which means that integrals are recomputed on the
fly using the RI approximation which is more expensive but the only way to do the calculation. To switch

between the possible modes use:

%mrci IntMode FullTrafo # exact 4 index transformation
RITrafo # use auxiliary basis sets

For small molecules or if high accuracy in the total energies is required it is much better to use the exact four
index transformation. The limitations are that you will run out of disk space or main memory with more
than ca. 200-300 MOs.

The variable Solver can be diag (for Davidson type diagonalization) or DIIS for multirrot DIIS type

treatments.

%mrci Solver Diag # Davidson solver
DIIS # Multiroot DIIS



218 8 Running Typical Calculations

For CI methods, the diag solver is usually preferable. For methods like ACPF that contain nonlinear terms,
DIIS is imperative.

Next in the input comes the definition of what CI matrices are to be constructed and diagonalized. Each
multiplicity defines a block of the CI matrix which is separately specified. Here we ask for two blocks — singlet

and triplet. The general syntax is:

Now that all input is understood let us look at the outcome of this calculation:

The first thing that happens after the SCF calculation is the preparation of the frozen core Fock matrix and
the improved virtual orbitals by the program orca_ciprep. From the output the energies of the IVOs can be
seen. In this case the LUMO comes down to —8.2 ¢V which is much more reasonable than the SCF value of
+3.... eV. Concomitantly, the shape of this MO will be much more realistic and this important since this
orbital is in the reference space!
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The next step is to transform the electron-electron repulsion integrals into the MO basis:




8 Running Typical Calculations

This will result in a few additional disk files required by orcamrci. The program then tells you which
multiplicities will be treated in this MRCI run:
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Now that all the setup tasks have been accomplished the MRCI calculation itself begins.
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In the first step, the reference space is diagonalized. From this CI, the most important configurations are
selected with Tpre:

In this case, the CAS space only has 2 correctly symmetry adapted CSFs one of which (the closed-shell

determinant) is selected. In general, larger CAS spaces usually carry around a lot of unnecessary CSFs which

are not needed for anything and then the selection is important to reduce the computational effort. The

result of the second reference space CI is printed:
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Energy is the total energy in Eh. In the present case we can compare to the SCF energy -113.778810021
Eh and find that the reference space CI energy is identical, as it has to be since the lowest state coincides
with the reference space. RefWeight gives the weight of the reference configurations in a CI state. This is
1.0 in the present case since there were only reference configurations. The number 1.000 is the weight of
the following configuration in the CI vector. The description of the configuration h---h---[20]p---p--- is
understood as follows:!! The occupation of the active orbitals is explicitly given in square brackets. Since the
HOMO orbitals is number 7 from the SCF procedure, this refers to MOs 7 and 8 in the present example since
we have two active orbitals. The 2 means doubly occupied, the ® means empty. Any number (instead of ---)
appearing after an h gives the index of an internal orbital in which a hole is located. Simarly, any number
after a p gives the index of an virtual (external) MO where a particle is located. Thus h---h---[20] is a
closed shell configuration and it coincides with the SCF configuration—this was of course to be expected. The
second root (in CI-Block 2) h---h---[11] by comparison refers to the configuration in which one electron
has been promoted from the HOMO to the LUMO and is therefore the desired state that we wanted to
calculate. Things are happy therefore and we can proceed to look at the output.

The next step is the generation of excited configurations and their selection based on Tsel:

HNote that for printing we always sum over all linearly independent spin couplings of a given spatial configuration and
only print the summed up weight for the configuration rather than for each individual CSF of the configuration.
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Here, the program loops through classes of excitations. For each excitation it produces the excited con-
figurations (CFGs) and from it the linearly independent spin functions (CSFs) which are possible within
the configuration. It then calculates the interaction with the contracted 0t order roots and includes all
CSF's belonging to a given CFG in the variational space if the largest second order perturbation energy is
larger or equal to Tsel. In the present case ~136,000 CSFs are produced of which 25% are selected. For
larger molecules and basis sets it is not uncommon to produce 10°-10'° configurations and then there is no
choice but to select a much smaller fraction than 20%. For your enjoyment, the program also prints the total

energies of each state after selection:

You can ignore this output if you want. In cases that the perturbation procedure is divergent (not that

uncommon!) the total energies look strange—don’t worry—the following variational calculation is still OK.
The second order perturbation energy is here divided into a selected part E2(sel) and the part procedure by
the unselected configurations E2 (unsel). Depending on the mode of EUnselOpt this value may already be

used later as an estimate of the energetic contribution of the unselected CSFs.!?

Now we have /4,200 CSFs in the variational space of CI block 1 and proceed to diagonalize the Hamiltonian
over these CSFs using a Davidson or DIIS type procedure:

211 this case the maximum overlap of the 0** order states with the final CI vectors is computed and the perturbation
energy is added to the “most similar root”. This is of course a rather crude approximation and a better choice is
to recomputed the second order energy of the unselected configurations rigorously as is done with EUnselOpt =
FullMP2.
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The procedure converges on all roots simultaneously and finishes after six iterations which is reasonable. Now
the program calculates the Davidson correction (DavidsonOpt) which is printed for each root.

Already in this small example the correction is pretty large, ca. 27 mEh for the ground state (and ~ 36
mEh for the excited state, later in the output). Thus, a contribution of ~ 9 mEh = 0.25 eV is obtained for
the transition energy which is certainly significant. Unfortunately, the correction becomes unreliable as the
reference space weight drops or the number of correlated electrons becomes large. Here 0.912 and 0.888 are

still OK and the system is small enough to expect good results from the Davidson correction.

The next step is to estimate the correction for the unselected configurations:

In the present case this is below 1 mEh and also very similar for all three states such that it is not important

for the transition energy.

The final ground state energy is -114.113097002 which is an estimate of the full CI energy in this basis set.

The leading configuration is still the closed-shell configuration with a weight of ~ 91%. However, a double
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excitation outside the reference space contributes some 1%. This is the excitation MO6,MO6 —LUMO,LUMO.
This indicates that more accurate results are expected once MOG6 is also included in the reference space (this
is the HOMO-1). The excited state is dominated by the HOMO-LUMO transition (as desired) but a few
other single- and double- excitations also show up in the final CI vector.

Now that all CI vectors are known we can order the states according to increasing energy and print (vertical)

transition energies:

This result is already pretty good and the transition energies are within ~ 0.1 eV of their experimental gas
phase values (= 3.50 and ~ 4.00 ¢V) and may be compared to the CIS values of 3.8 and 4.6 ¢V which are
considerably in error.

In the next step the densities and transition densities are evaluated and the absorption and CD spectra
are calculated (in the dipole length formalism) for the spin-allowed transitions together with state dipole

moments:
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Here the transition is symmetry forbidden and therefore has no oscillator strength. The state dipole moment
for the ground state is 2.33 Debye which is somewhat lower than 2.87 Debye from the SCF calculation. Thus,
the effect of correlation is to reduce the polarity consistent with the interpretation that the ionicity of the
bonds, which is always overestimated by HF theory, is reduced by the correlation. Finally, you also get a
detailed population analysis for each generated state density which may be compared to the corresponding

SCF analysis in the preceding part of the output.

This concludes the initial example on the use of the MR-CI module. The module leaves several files on disk
most of which are not yet needed but in the future will allow more analysis and restart and the like. The

.ivo file is a standard .gbw type file and the orbitals therein can be used for visualization. This is important

in order to figure out the identity of the generated IVOs. Perhaps they are not the ones you wanted and then
you need to re-run the MR-CI with the IVOs as input, NoIter and the IVO feature in the new run turned
off! We could use the IVOs as input for a state averaged CASSCF calculation:

If we based a MR-ACPF calculation on this reference space we will find that the calculated transition energies
are slightly poorer than in the MRCI+Q calculation. This is typical of approximate cluster methods that
usually require somewhat larger reference spaces for accurate results. A similar result is obtained with
SORCI.
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This gives:

This is systematically 0.4 eV too high. But let us look at the approximate average natural orbital (AANOs)

occupation numbers:

This shows that there is a low-occupancy orbital (MOG6) that has not been part of the reference space. Thus,

we try the same calculation again but now with one more active orbital and two more active electrons:
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This gives:

Which is now fine since all essential physics has been in the reference space. Inspection of the occupation

numbers show that there is no suspicious orbital any more. Note that this is still a much more compact
calculation that the MRCI+Q.

Likewise, we get an accurate result from MRACPF with the extended reference space.
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However, the SORCI calculation is much more compact. For larger molecules the difference becomes more and
more pronounced and SORCI or even MRDDCI2 (with or without +Q) maybe the only feasible methods—if
at all.

8.12.3 Excitation Energies between Different Multiplicities

As an example for a relatively accurate MRCI4Q calculation consider the following job which calculates the

triplet- ground and as the first excited singlet states of O.

Note that the linear molecule is run in Dgp. This creates a slight problem as the CASSCF procedure
necessarily breaks the symmetry of the 'A state.
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The result of the MRCI+Q is:

These excitation energies are accurate to within a few hundred wavenumbers. Note that the =~ 200 wavenumber
splitting in the degenerate ' A state is due to the symmetry breaking of the CAS and the individual selection.
Repeating the calculation with the MP2 natural orbitals gives an almost indistinguishable result and a ground
state energy that is even lower than what was found with the CASSCF orbitals. Thus, such natural orbitals
(that might often be easier to get) are a good substitute for CASSCF orbitals and at the same time the
symmetry breaking due to the use of symmetry appears to be difficult to avoid.

8.12.4 Correlation Energies

The logic we are following here is the following: CID minus SCF gives the effect of the doubles; going to CISD
gives the effect of the singles; QCISD(=CCD) minus CID gives the effect of the disconnected quadruples.
QCISD minus QCID gives simultaneously the effect of the singles and the disconnected triples. They are a bit
difficult to separate but if one looks at the singles alone and compares with singles + disconnected triples, a
fair estimate is probably obtained. Finally, QCISD(T) minus QCISD gives the effect of the connected triples.
One could of course also use CCSD instead of QCISD but I felt that the higher powers of Ty obscure the
picture a little bit—but this is open to discussion of course.
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First HoO/TZVPP at its MP2/TZVPP equilibrium geometry (Tpre =109 and Ty =10"° Eh for the MRCI
and MRACPF calculations):

Excitation class Energy (Eh) ‘ Delta-Energy (mEh)
None (RHF) -76.0624

Doubles (CID) -76.3174 255
+Singles (CISD) -76.3186 1
+Disconnected Quadruples (QCID) -76.3282 11
+Disconnected Triples (QCISD) -76.3298

+Connected Triples (QCISD(T)) -76.3372

CASSCF(8,6) -76.1160

CASSCF(8,6) + MRCI 76.3264 210
CASSCF(8,6) + MRCI+Q -76.3359 10
CASSCF(8,6) + MRACPF -76.3341 218

One observes quite good agreement between single- and multireference approaches. In particular, the
contribution of the disconnected triples and singles is very small. The estimate for the disconnected
quadruples is fairly good from either the multireference Davidson correction or the ACPF and the agreement
between CCSD(T) and these MR methods is 2-3 mEh in the total energy which is roughly within chemical

accuracy.

In order to also have an open-shell molecule let us look at NH with a N-H distance of 1.0 A using the TZVPP

basis set.
Excitation class Energy (Eh) ‘ Delta-Energy (mEh)

None (UHF) -54.9835

Doubles (CID) -55.1333 150
+Singles (CISD) -55.1344 1
+Disconnected Quadruples (QCID) -55.1366 3
+Disconnected Triples (QCISD) -55.1378 1
+Connected Triples (QCISD(T)) -55.1414 4
CASSCF(6,5) -55.0004

CASSCF(6,5) + MRCI 755.1373 137
CASSCF(6,5) + MRCI+Q -55.1429 6
CASSCF(6,5) + MRACPF -55.1413 141

Again, the agreement is fairly good and show that both single- and multiple reference approaches converge to

the same limit.

8.12.5 Thresholds

Now we choose the CO molecule (1.128 Angstrém) with the SVP basis set and study the convergence of
the results with respect to the selection threshold. Comparison to high level single-reference approaches is
feasible (The SCF energy is -112.645 946 Eh).
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8.12.5.1 Reference Values for Total Energies

The single-reference values are:

The calculations without connected triples (BD, CCSD, QCISD) are about the best what can be achieved
without explicitly considering triple excitations. The CCSD is probably the best in this class. As soon as
connected triples are included the CCSD(T), QCISD(T) and BD(T) values are close and from experience they
are also close to the full CI values which is then expected somewhere between —112.950 and —112.952 Eh.

8.12.5.2 Convergence of Single Reference Approaches with Respect to T

Next it is studied how these single reference methods converge with Tg:

It is clear that the convergence is erratic if the singles are not automatically included. This is the reason

for making this the default from release 2.6.35 on. In the present case singles will only be selected due
to round-off errors since by Brillouin’s theorem the singles have zero-interaction with the ground state
determinant. Thus, for individually selecting single-reference methods it is a good idea to automatically
include all single-excitations in order to get converged results. The alternative would be a different singles
selection procedure which has not yet been developed however. The selection of doubles appear to converge
the total energies reasonably well. It is seen that the selection selects most CSFs between 10~° and 10~7 Eh.
Already a threshold of 10~¢ Eh yields an error of less than 0.1 mEh which is negligible in relation to reaction
energies and the like. Even 107° Eh gives an error of less than 0.1 kcal/mol.



8.12 Multireference Configuration Interaction and Pertubation Theory 235

8.12.5.3 Convergence of Multireference Approaches with Respect to Ty

We next turn to multireference treatments. Here we want to correlate all valence electrons in all valence

orbitals and therefore a CAS(10,8) is the appropriate choice. We first ask for the converged value of Tpye by
using Tge) =107 and obtain for MRCI+Q:

Thus, pretty good convergence is obtained for Tpe = 10~* — 107%. Hence 10~ is the default.

To show a convenient input consider the following:
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This job computes at the same time all of the below and demonstrates once more the agreement between

consequent single- and multireference correlation methods

8.12.6 Energy Differences - Bond Breaking

For the calculation of energy differences we start again with the reference CCSD(T) calculation; this method

is one of the few which can claim chemical accuracy in practical applications:

The basis set is of course not suitable for quantitative comparison to experimental values. However, this is

not the point here in these calculations which are illustrative in nature. The SVP basis is just good enough

to allow for a method assessment without leading to excessively expensive calculations.
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This is now to be compared with the corresponding energy differences computed with some single-reference
approaches. A typical input is (this is a somewhat old-fashioned example — in the present program version
you would do a full valence CASSCF(10,8) or CASSCF(6,6) and invoke the MR-methods with a single
keyword):
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The results are:

With exception is CEPA1 and CEPA3, the results are OK. The reason for the poor performance of these
methods is simply that the formalism implemented is only correct for closed shells — open shells require a
different formalism which we do not have available in the MRCI module (but in the single reference MDCI
module). Due to the simple approximations made in CEPA2 it should also be valid for open shells and the
numerical results are in support of that.

Next we turn to the multireference methods and take a CAS(10,8) reference as for CO in order to correlate

all valence electrons. '3

13Most of these results have been obtained with a slightly earlier version for which the MR energies are a little
different from that what the present version gives. The energy differences will not be affected.
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This test calculation pleasingly shows the high consistency of multireference approaches which all converge

more or less to the same result which must be accurate.

8.12.7 Energy Differences - Spin Flipping

There are a number if interesting situations in which one is interested in a small energy difference which
arises from two states of different multiplicity but same orbital configuration. This is the phenomenon met in
diradicals or in magnetic coupling in transition metal complexes. As a primitive model for such cases one
may consider the hypothetical molecule H-Ne-H in a linear configuration which will be used as a model in
this section.

The reference value is obtained by a MR-ACPF calculation with all valence electrons active (again, this
example is somewhat old fashioned — in the present program version you would do a CASSCF calculation
followed by MR methods with a single keyword):
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which gives the reference value 108 cm~!. We now compare that to several other methods which only have
the two “magnetic” orbitals (the 1s’s on the hydrogens) in the active space:

This gives the result:

All these methods give good results with SORCI leading to a somewhat larger error than the others. The
(difference dedicated CI) DDCI2 method slightly underestimates the coupling which is characteristic of
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this method. It is nice in a way that DDCI3 gives the same result as SORCI since SORCI is supposed to
approximate the DDCI3 (or better the IDDCI3) result which it obviously does.

This splitting can also be studied using broken symmetry HF and DFT methods as explained elsewhere in

this manual:

This confirms the usual notions; UHF underestimates the coupling and DFT overestimates it, less so for
hybrid functionals than for GGAs. The BP86 is worse than PW91 or PBE. The PBEO hybrid may be the
best of the DFT methods. For some reason most of the DF'T methods give the best results if the BS state is
simply taken as an approximation for the true open-shell singlet. This is, in our opinion, not backed up by
theory but has been observed by other authors too.

Now let us study the dependence on T as this is supposed to be critical (we use the DDCI3 method):

The convergence is excellent once AllSingles are included.

8.12.8 Potential Energy Surfaces

Another situation where multireference approaches are necessary is when bond breaking is studied and one
wants to calculate a full potential energy surface. Say we want to compute the potential energy surface of the
CH molecule. First we have to figure out which states to include. Hence, let us first determine a significant
number of roots for the full valence CASSCF reference state (we use a small basis set in order to make the
job fast).
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This yields:




8.12 Multireference Configuration Interaction and Pertubation Theory 243

Thus, if we want to focus on the low-lying states we should include five doublet and one quartet root. Now

we run a second job with these roots and scan the internuclear distance.

The surfaces obtained in this run are shown in 8.18. You can nicely see the crossing of the 2% and ?A states
fairly close to the equilibrium distance and also the merging of the *X state with 2II and 2% towards the
asymptote that where C-H dissociates in a neutral C-atom in its 3P ground state and a neutral hydrogen
atom in its 2S ground state. You can observe that once AllSingles is set to true (the default), the default
settings of the MRCI module yield fairly smooth potential energy surfaces.

In many cases one will focus on the region around the minimum where the surface is nearly quadratic. In this
case one can still perform a few (2, 3, 5, ...) point polynomial fitting from which the important parameters
can be determined. The numerical accuracy and the behavior with respect to Tge has to be studied in these
cases since the selection produces some noise in the procedure. We illustrate this with a calculation on the
HF molecule:
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Figure 8.18: Potential energy surfaces for some low-lying states of CH using the MRCI4+Q method

The output contains the result of a Morse fit:

Which may be compared with the CCSD(T) values calculated with the same basis set:
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4209.8 cm**-1
97.6 cm**-1
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The agreement between MRCI4+Q and CCSD(T) results is fairly good.

8.12.9 Multireference Systems - Ozone

The ozone molecule is a rather classical multireference system due to its diradical character. Let us look at
the three highest occupied and lowest unoccupied MO (the next occupied MO is some 6 eV lower in energy
and the next virtual MO some 10 eV higher in energy):

-

(a) MO-9 (b) MO-10 (¢) MO 11(HOMO) (d) MO 12(LUMO)
Figure 8.19: Frontier MOs of the Ozone Molecule.

These MOs are two o lone pairs which are high in energy and then the symmetric and antisymmetric
combinations of the oxygen 7 lone pairs. In particular, the LUMO is low lying and will lead to strong
correlation effects since the (HOMO)? —(LUMO)? excitation will show up with a large coefficient. Physically
speaking this is testimony of the large diradical character of this molecule which is roughly represented by the
structure 1O-0-0J. Thus, the minimal active space to treat this molecule correctly is a CAS(2,2) space which
includes the HOMO and the LUMO. We illustrate the calculation by looking at the RHF, MP2 MRACPF
calculations of the two-dimensional potential energy surface along the O—O bond distance and the O-O-O
angle (experimental values are 1.2717 A and 116.78°).

! ano-pVDZ VeryTightSCF NoPop MRCI+Q Conv
%paras R 1.20,1.40,21

Theta = 100,150,21
end

%casscf nel

2
norb 2
mult 1

1

nroots
end



246 8 Running Typical Calculations

This is a slightly lengthy calculation due to the 441 energy evaluations required. RHF does not find any

meaningful minimum within the range of examined geometries. MP2 is much better and comes close to the
desired minimum but underestimates the O-O distance by some 0.03 A. CCSD(T) gives a very good angle
but a O-O distance that is too long. In fact, the largest doubles amplitude is 0.2 in these calculations (the
HOMO-LUMO double excitation) which indicates a near degeneracy calculation that even CCSD(T) has
problems to deal with. Already the CAS(2,2) calculation is in qualitative agreement with experiment and the
MRCI+Q calculation then gives almost perfect agreement.

The difference between the CCSD(T) and MRCI+Q surfaces shows that the CCSD(T) is a bit lower than
the MRCI+Q one suggesting that it treats more correlation. However, CCSD(T) does it in an unbalanced
way. The MRCI calculation employs single and double excitations on top of the HOMO-LUMO double
excitation, which results in triples and quadruples that apparently play an important role in balancing the
MR calculation. These excitations are treated to all orders explicitly in the MRCI calculation but only
approximately (quadruples as simultaneous pair excitations and triples perturbatively) in the coupled-cluster
approach. Thus, despite the considerable robustness of CC theory in electronically difficult situations it is

not applicable to genuine multireference problems.

This is a nice result despite the too small basis set used and shows how important it can be to go to a
multireference treatment with a physically reasonable active space (even if is only 2 X 2) in order to get

qualitatively and quantitatively correct results.

8.12.10 Size Consistency

Finally, we want to study the size consistency errors of the methods. For this we study two non-interacting

HF molecules at the single reference level and compare to the energy of a single HF molecule. This should

give a reasonably fair idea of the typical performance of each method (energies in Eh)!*:

“\Most of these numbers were obtained with a slightly older version but will not change too much in the present
version.
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(a) RHF (b) CASSCF(2,2)
(c) MP2 (d) CCSD(T)
s
(e) MRCI+Q

(f) Difference CCSD(T)/MRCI+Q

Figure 8.20: 2D potential energy surface for the O3 molecule calculated with different methods.

AQCC -100.135 059 -200.269 792 0.00032

The results are roughly as expected — CISD+Q has a relatively large error, ACPF and ACPF/2 are perfect

for this type of example; AQCC is not expected to be size consistent and is (only) about a factor of 10 better
than CISD+Q in this respect. CEPA-0 is also size consistent.

8.12.11 Efficient MR-MP2 Calculations for Larger Molecules

Uncontracted MR-MP2 approaches are nowadays outdated. They are much more expensive than internally
contracted e.g. the NEVPT2 method described in section 9.14. Moreover, MR-MP?2 is prone to intruder
states, which is a major obstacle for practical applications. For historical reasons, this section is dedicated to

the traditional MR-MP2 approach that is available since version 2.7.0 ORCA. The implementation avoids
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the full integral transformation for MR-MP2 which leads to significant savings in terms of time and memory.
Thus, relatively large RI-MR-MP2 calculations can be done with fairly high efficiency. However, the program
still uses an uncontracted first order wavefunction which means that for very large reference space, the

calculations still become untractable.

Consider for example the rotation of the stilbene molecule around the central double bond
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Figure 8.21: Rotation of stilbene around the central double bond using a CASSCF(2,2) reference
and correlating the reference with MR-MP2.

The input for this calculation is shown below. The calculation has more than 500 basis functions and still
runs through in less than one hour per step (CASSCF-MR-MP2). The program takes care of the reduced
number of two-electron integrals relative to the parent MRCI method and hence can be applied to larger
molecules as well. Note that we have taken a “JK” fitting basis in order to fit the Coulomb and the dynamic
correlation contributions both with sufficient accuracy. Thus, this example demonstrates that MR-MP2
calculations for not too large reference spaces can be done efficiently with ORCA (as a minor detail note that
the calculations were started at a dihedral angle of 90 degrees in order to make sure that the correct two

orbitals are in the active space, namely the central carbon p-orbitals that would make up the pi-bond in the

coplanar structure).
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8.13 MR-EOM-CC: Multireference Equation of Motion
Coupled-Cluster

The Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) methodology [187-192] has been
implemented in ORCA. The strength of the MR-EOM-CC methodology lies in its ability to calculate many
excited states from a single state-averaged CASSCF solution, the solution of a single set of amplitudes
and an uncontracted MRCI diagonalization, of the final transformed Hamiltonian, over a small manifold of

excited configurations. Hence, a given MR-EOM calculation involves three steps, performed by three separate
modules in ORCA:

1. a state-averaged CASSCF calculation (CASSCF module),

2. the solution of amplitude equations and the calculation of the elements of the similarity transformed
Hamiltonians (MDCI module) and,

3. the uncontracted MRCI diagonalization of the final similarity transformed Hamiltonian (MRCI module).

The current implementation allows for MR-EOM-T|T*-h-v, MR-EOM-T|T*|SXD-h-v and MR-EOM-T|Tf|SXD|U-
h-v calculations. A more detailed description of these methods and the available input parameters will be
given in 9.31. We also note that the theoretical details underlying these methods can be found in [192]. In
section 9.31, we will discuss a strategy for the selection of the state-averaged CAS and other steps for setting
up an MR-EOM calculation in detail. Furthermore, we will discuss how spin-orbit coupling effects can be

included in MR-EOM calculations, a projection scheme to aid with convergence difficulties in the iteration of
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the T amplitude equations, an orbital selection scheme to reduce the size of the inactive core and virtual
subspaces in the calculation of excitation energies and a strategy for obtaining nearly size-consistent results
in MR-EOM. The purpose of this section is simply to provide a simple example which illustrates the most
basic usage of the MR-EOM implementation in ORCA.

8.13.1 A Simple MR-EOM Calculation

Let us consider an MR-EOM-T|T|SXD|U-h-v calculation on formaldehyde. An MR-EOM-T|TT|SXD|U-h-v
calculation is specified via the MR-EOM keyword along with the specification of a state-averaged CASSCF
calculation (i.e. CASSCF(nel, norb) calculation with the number of roots of each multiplicity to be included
in the state-averaging) and the number of desired roots in each multiplicity block for the final MRCI
diagonalization. We note that the CASSCF module is described in sections 8.1.7 and 9.13 and that a
description of the MRCI module is given in sections 8.12 and 9.30. Here, we have a state-averaged CAS(6,4)

calculation, comprised of 3 singlets and 3 triplets and we request 6 singlet roots and 6 triplet roots in our
final MRCI diagonalization (i.e. the roots to be computed in the MR-EOM-T|TT|SXD|U-h-v calculation):
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One can alternatively perform an MR-EOM-T|T*-h-v or MR-EOM-T|T%|SXD-h-v calculation by replacing
the MR-EOM keyword, in the first line of the input above, by MR-EOM-T|Td or MR-EOM-T|Td|SXD,

respectively. Namely, replacing the first line of the input above with

runs the MR-EOM-T|T-h-v calculation, while,

runs the MR-EOM-T|TT|SXD-h-v calculation.

The final MR-CI diagonalization manifold includes 2h1p, 1hlp, 2h, 1h and 1p excitations in MR-EOM-T|T"-h-
v calculations, 2h, 1p and 1h excitations in MR-EOM-T|Tf|SXD-h-v calculations and 1h and 1p excitations in
MR-EOM-T|Tf|SXD|U-h-v calculations. Note that in the mdci block, we have set the convergence tolerance
(STol) for the residual equations for the amplitudes to 107, as this default value is overwritten with the
usage of the TightSCF, VeryTightSCF, etc. keywords. It is always important to inspect the values of the
largest T, S (i.e. here, we use S to denote the entire set of S, X and D amplitudes) and U amplitudes. If
there are amplitudes that are large (absolute values > 0.15), the calculated results should be regarded with
suspicion. For the above calculation, we obtain:

for the T-amplitudes,
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for the S-amplitudes and,

for the U-amplitudes. Hence, one can see that there are no unusually large amplitudes for this particular
calculation. We note that there can be convergence issues with the T amplitude iterations and

that in such cases, the flag:
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should be added to the %mdci block. The convergence issues are caused by the presence of nearly singular
T2 amplitudes and setting the DoSingularPT flag to true activates a procedure which projects out the
offending amplitudes (in each iteration) and replaces them by suitable perturbative amplitudes. For more

information, see the examples in section 9.31.3.

After the computation of the amplitudes and the elements of the similarity transformed Hamiltonians, within
the MDCI module, the calculation enters the MRCI module. For a complete, step by step description of
the output of an MRCI calculation, we refer the reader to the example described in section 8.12.2. Let us
first focus on the results for the singlet states (CI-BLOCK 1). Following the convergence of the Davidson
diagonalization (default) or DIIS procedure, the following results of the MRCI calculation for the singlet
states are printed:
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For each state, the total energy is given in Ejp, the weight of the reference configurations (RefWeight) in the
given state, is provided and the energy differences from the lowest lying state are given in eV and cm~'. Also,
in each case, the weights and a description of the configurations which contribute most strongly to the given
state are also provided. See section 8.12.2 for a discussion of the notation that is used for the description
of the various configurations. In order to avoid confusion, we note that in the literature concerning the
MR-EOM methodology [188-194], the term %active is used to denote the reference weight multiplied by
100%. In general, RefWeight should be larger than 0.9, such that the states are dominated by reference space
configurations. This criterion is satisfied for the first three states and the reference weight of the fourth state is
sufficiently close to 0.9. However, the reference weights of the two higher lying states (especially
state 4) are too small and these states should be discarded as the resulting energies will be
inaccurate (i.e. states with significant contributions from configurations outside the reference
space cannot be treated accurately).

In the case of the triplet states (CI-BLOCK 2), we obtain the following results:
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Here, we see that the first three states have reference weights which are greater than 0.9, while the reference
weights of the final three states are well below 0.9. Hence, the latter three states should be discarded from

any meaningful analysis.

Following the printing of the CI results for the final CI block, the states are ordered according to increasing

energy and the vertical transition energies are printed:

Furthermore, following the generation of the (approximate) densities, the absorption and CD spectra are

printed:
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WARNINGS:

e It is important to note that the transition moments and oscillator strengths (and state dipole moments)
have been blindly computed by the MRCI module and currently, no effort has been made to include
the effects of the various similarity transformations in the evaluation of these quantities. Hence these
quantities are only approximate and should only be used as a qualitative aid to determine which states
are dipole allowed or forbidden. Furthermore, since the calculated densities are approximate, so are
the results of the population analysis that are printed before the absorption and CD spectra.

e While both the CASSCF and MRCI modules can make use of spatial point-group symmetry to some
extent, the MR-EOM implementation is currently limited to calculations in € symmetry.

8.13.2 Capabilities

The MR-EOM methodology can be used to calculate a desired number of states for both closed- and
open-shell systems from a single state-averaged CASSCF solution. Currently, the approach is is limited
to serial calculations and to smaller systems in smaller active spaces. One should be aware that in the
most cost effective MR-EOM-T|TT|SXD|U-h-v approach (i.e. smallest diagonalization manifold), an MRCI
diagonalization is performed over all 1h and 1p excited configurations out of the CAS, which will inevitably
limit the size of the initial CAS which can be used. We have also implemented an orbital selection scheme
which can be used to reduce the size of the inactive core and virtual subspaces in the calculation of excitation
energies and this can be employed to extend the applicability of the approach to larger systems. The current
implementation can also be used in conjunction with the spin-orbit coupling submodule (9.30.1) of the MRCI
module to calculate spin-orbit coupling effects in MR-EOM calculations to first-order. These and other

features of the current implementation will be discussed in 9.31.



8.14 Solvation 257

8.14 Solvation

Several implicit solvation models are implemented in ORCA. A completely integrated implementation of the
conductor-like polarizable continuum model (C-PCM) offers a range of options and has been implemented in
all parts of ORCA. The following calculations can be used to carry out calculations in a polarizable continuum
using a realistic Van-der-Waals cavity:

e Energies of molecules in solution with a finite dielectric constant ¢ using any HF or DFT method.
e Optimization of molecular structures in solution using any HF or DFT method using analytic gradients.

e Calculation of vibrational frequencies using the analytic Hessian for any HF or DFT method for which
the same quantity is available in vacuum.

e Calculation of solvent effects on response properties like polarizabilities through coupled-perturbed

SCF theory. For magnetic response properties such as the g-tensor the C-PCM response vanishes.

e Calculations of solvent shifts on transition energies using the time-dependent DFT or CIS method.

Here one needs to know the refractive index of the solvent in addition to the dielectric constant.

e First order perturbation estimate of solvent effects on state and transition energies in multireference

perturbation and configuration-interaction calculations.

As a simple example let us look at the solvent effect on the transition energy of the n — 7* transition in

formaldehyde. We first do a normal CIS calculation:

yielding a transition energy of 4.582 eV. Now we repeat the same calculation but with the CPCM model
enabled (which is fairly simple; nothing except the dielectric constant and the refractive index needs to be
input; there are technical parameters which can be defined by the user but this is not necessary in most

applications; all modules will automatically recognize the presence of the CPCM terms automatically).
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This calculation yields:

Note that there are two different types of shift: the first is the difference between the CIS calculation in
the gas phase and the one using the solvated orbitals. This is the difference 4.984 — 4.582 eV = 0.402 eV.

This term is called the “slow” term and represents the interaction of the difference density with the frozen

screening charges of the ground state. The second term depends on the instantaneous polarization and is
called the “fast” term. It is given by the extra —0.073 eV printed above thus yielding a total solvent shift
of 0.402 — 0.073 eV = 0.329 eV and a final estimate of the transition energy of 4.875 eV in solution (this
is clearly not an accurate value since it is too high as is always found with CIS; the calculated shift is also
somewhat higher compared to accurate MR-CI calculations which give 0.25 eV but it is in the right ballpark;
larger basis sets yield also better results here).

In addition, the Minnesota SMD solvation model is implemented in ORCA. See sections 9.35 and 9.35.3 for
further details on the available solvation models and how to use them.

8.15 Calculation of Properties

8.15.1 Population Analysis and Related Things

Atomic populations and the like are not really a molecular property since they are not observable. They

are nevertheless highly useful for chemical interpretation purposes. ORCA lets you obtain very detailed
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information about the calculated molecular orbitals. Mulliken, Léwdin and Mayer population analysis can be
performed and many useful details can be printed. However, it is also easy to get lost in the output from

such a calculation since you may not be interested in all these details. In this case ORCA lets you turn most

features off. The default is to perform a rather large amount of population analysis.

The Mulliken, Lowdin and Mayer analysis tools should be self-explanatory. If you choose “ReducedPOP” you
will get a reduced orbital population where the percentage contributions per basis function type on each
atom are listed. This is highly useful in figuring out the character of the MOs. You can, however, also
request a printout of the MO coefficients themselves via the output block (section 9.38) or using the keyword
“PrintMOs”

In many cases it is not so interesting to look at the MO coefficients but you want to get a full three dimensional
picture of MOs, electron densities and spin densities. This is relatively easily accomplished with ORCA
through, among other visualization programs, the interface to the gOpenMol and Molekel packages (see
section 9.39 for details).

The following example:

produces (after running it through gOpenMol, section 9.39.2) the following output:
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Figure 8.22: The 7w and 7* orbitals of the CO molecule obtained from the interface of ORCA to
gOpenMol.

which are the textbook like w and 7* orbitals of CO respectively. The format gOpenMol_bin is the most easy
to use. The alternative format gOpenMol_ascii would require you to use the gOpenMol conversion utility.
You can also plot spin densities, electron densities and natural orbitals. See section 9.39.2 for full details.
The command MO("CO0-4.plt",4,0); is to be understood as follows: there is an MO to be evaluated on a
grid and the output is stored in the file CI-4.plt. It is MO four of operator 0. Operator zero is the closed-shell
RHF operator. For UHF wavefunctions operator 0 is that for spin-up and operator 1 that for spin-down. For
ROHF you should also use operator 0. There are also some alternative output formats including simple ascii

files that you can convert yourself to the desired format.

In order to use the interface to Molekel you have to choose the format Cube or Gaussian_Cube which can be

read directly by molekel. Since the cube files are ASCII files you can also transfer them between platforms.

# test populations

| HF SVP XYZFile

%plots Format Cube
MO("CO-4.cube",4,0);
MO("CO-8.cube",8,0);

end
* xyz 0 1
cC 0 0 0
0O 6 0 1.13

You can now start Molekel and load (via a right mouse click) the XYZ file (or also directly the .cube file).
Then go to the surface menu, select “gaussian-cube” format and load the surface. For orbitals click the “both
signs” button and select a countour value in the “cutoff” field. The click “create surface”. The colour schemes
etc. can be adjusted at will — try it! It’s easy and produces nice pictures. Create files via the “snapshot”
feature of Molekel. Other programs can certainly also deal with Gaussian-Cube files. If you know about

another nice freeware program — please let me know!'?

15 The Molekel developers ask for the following citation — please do as they ask:
MOLEKEL 4.2, P. Flukiger, H.P. Liithi, S. Portmann, J. Weber, Swiss Center for Scientific Computing, Manno
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Figure 8.23: The m and 7*-MOs of CO as visualized by Molekel.

Another thing that may in some situations be quite helpful is the visualization of the electronic structure
in terms of localized molecular orbitals. As unitary transformations among the occupied orbitals do not
change the total wavefunction such transformations can be applied to the canonical SCF orbitals with no
change of the physical content of the SCF wavefunction. The localized orbitals correspond more closely to the
pictures of orbitals that chemists often enjoy to think about. Localized orbitals according to the Pipek-Mezey
(population-localization) scheme are quite easy to compute. For example, the following run reproduces the
calculations reported by Pipek and Mezey in their original paper for the NoO4 molecule. In the output you
will find that the localized set of MOs consists of 6 core like orbitals (one for each N and one for each O), two
distinct lone pairs on each oxygen, a o- and a w-bonding orbital for each N-O bond and one N-N o-bonding
orbital which corresponds in a nice way to the dominant resonance structure that one would draw for this
molecule. You will also find a file with the extension .loc in the directory where you run the calculation.
This is a standard GBW file that you can use for plotting or as input for another calculation (warning! The
localized orbitals have no well defined orbital energy. If you do use them as input for another calculation use
GuessMode=CMatrix in the [SCF] block).

! HF STO-3G Bohrs

%loc
LocMet PipekMezey # localization method. Choices:
# PipekMezey (=PM)
# FosterBoys (=FB)
T_Core -1000 # cutoff for core orbitals

Tol le-8 # conv. Tolerance (default=1le-6)
MaxIter 20 # max. no of iterations (def. 128)
end

(Switzerland), 2000-2006.
S. Portmann, H.P. Liithi. MOLEKEL: An Interactive Molecular Graphics Tool. CHIMIA (2000), 54, 766-770.
The program appears to be maintained by Ugo Varetto at this time.
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If you have access to a version of the gennbo program from Weinhold’s group'® you can also request natural
population analysis and natural bond orbital analysis. The interface is very elementary and is invoked through
the keywords NPA and NBO respectively

If you choose simple NPA then you will only obtain a natural population analysis. Choosing instead NBO the

natural bond orbital analysis will also be carried out. The program will leave a file jobname.47 on disk. This
is a valid input file for the gennbo program which can be edited to use all of the features of the gennbo

program in the stand-alone mode. Please refer to the NBO manual for further details.

8.15.2 Absorption and Fluorescence Bandshapes using ORCA_ASA

Bandshape calculations are nontrivial but can be achieved with ORCA using the procedures described
in section 9.32. Starting from version 2.80, analytical TD-DFT gradients are available which make these

calculations quite fast and applicable without expert knowledge to larger molecules.

In a nutshell, let us look into the HoCO molecule. First we generate some Hessian (e.g. BP86/SV(P)). Then
we run the job that makes the input for the orca_asa program. For example, let us calculate the five lowest

excited states:

6 Information about the NBO program can be found at http://nbo6.chem.wisc.edu


http://nbo6.chem.wisc.edu
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NOTE

e Functionals with somewhat more HF exchange produce better results and are not as prone to “ghost
states” as GGA functionals unfortunately are!

e Calculations can be greatly sped up by the RI or RIJCOSX approximations!
e Analytic gradients for the (D) correction and hence for double-hybrid functionals are NOT available

The ORCA run will produce a file Test-ASA-H2CO.asa.inp that is an input file for the program that

generates the various spectra. It is an ASCII file that is very similar in appearance to an ORCA input file:
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Before the orca_asa program can be invoked this file must be edited. We turn the NAbsPoints variables and
spectral ranges to the desired values and then invoke orca_asa:

This produces the output:
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The vibrationally resolved absorption spectrum looks like:
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The fluorescence spectrum of the lowest energy peak (in this case S2 which is not very realistic but for

illustrative purposes it might be enough):
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The Resonance Raman excitation profiles of the three totally symmetric vibrational modes can be obtained
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as well:
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The dominant enhancement occurs under the main peaks for the C=0O stretching vibration which might
not be a big surprise. Higher energy excitations do enhance the C-H vibrations particularly strongly. The

resonance Raman spectra taken at the vertical excitation energies are also calculated:

l - - —
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In this particular example, the dominant mode is the C=0 stretching and the spectra look similar for all
excitation wavelength. However, in “real life” where one has electronically excited states of different nature,
the rR spectra also dramatically change and are then powerful fingerprints of the electronic excitation being
studied — even if the vibrational structure of the absorption band is not resolved (which is usually the case

for larger molecules).

This is a cursory example of how to use the orca_asa program. It is much more powerful than described in
this section. Please refer to section 9.32 for a full description of features. The orca_asa program can also
be interfaced to other electronic structure codes that deliver excited state gradients and can be used to fit

experimental data. It is thus a tool for experimentalists and theoreticians at the same time!

8.15.3 IR/Raman Spectra, Vibrational Modes and Isotope Shifts

8.15.3.1 IR Spectra

IR spectral intensities are calculated automatically in frequency runs. Thus, there is nothing to control by

the user. Consider the following job':

which gives you the following output:

The “Mode” indicates the number of the vibration, then the vibrational frequency follows. The value T**2 is

the square of the change of the dipole moment along a given vibrational mode in KM/mole. This number is

17 This and the following jobs in this section are of very poor quality due to the insufficient quality STO-3G basis set
(see section 8.1). However, these jobs execute very rapidly and are therefore adequate for demonstration purposes.
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directly proportional to the intensity of a given fundamental in an IR spectrum and is what is plotted by

orca_mapspc.

If you want to obtain a plot of the spectrum then call the small utility program like this:

orca_mapspc Test-NumFreq-H2CO.out ir -w50

The options to the program orca mapspc are:

-wvalue : a value for the linewidth (gaussian shape, fwhm)
-x0value : start value of the spectrum in cm**-1

-x1value : end value of the spectrum in cm**-1

-nvalue : number of points to use

You get a file Test-NumFreq-H2CO.out.ir.dat which contains a listing of intensity versus wavenumber

which can be used in any graphics program for plotting. For example:

1000- V m

v T v T T T T T T T T T v

500 1000 1500 2000 2500 3000 3500 4000

Figure 8.24: The predicted IR spectrum of the HoCO molecule using the numerical frequency rou-
tine of ORCA and the tool orca_mapspc to create the spectrum.

8.15.3.2 Raman Spectra

In order to predict the Raman spectrum of a compound one has to know the derivatives of the polarizability
with respect to the normal modes. Thus, if a frequency run is combined with a polarizability calculation the

Raman spectrum will be automatically calculated too.

Consider the following example:
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The output consists of the Raman activity (in Al /AMU) [195] and the Raman depolarization ratios:

The polarizability derivatives and the Raman intensities will also be added to the .hess file. This allows the

effect of isotope substitutions on the Raman intensities to be calculated.

As with IR spectra you can get a plot of the Raman spectrum using;:
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Figure 8.25: Calculated Raman spectrum for HoCO at the STO-3G level using the numerical fre-
quency routine of ORCA and the tool orca_mapspc to create the spectrum.

NOTE:

e The Raman module will only work if the polarizabilities are calculated analytically. This means that
only those wavefunction models for which the analytical derivatives w.r.t. to external fields are available

can be used.

e Raman calculations take significantly longer than IR calculations due to the extra effort of calculating
the polarizabilities at all displaced geometries. Since the latter step is computationally as expensive as

the solution of the SCF equations you have to accept an increase in computer time by a factor of ~ 2.

8.15.3.3 Resonance Raman Spectra

Resonance Raman spectra and excitation profiles can be predicted or fitted using the procedures described in

section 9.32. An example for obtaining the necessary orca_asa input is described in section 8.15.2.

8.15.3.4 NRVS Spectra

If you happen to have iron in your molecule and you want to calculate the nuclear resonant vibrational
scattering spectrum you simply have to run orca_vib program on your .hess file and you will get an output

that can be used together with orca mapspc program for vizualisation.
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The calculations are usually pretty good in conjunction with DFT frequency calculations. For example,
take the ferric-azide complex from the second reference listed below. As for the calculation of resonance

Raman spectra described in section 9.32 the DFT values are usually excellent starting points for least-square

refinements.

NRVS Intensity (a.u.)

T

: Illll Il | ||l |I . Ll i < | : : : ;
200 300 400 500, 600 700 800 900
cm
Figure 8.26: Experimental (a, black curve), fitted (a, red) and simulated (b) NRVS spectrum of
the Fe(IlI)-azide complex obtained at the BP86/TZVP level (T = 20 K). Bar graphs
represent the corresponding intensities of the individual vibrational transitions. The
blue curve represents the fitted spectrum with a background line removed.

Both theory and implementation have been described in detail. [196,197] Here we illustrate the procedure for
getting such plots using a Fe(SH)}l_ model complex as an example. One first optimizes and computes the
vibrations of the complex given in one step with the following input (calculations are usually pretty good in
conjunction with DFT frequency calculations and the BP86 functional).
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From this calculations we get numerous files from which the Hessian file is of importance here. Now we
run the orca_vib program on the .hess file and get an output that can be used further with orca_mapspc

program to prepare raw data for visualizations:

The latter command creates a file Test-FeIIISH4-NumFreq.nrvs.dat which can be used directly for visual-
ization. The text-file contains data in xy-format which allows the NRVS intensity (y, in atomic units) to be

plotted as a function of the phonon energy (x, in cm™1).

From the given run we obtain the NRVS plot below in which we compare with the theoretical IR spectrum on
the same scale. NRVS reports the Doppler broadening of the Moessbauer signal due to resonant scattering of
phonons (vibrations) dominated by the Fe nuclei movements. This are a valuable addition to IR spectra

where the corresponding vibrations might have very small intensity.

8.15.3.5 Animation of Vibrational Modes

In order to animate vibrational modes and to create “arrow-pictures” you have to use the small utility
program orca_pltvib. This program uses an ORCA output file and creates a series of files that can be used
together with any visualization program (here: ChemCraft).

For example:

From this we get vibrations and transition probabilities (Test-NumFreq-H2CO.out)
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Figure 8.27: Theoretical IR spectrum with the shapes of vibrations dominating the IR intensity
and NRVS scattering

The Test-NumFreq-H2CO.out file can be directly opened with ChemCraft which allows immediate observation

of any vibrations and preparing plots as shown.
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2099

Figure 8.28: Nuclear vibrations for HoCO with the shape of each vibration and its frequency
indicated

We can infer for this example, that say the vibration 1397 cm ™! is a kind of wagging motion of the hydrogen
atoms.

It might be that you can prefer to animate vibrations with the (free) program gOpenMol package; there is a
small utility program orca_pltvib. This program uses an ORCA output file and creates a series of files that

can be used together with gOpenMol. You can execute orca_pltvib in the following way:

Use:

orca_pltvib Test-NumFreq-H2CO.out [list of vibrations or alll]

1

For example, let us see what the strong mode at 1397 cmm™" corresponds to:

orca_pltvib Test-NumFreq-H2CO.out 7

you will get a file Test-NumFreq-H2C0.out.v007.xyz. Then start up the gOpenMol program and read this
file as a Import->coords in Xmol format. After this go to the Trajectory->Main menu and import the
file again (again in Xmol format). Now you are able to animate the vibration. In order to create a printable
picture press Dismiss and then type lulVectorDemo {4 0.1 black} into the gOpenMol command line
window. What you get is:

which indicates that the vibration is a kind of wagging motion of the hydrogens. (I am sure that you can get
nicer arrows with some playing around with gOpenMol). At the gOpenMol homepage you can find a very

nice tutorial to teach you some essential visualization tricks.
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Figure 8.29: The 1395 cm™! mode of the HyCO molecule as obtained from the interface of ORCA
to gOpenMol and the orca_pltvib tool to create the animation file.

8.15.3.6 Isotope Shifts

Suppose you have calculated a hessian as in the example discussed above and that you want to predict the
effect of substitution with 0. It would be very bad practice to recalculate the hessian to do this since the
calculation is expensive and the hessian itself is independent of the masses. In this case you can use the small
utility program orca_vib. First of all you have to look at the .hess file and edit the masses given there by
hand. For the example given above the .hess file looks like:
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if you now call:

you get then printed to standard out the IR spectrum, the vibrational frequencies, the modes, etc. Let us

compare the output of this calculation with the original frequency calculation:

The calculated isotope shifts greatly aid in the identification of vibrations, the interpretation of experiments
and in the judgement of the reliability of the calculated vibrational normal modes. A different way of
analyzing these isotope shifts is to plot the two predicted spectra and then subtract them from another. This

will give you derivative shaped peaks with a zero crossing at the position of the isotope sensitive modes.

8.15.4 Thermochemistry

The second thing that you get automatically as the result of a frequency calculation is a thermochemical
analysis based on ideal gas statistical mechanics. This can be used to study heats of formation, dissociation
energies and similar thermochemical properties. To correct for the breakdown of the harmonic oscillator
approximation for low frequencies, entropic contributions to the free energies are computed, by default, using
the Quasi-RRHO approach of Grimme. [198] To switch-off the Quasi-RRHO method, use:
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Where the CutOffFreq parameter controls the cut-off for the low frequencies mode (excluded from the
calculation of the thermochemical properties).

Note that the rotational contribution to the entropy is calculated using the expressions given by Herzberg [199]
including the symmetry number obtained from the order of the point group. '® While this is a good
approximation, one might want to modify the symmetry number or use a different expression [200]. For this

purpose, the rotational constants (in cm~1) of the molecule are also given in the thermochemistry output.

For example let us calculate a number for the oxygen-oygen dissociation energy in the HoOo molecule. First

run the following job:

The first job gives you the following output following the frequency calculation:

8the corresponding equation for the partition function (assuming sufficiently high temperatures) of a linear molecule

kT

is Qint = -22= and for non-linear molecules Qint = L1/ %

o\l ABC
constants, o is the symmetry number. If you want to choose a different symmetry number, ORCA also provides a

table with the values for this entropy contribution for other symmetry numbers. Herzberg reports the following
symmetry numbers for the point groups C1,C;,Cs: 1; C2,Cay, Cap: 2; C3,C34,Csp: 3; C4,Cav,Can: 4;Cs, Céuv, Con:
6; D2, Dag, Do, =Vt 4; D3, Dsd, Dap: 6; Da, Dag, Dan: 8; De, Dea, Den: 12; Se: 3; Coow: 1; Doon: 2;T,Ty: 12;
Op: 24.

%)3. A, B and C are the corresponding rotational
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And similarly for the OH-radical job.
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Let us calculate the free energy change for the reaction:

The individual energy terms are: 20H(Eh) - H20(Eh) kcal/mol

Electronic Energy: (-151.465766)-(-151.544525) 49.42

Zero-point Energy: (0.016770)-(0.026240) -5.94
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Thermal Correction(translation/rotation): (0.00472)-(0.002832) 1.18
Thermal Enthalpy Correction: (0.001888)-(0.000944) 0.59

Entropy: -(0.039163)-(-0.025533) -8.55

Final G 36.70

Thus, both the zero-point energy and the entropy terms both contribute significantly to the total free energy
change of the reaction. The entropy term is favoring the reaction due to the emergence of new translational
and rotational degrees of freedom. The zero-point correction is also favoring the reaction since the zero-point
vibrational energy of the O-O bond is lost. The thermal correction and the enthalpy correction are both

small.

TIPs:

e You can run the thermochemistry calculations at several user defined temperatures by providing the

program with a list of temperatures:

e Once a Hessian is available you can rerun the thermochemistry analysis at several user defined

temperatures by providing the keyword PrintThermoChem and providing the name of the Hessian file:

8.15.5 Electrical Properties

A few basic electric properties can be calculated in ORCA although this has never been a focal point of

development. The properties can be accessed straightforwardly through the %elprop block:
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The polarizability is calculated analytically through solution of the coupled-perturbed SCF equations for HF
and DFT runs. For MP2 one can differentiate the analytical dipole moment calculated with relaxed densities.

For other correlation methods only a fully numeric approach is possible.

As expected the polarizability tensor is isotropic.

The following jobs demonstrate the numeric and analytic calculations of the polarizability:




8.15 Calculation of Properties 285

Here the polarizability of CO™T is calculated twice — first numerically using a finite field increment of 1075 au
and then analytically using the CP-SCF method. In general the analytical method is much more efficient,

especially for increasing molecular sizes.

At the MP2 level, polarizabilities can currently be calculated analytically in all-electron calculations, but
with frozen core orbitals the dipole moment has got to be differentiated numerically in order to obtain the
polarizability tensor. This will in general require tight SCF converge in order to not get too much numerical
noise in the second derivative. Also, you should experiment with the finite field increment in the numerical

differentiation process. For example consider the following simple job:

In a similar way, polarizability calculations are possible with CASSCF. For other correlation methods, where

not even response densities are available, only a fully numeric approach (Polar=3) is possible and requires
obnoxiously tight convergence.

Note that polarizability calculations have higher demands on basis sets. A rather nice basis set for this
property is the Sadlej one (see 9.4.1).

8.15.6 NMR Chemical Shifts and Spin Spin Coupling Constants

NMR chemical shifts at the HF and DFT (standard GGA and hybrid functionals) as well as the RI-MP2 and
double-hybrid DFT (see section 9.36.3.5) levels can be obtained from the EPR/NMR module of ORCA. For
the calculation of the NMR shielding tensor the program utilizes Gauge Including Atomic Orbitals (GIAOs -
sometimes also refered to as London orbitals). [201-203] In this approach, field dependent basis functions are



8 Running Typical Calculations

introduced, which minimizes the gauge origin dependence and ensures rapid convergence of the results with

the one electron basis set. [204]

The use of the chemical shift module is simple:

The output for the shieldings contains detailed information about the para- and diamagnetic contribution,
the orientation of the tensor, the eigenvalues, its isotropic part etc. For each atom, an output block with this

information is given :
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Note that all units are given in ppm and the chemical shieldings given are absolute shieldings (see below). At
the end of the atom blocks, a summary is given with the isotropic shieldings and the anisotropy [205] for

each nucleus:

Nucleus Element Isotropic Anisotropy
0 C 229.469 59.424
1 C 227.615 62.882
2 H 55.997 12.498
3 H 55.445 15.254
4 H 55.445 15.254
5 0 334.100 110.659
6 H 47.326 27.102
7 H 47.326 27.102
8 H 64.238 32.111

Thus, the absolute, isotropic shielding for the '3C nuclei are predicted to be 229.5 and 227.6 ppm and for
170 it is 334.1 ppm. While basis set convergence using GIAOs is rapid and smooth, it is still recommended
to do NMR calculations with basis sets including tight exponents. However, TZVPP or QZVP should be

sufficient in most cases. [206,207]

An important thing to note is that in order to compare to experiment, a standard molecule for the type of
nucleus of interest has to be chosen. In experiment, NMR chemical shifts are usually determined relative to a
standard, for example either CHy or TMS for proton shifts. Hence, the shieldings for the molecule of interest
and a given standard molecule are calculated, and the relative shieldigs are obtained by subtraction of the
reference value from the computed value. It is of course important that the reference and target calculations
have been done with the same basis set and functional. This also helps to benefit from error cancellation if
the standard is chosen appropriately (one option is even to consider an “internal standard” - that is to use

for example the '3C shielding of a methyl group inside the compound of interest as reference).

Let us consider an example - propionic acid (CH3-CH2COOH). In databases like the AIST (http://sdbs.
db.aist.go.jp) the *C spectrum in CDCl3 can be found. The chemical shifts are given as §; = 8.9 ppm,
09 = 27.6 ppm, d3 = 181.5 ppm. While intuition already tells us that the carbon of the carboxylic acid group
should be shielded the least and hence shifted to lower fields (larger ¢ values), let’s look at what calculations
at the HF, BP86 and B3LYP level of theory using the SVP and the TZVPP basis sets yield:

method H (o} ‘ (o] ‘ 03
HF/SVP 191.7 | 176.6 | 23.7
HF/TZVPP 183.5 | 167.1 | 9.7
B86/SVP 181.9 | 165.8 | 26.5

B86/TZVPP 174.7 | 155.5 | 7.6
B3LYP/SVP 181.8 | 165.8 | 22.9
B3LYP/TZVPP || 173.9 | 155.0 | 2.9

Looking at these results, we can observe several things - first of all, the dramatic effect of using too small
basis sets, which yields differences of more than 10 ppm. Second, the results obviously change a lot upon

inclusion of electron correlation by DFT and are functional dependent. Last but not least, these values have


http://sdbs.db.aist.go.jp
http://sdbs.db.aist.go.jp
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nothing in common with the experimental ones (they change in the wrong order), as the calculation yields
absolute shieldings like in the table above, but the experimental ones are relative shifts, in this case relative
to TMS.

In order to obtain the relative shifts, we calculate the shieldings orprs of the standard molecule (TMS
HF/TZVPP: 194.1 ppm, BP86/TZVPP: 184.8 ppm, B3LYP/TZVPP: 184.3 ppm) and by using 6o =

Oref — Omol We can evaluate the relative chemical shieldings (in ppm) and directly compare to experiment:

method H 61 ‘ 52 ‘ 53
HF/TZVPP 10.6 | 27.0 | 184.4
B86/TZVPP 10.1 | 29.3 | 177.2

B3LYP/TZVPP || 10.4 | 29.3 | 181.4
Exp. 8.9 | 27.6 | 181.5

A few notes on the GIAO implementation in ORCA are in order. The use of GIAO’s lead to some fairly
complex molecular one- and two-electron integrals and a number of extra terms on the right hand side of the
coupled-perturbed SCF equations. These contributions can be time consuming to calculate. In the present
ORCA implementation the four-center two-electron GIAO integrals are fairly slow. Hence, we recommend
to only use them for reference type calculations on small molecules. A variety of approximations were
implemented and tested. [208] The most satisfactory of these approximations is the RI-JK approximation.
Hence, it has presently been made the default. This means, that - if you follow the defaults - you have to
provide an auxiliary basis set, even if the SCF calculation is done without any approximation. Please note
that the scaling of RIJK is the same as in the SCF, e.g. fourth power of the system size with a small prefactor.
Hence, for large molecules, these calculations will be time consuming. An alternative for large systems is
the RIJCOSX approximations, which has more favorable scaling. However, the default COSX grids used for
energy calculations are not sufficiently accurate for chemical shifts and !GridX6 NoFinalGridX or !GridX8
NoFinalGridX are recommended to achieve the same accuracy as with the RIJK approximation. The

approximation can be controlled using the GIA0_2el keyword in the eprnmr input block (see section 9.36.3.

It is also emphasized that the user can finely control for which nuclei the shifts are calculated. This works
in exactly the same way as for the hyperfine and quadrupole couplings described in the next section. For

example:

! B3LYP def2-TZVP def2/JK TightSCF

* int 0 1

C 000 000

C 100 1.3500

H 120 1.1 120 0

H 123 1.1 120 180
H 213 1.1 1200

H 213 1.1 120 180
*

%eprnmr

Ori = GIAO
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NMR chemical shifts are also implemented in combination with implicit solvent models, hence the NMR

keyword can be combined with the cpecm input block. Note that for calculations including implicit solvent, it
is highly recommended to used geometries that have also been obtained by optimizing the geometry including
the implicit solvent model.

The indirect spin spin coupling constants observed in NMR spectra of molecules in solution consist of four

contributions: The diamagnetic spin orbit term:

1 Z (My, x 7, ) (M x )

Hpso = = (8.12)
2 ikl ik T
The paramagnetic spin orbit term:
My, Liy
Hpso = Z — (8.13)
ik Tik
The Fermi contact term: g
~ T
ik
And the spin dipole term:
Hep = Z m? M S (8.15)
SD — k T?]c i .

all contributions can be computed at the HF and DFT level of theory using ORCA. For this purpose, the

keyword “ssall” has to be invoked in the eprnmr input block:

Results will be given in Hz. Note that the default isotopes used might not be the ones desired for the
calculation of NMR properties, so it is recommended to define the corresponding isotopes using the “ist” flag.



290 8 Running Typical Calculations

Furthermore, there is the possibility to restrict the calculation of spin spin coupling constants to couplings of
nuclei within a certain radius (in Angstrom) using the “SpinSpinRThres” keyword. Here is another example

illustrating both options:

8.15.7 Hyperfine and Quadrupole Couplings

Hyperfine and quadrupole couplings can be obtained from the EPR/NMR module of ORCA. Since there
may be several nuclei that you might be interested in the input is relatively sophisticated.

An example how to calculate the hyperfine and field gradient tensors for the CN radical is given below:

In this example the hyperfine tensor is calculated for all carbon atoms and the nitrogen atom specified by its

number, which in this specific case is equivalent.

WARNINGS:
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e counting of atom numbers starts from 1

e All nuclei mentioned in one line will be assigned the same isotopic mass, i.e. if several nuclei are
calculated, there has to be a new line for each of them.

e You have to specify the Nuclei statement after the definition of the atomic coordinates or the program
will not figure out what is meant by “all”.

The output looks like the following. It contains similar detailed information about the individual contributions

to the hyperfine couplings, its orientation, its eigenvalues, the isotropic part and (if requested) also the
quadrupole coupling tensor.
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Another point for hyperfine calculations is that you should normally use basis sets that have more flexibility
in the core region. In the present example a double-zeta basis set was used. For accurate calculations you
need more flexible basis sets. There are several dedicated basis set for hyperfine calculations: (a) the EPR-II
basis of Barone and co-workers. It is only available for a few light atoms (H, B, C, N, O, F). It is essentially
of double-zeta plus polarization quality with added flexibility in the core region and should give reasonable
results (b) The IGLO-II and IGLO-III bases of Kutzelnigg and co-workers. They are fairly accurate but also
only available for some first and second row elements (c) the CP basis for first row transition metals which is
accurate as well. (d) General purpose HF-limit basis sets are the uncontracted Partridge basis sets. They
will probably be too expensive for routine use but are useful for calibration purposes.

For other elements ORCA does not yet have dedicated default basis sets for this situation it is very likely that
you have to tailor the basis set to your needs. If you use the statement Print[p_basis] 2 in the %output
block (or PrintBasis in the simple input line) the program will print the actual basis set in input format
(for the basis block). You can then add or remove primitives, uncontract core bases etc. For example, here is

a printout of the carbon basis DZP in input format:
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The “s 57, for example, stands for the angular momentum and the number of primitives in the first basis

function. Then there follow five lines that have the number of the primitive, the exponent and the contraction
coeflicient (unnormalized) in it. Remember also that when you add very steep functions you must
increase the size of the integration grid if you do DFT calculations! If you do not do that your
results will be inaccurate. You can increase the radial grid size by using IntAcc in the Method block or
for individual atoms (section 9.3.2.3 explains how to do this in detail). In the present example the changes
caused by larger basis sets in the core region and more accurate integration are relatively modest — on the

order of 3%, which is, however, still significant if you are a little puristic.

The program can also calculate the spin-orbit coupling contribution to the hyperfine coupling tensor as
described in section 9.36.3.To extract the A tensor from a oligonuclear transition metal complex, the A(iso)

value in the output is to be processed according to the method described in ref. [209].

For the calculation of HFCCs using DLPNO-CCSD it is recommended to use the tailored truncation settings
IDLPNO-HFC1 or !DLPNO-HFC2 in the simple keyword line.

If also EPR g-tensor or D-tensor calculations (see next section) are carried out in the same job, ORCA
automatically prints the orientation between the hyperfine/quadrupole couplings and the molecular g- or

D-tensor. For more information on this see section 9.40.11.

8.15.8 The EPR g-Tensor and the Zero-Field Splitting Tensor

The EPR g-tensor is a property that can be well calculated at the SCF level with ORCA through solution of
the coupled-perturbed SCF equations. Consider the following multi-job input that computes