You are here: Home > Research > Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy provides precise structural and dynamic information of chemical compounds at atomic resolution and has thus become an essential analytical tool for catalysis research. This method can be used to solve structures and dynamics of new catalysts and of catalytic products and intermediates, differentiate stereochemistries, follow reaction kinetic in real-time, and decipher reaction mechanisms.

The NMR department at the MPI für Kohlenforschung supplies the expertise for the implementation of standard and advanced NMR experiments and their analytic interpretation as well as the development of novel methodologies for the different research groups. We are dedicated as well to teaching and research.

Christophe Farès

Dr. Christophe Farès

Head of the NMR Department (Max-Planck-Institut für Kohlenforschung)
Scientific Associate (University Health Network, Toronto, Canada)
Postdoctoral fellow (Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany)
Postdoctoral fellow (University of Guelph, Canada)
Ph.D. Biophysics (University of Guelph, Canada)
B.Sc. Biochemistry (McGill University, Montreal, Canada)
Born in Montreal/Canada

Palladium-Catalyzed Allylic Substitution at Four-Membered-Ring Systems: Formation of ƞ1-Allyl Complexes and Electrocyclic Ring Opening; D. Audisio, G. Gopakumar, L. G. Xie, L. G. Alves, C. Wirtz, A. M. Martins, W. Thiel, C. Farès, N. Maulide; Angew. Chem. (2013), 125(24), 6434-6438; Angew. Chem. Int. Ed. (2013), 52(24), 6313-6316.

Sulfur(IV)-Mediated Transformations: From Ylide Transfer to Metal-Free Arylation of Carbonyl Compounds; X. Huang, M. Patil, C. Farès, W. Thiel, N. Maulide; J. Am. Chem. Soc. (2013), 135(19), 7312-7323.

Synthesis and Structure of Carbene-Stabilized N-Centered Cations [L2N]+, [L2NR]2+, [LNR3]2+, and [L3N]3+; A. Kozma, G. Gopakumar, C. Farès, W. Thiel, M. Alcarazo; Chem. Eur. J. (2013), 19(11), 3542-3546.

The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of α,β-Unsaturated Carbonyl Compounds with Hydrogen Peroxide; O. Lifchits, M. Mahlau, C. M. Reisinger, A. Lee, C. Farès, I. Polyak, G. Gopakumar, W. Thiel, B. List; J. Am. Chem. Soc. (2013), 135(17), 6677-6693.

Direct Domino Synthesis of Azido-Dienoic Acids: Potential Linker Units; C. Souris, F. Frébault, D. Audisio, C. Farès, N. Maulide; Synlett (2013), 24(10), 1286-1290.

An Atom-Economical and Stereoselective Domino Synthesis of Functionalised Dienes; C. Souris, M. Luparia, F. Frébault, D. Audisio, C. Farès, R. Goddard; N. Maulide; Chem. Eur. J. (2013), 19(21), 6566-6570.

Transient Structure and Dynamics in the Disordered c-Myc Transactivation Domain Affect Bin1 Binding; C. Andresen, S. Helander, A. Lemak, C. Farès, V. Csizmok, J. Carlsson, L. Z. Penn, J. D. Forman-Kay, C. H. Arrowsmith, P. Lundström, M. Sunnerhagen; Nucleic Acids Res. (2012), 40(13), 6353-6366.

Sulfoxide-Mediated Umpolung of Alkali Halide Salts; S. Klimczyk, X. Huang, C. Farès, N. Maulide; Org. Biomol. Chem. (2012), 10(22), 4327-4329.

Mechanistic Studies on a Cu-Catalyzed Aerobic Oxidative Coupling Reaction with N-Phenyl
Tetrahydroisoquinoline: Structure of Intermediates and the Role of Methanol as a Solvent;
E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Farès, M. Klussmann; J. Am. Chem. Soc.
(2011), 133(21), 8106-8109.

A Novel Strategy for NMR Resonance Assignment and Protein Structure Determination; A. Lemak, A. Gutmanas, S. Chitayat, M. Karra, C. Farès, M. Sunnerhagen, C. H. Arrowsmith; J. Biomol. NMR (2011), 49(1), 27-38.


NleG Type 3 Effectors from Enterohaemorrhagic Escherichia coli Are U-Box E3 Ubiquitin Ligases; B. Wu, T. Skarina, A. Yee, M.-C. Jobin, R. DiLeo, A. Semesi, C. Farès, A. Lemak, B. K. Coombes, C. H. Arrowsmith, A. U. Singer, A. Savchenko; PLoS Pathog. (2010), 6(6), e1000960.

A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo; L. C. Cerchietti, A. F. Ghetu, X. Zhu, G. F. Da Silva, S. Zhong, M. Matthews, K. L. Bunting, J. M. Polo, C. Farès, C. H. Arrowsmith, S. N. Yang, M. Garcia, A. Coop, A. D. MacKerell, Jr., G. G. Privé, A. Melnick; Cancer Cell (2010) 17(4), 400-411.

Accessing ns-μs Side-Chain Dynamics in Ubiquitin with Methyl RDCs; C. Farès, N.-A. Lakomek, S. Becker, C. Griesinger; J. Biomol. NMR (2009), 45(1-2), 23-44.

Residual Dipolar Couplings as a Tool to Study Molecular Recognition of Ubiquitin; N.-A. Lakomek, O. F. Lange, K. F. O. Walter, C. Farès, D. Egger, P. Lunkenheimer, J. Meiler, H. Grubmüller, S. Becker, B. L. de Groot, C. Griesinger; Biochem. Soc. Trans. (2008), 36(6), 1433-1437.

Atomic Structure of the KEOPS Complex: An Ancient Protein Kinase-Containing Molecular Machine; D. Y. L. Mao, D. Neculai, M. Downey, S. Orlicky, Y. Z. Haffani, D. F. Ceccarelli, J. S. L. Ho, R. K. Szilard, W. Zhang, C. S. Ho, L. Wan, C. Farès, S. Rumpel, I. Kurinov, C. H. Arrowsmith, D. Durocher, F. Sicheri; Mol. Cell (2008), 32(2), 259-275.

Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution; O. F. Lange, N.-A. Lakomek, C. Farès, G. F. Schröder, K. F. A. Walter, S. Becker, J. Meiler, H. Grubmüller, C. Griesinger, B. L. de Groot; Science (2008), 320(5882), 1471-1475.

Self-Consistent Residual Dipolar Coupling Based Model-Free Analysis for the Robust Determination of Nanosecond to Microsecond Protein Dynamics; N.-A. Lakomek, K. F. A. Walter, C. Farès, O. F. Lange, B. L. de Groot, H. Grubmüller, R. Brüschweiler, A. Munk, S. Becker, J. Meiler, C. Griesinger; J. Biomol. NMR (2008), 41(3), 139-155.

Simultaneous Determination of the Conformation and Relative Configuration of Archazolide A by Using Nuclear Overhauser Effects, J Couplings, and Residual Dipolar Couplings; C. Farès, J. Hassfeld, D. Menche, T. Carlomagno; Angew. Chem. (2008), 120(20), 3782–3786; Angew. Chem. Int. Ed. (2008), 47(20), 3722-3726.


Research Topics

Residual Dipolar Couplings
Residual Dipolar Couplings

Residual Dipolar Couplings

Residual dipolar couplings (RDC) are orientation restraints which are rapidly becoming standard in NMR of small compounds. They are used to determine stereochemistries, to differentiate enantiomers and to provide complementary conformational and dynamic information. Developments are ongoing in sample preparation (orienting media), measurement and analysis.

NMR Relaxation
NMR Relaxation

NMR Relaxation

The way spin magnetisation returns to equilibrium depends on the fluctuation of local fields and can reveal details of dynamic and exchange processes. We are developing the use relaxation dispersion to identify of low-populated intermediate states in catalytic reactions.

Rapid Injection NMR
Rapid Injection NMR

Methods Development and Research

Rapid-injection NMR applications are being used to track species in catalytic transformations immediately after mixing with a time resolution of as little as 0.25 s. Such real-time experiments help characterise important key intermediates in very fast reactions.



NMR in Full Automation
NMR in Full Automation

NMR in Full Automation

Basic NMR measurements in liquid state are carried out in high throughput mode on two NMR spectrometers with 1H frequencies of 400- and 300-MHz at room temperature. With minimal setup, scientific personnel from the institute can access these instruments round the clock and obtain NMR data which are acquired and processed fully automatically. The selection of available experiments is limited to those with high sensitivity, high information content and rapid execution with predefined parameters. These include experiments for 1D spectra of 1H, 13C, 31P and 11B as well as for 2D correlation experiments such as 1H/1H COSY and 1H/13C HSQC.

Routine NMR
Routine NMR

Routine NMR

Liquid samples requiring special setup or treatment are submitted for measurement to our operators on 400- and 500-MHz spectrometers. The most common requests are for(a) experiments or nuclear frequencies not available in the automatic mode, (b) experiments at high or low temperature, (c) techniques requiring adjustment of acquisition parameters to optimise the spectra, and (d) spectroscopy of chemical reactions and kinetics followed in real time directly in the NMR tube.

Advanced NMR Analyses
Advanced NMR Analyses

Advanced NMR Analyses

Particularly challenging NMR studies of solution compounds are submitted to advanced analysis. For these samples, our technical staff members provide full measurement, analysis and interpretation assistance in close collaboration with the chemical research groups. The advanced techniques are carried out on our dedicated 600- and 500-MHz NMR spectrometers. The 600-MHz spectrometer is implemented with a cryogenically cooled probehead, which considerably enhances signal-to-noise ratio up to a factor of 8 compared to conventional equipment. A large part of the analytical work is dedicated to determine or confirm structures, stereochemistries, conformations and dynamics.

Solid-state NMR
Solid-state NMR

Solid-state NMR

Solid-state NMR spectroscopy remains one of the most important techniques for the characterisation of complex solid catalyst support and other insoluble materials studied in the institute such as mesoporous silicas, aluminium hydrides, alanates, coals and organometallic compounds. Both dedicated 300- and 500-MHz spectrometers are equipped with magic-angle spinning (MAS) probeheads to obtain high resolution signals from a wide range of NMR active nuclei.


Research Reports



Filter | Staff Search

All A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  •  Daniela Bartels

    Bartels, Daniela



  •  Wolfgang Endler

    Endler, Wolfgang



  • Dr. Christophe Farès

    Dr. Farès, Christophe



  •  Barbara Gabor

    Gabor, Barbara



  •  Markus Kochius

    Kochius, Markus



  •  Markus Leutzsch

    Leutzsch, Markus



  • M.Sc. Julia Lingnau

    M.Sc. Lingnau, Julia



  •  Petra Philipps

    Philipps, Petra



  • Dr. Anna Rufinska

    Dr. Rufinska, Anna

  •  Cornelia Wirtz

    Wirtz, Cornelia



  •  Wolfgang Wisniewski

    Wisniewski, Wolfgang



  • Dr. Bodo Zibrowius

    Dr. Zibrowius, Bodo