You are here: Home > Research > Hydrogen Storage

Hydrogen Storage

Our research focuses on the development of new light weight metal hydrides for hydrogen storage, materials for high temperature heat storage and the application of ball milling procedures fort the synthesis of new compounds.

Michael Felderhoff

Dr. Michael Felderhoff

since 1999
scientific co-worker at the MPI für Kohlenforschung, Department of Heterogeneous Catalysis
scientific co-worker University of Osnabrück (L. Walder)
scientific co-worker Eberhard Karls University, Tübingen (A. Rieker)
scientific co-worker University of Essen (R. Sustmann)
PhD University Essen (R. Sustmann)
Born in Essen/Germany

Krech, D., Zibrowius, B., Weidenthaler, C. and Felderhoff, M.
On the Preparation and Structure of Caesium Aluminium Tetrahydride. Eur. J. Inorg. Chem. 2014, in press
DOI: 10.1002/ejic.201402629

R. Urbanczyk, K. Peinecke, M. Felderhoff, K. Hauschild, W. Kersten, S. Peil, D. Bathen
Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6
Int. J. Hydrogen Energy, Volume 39, Issue 30, Pages 17118–17128
DOI: 10.1016/j.ijhydene.2014.08.101

Beneficial effects of stoichiometry and nanostructure for a LiBH4–MgH2
hydrogen storage system
J. Hu, R. Witter, H. Shao, M. Felderhoff, M. Fichtner
J. Mat. Chem.A, 2014, 2, pp 66-72
DOI: 10.1039/c3ta13775a


An Orders-of-Magnitude Increase in the Rate of Solid Catalyzed
CO Oxidation by In Situ Ball Milling
S. Immohr, M. Felderhoff, C. Weidenthaler, F. Schüth
Angew. Chem. Int. Ed. 2013, 125, 12920-12923
DOI: 10.1002/anie.201305992

Thermochemical Heat Storage for High Temperature Applications – A Review
M. Felderhoff, R. Urbanczyk, S. Peil, Green, 2013, 3, 113–123.


Hydridspeicher aus Al-Legierungen zur Entkopplung von Wärme und Strom
R. Urbanczyk, K. Peinecke, M. Felderhoff, K. Hauschild, S. Peil
in Proceedings of the 19. Symposium – Nutzung Regenerativer Energiequellen und Wasserstofftechnik, November 8.-10. 2012, Stralsund, Germany

Synthesis, crystal structures, and hydrogen storage properties of Eu(AlH4)2 and Sr(AlH4)2 and their decomposition intermediates, EuAlH5 and SrAlH5
Pommerin A., Wosylus A., Felderhoff M., Schüth F., Weidenthaler C.
Inorg. Chem. 2012, 51, 4143–4150.


HT-PEM fuel cell system with integrated complex hydride storage tank; Urbanczyk R., Peil S., Bathen D., Heßke C., Burfeind J., Hauschild K., Felderhoff M., Schüth F.
Fuel Cells, 2011,11,911-920

Formation of Al2H7 anions - indirect evidence of volatile AlH3 on sodium alanate using solid state NMR spectroscopy; Felderhoff M., Zibrowius B.

Nanostructured Ti-catalysed MgH2 of hydrogen storage; Shao H., Felderhoff M., Weidenthaler C., Schüth F.,
Nanotechnology 2011,22,235401

Wasserstoffspeicherung im Festkörper - Komplexe Aluminiumhydride als Speicher für stationäre Anwendungen; Felderhoff M., Urbanczyk R., Peil S.
H2 - Das Magazin für Wasserstoff und Brennstoffzellen, April 2011

Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure
Shao H., Felderhoff M. and Schüth F.
Int. J. Hydrogen Energy, 2011, DOI: 1016/j.jhydene.2011.05.180

Hydrogen Storage for Mobile Applications – Quo Vadis?;
Weidenthaler C., Felderhoff M.;
Energy Environ. Sci., 2011, DOI: 10.1039/C0EE00771D


Influence of the synthesis parameters on the mechanochemical preparation of rare-earth aluminum hydrides;
Pommerin A., Felderhoff M., Schüth F., Weidenthaler C.;
Scripta Mater. 2010, 63, 1128–1131.

Direct synthesis of pure complex aluminium hydrides by cryo milling;
Pommerin A., Weidenthaler C., Schüth F., Felderhoff M.;
Scripta Mater. 2010, 62, 576–578. doi:10.1021/ja101519z


Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and thermal decomposition;
Weidenthaler C., Pommerin A., Felderhoff M., Sun W., Wolverton C., Bogdanović B., Schüth F.;
J. Am. Chem. Soc. 2009, 131, 16735–16743.

Chemical and physical solutions for hydrogen storage;
Eberle U., Felderhoff M., Schüth F.;
Angew. Chem. Int. Ed. 2009, 48, 6608–6630.

Cycling properties of Sc- and Ce-doped NaAlH4 hydrogen storage materials prepared by the one-step direct synthesis method;
Bogdanović B., Felderhoff M. Pommerin A., Schüth F., Spielkamp N., Stark A.;
J. Alloys Compd. 2009, 471, 383–386.

Mechanochemical Synthesis of Ternary Potassium Transition Metal Chlorides;
Pawelke R.H., Felderhoff M., Weidenthaler C., Bogdanović B., Schüth F.;
Z. Anorg. All. Chem. 2009, 635, 265–270.

Complex Metal Hydrides;
Bogdanović B., Felderhoff M., Streukens G.;
J. Serb. Chem. Soc. 2009, 74, 183–196.

High temperature metal hydrides as heat storage materials for solar and related applications; Felderhoff M., Bogdanović B.;
Int. J. Mol. Sci. 2009, 10, 325–344. doi:10.3390/ijms10010325 (open access)


Convenient synthesis of deuterated aluminium hydrides;
Pawelke R.H., Felderhoff M., Weidenthaler C., Schüth F.;
Scripta Mater. 2008, 59, 515–517.

Crystal structure of bis(diglyme-O,O ‚,O ‚‘)bis((mu(2)-deutero)trideuteroaluminato-D)calcium, Ca(AlD4)2(C6H14O3)2;
Pommerin A., Felderhoff M., Goddard R., Weidenthaler C.;
Z. Kristallogr. New Cryst. Struct. 2008, 223, 67–68.

Wasserstoffspeichersysteme in der Entwicklung
Felderhoff M.;
BWK – Das Energie-Fachmagazin, Heft 1, 2008

Book contributions

Felderhoff M.
“Hydrogen Storage“ in Functional materials for energy applications
Woodhead Publishing,  2012

Felderhoff M., et al.
Integriertes Organisch-Chemisches Praktikum
Lehmanns Media, Berlin 2007
-A workbook for undergraduate students in organic chemistry-

Felderhoff M.
„Advanced Tools for the Synthesis of Hydrogen Storage Materials“ in Hydrogen Technology, Springer Verlag, 2008

Bogdanovi  B,. Felderhoff M., Schüth F.
„Complex Metal Hydrides“ in Hydrogen as a Future Energy Carrier
Wiley-VCH, Januar 2008

Weidenthaler C., Felderhoff M.
“Complex Hydrides“ in Handbook of Hydrogen Storage
Wiley-VCH,  2010



Research Topics

Hydrogen Storage
Hydrogen Storage

Hydrogen Storage

The main research is the synthesis and characterization of new materials for the storage of hydrogen and heat. The focus is on complex aluminum hydride compounds, which are materials with high hydrogen storage capacities. Our aim is the optimization of doped-NaAlH4 systems for fuel cell applications and the development of new materials useable as potential new hydrogen storage materials. A tank system filled with NaAlH4 for a HT-PEM fuel cell application is shown in the picture (developed together with IUTA and ZBT).

Metal hydrides can not only store high amounts of hydrogen, they have also the property to store huge amounts of heat. In this case hydrogen is only a process gas and not consumed during the heat storage or release.

Light weight metal hydrides based on magnesium can be used as heat storage materials at temperatures up to 550°C. Therefore they can store huge amounts of heat for e.g. solar thermal power plants. Over the daytime the high temperature metal hydride is decomposed through solar heat and releases hydrogen. The hydrogen is temporarily stored in a gas tank or in a low temperature metal hydride. During the night the stored heat can be recovered from the reaction of the magnesium metal with hydrogen. Our aim is the optimization and demonstration of heat storage units and materials for this application.

High-energy ball milling, mechano catalysis, porous polymeres
High-energy ball milling, mechano catalysis, porous polymeres

High-energy ball milling, mechano catalysis, porous polymeres

The synthesis of organic and inorganic compounds can often be simplified with mechanical activation. Solvents are not necessary, the reaction time is often reduced and completely unknown compounds can be synthesized. Reactions under gas pressure (up to 300 bar) can de done directly in a ball mill with in-situ observation of the reaction conditions by a telemetric data logging system.

The picture shows the evolution of the hydrogen pressure and the temperature during the hydrogenation of Ti-doped NaAlH4. Our intention is the development of new synthetic procedures through mechanical activation.


Research Reports



Filter | Staff Search